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Abstract 
In this paper, we study the properties of Q* compact space and generate new results in the space. In particular, 

we investigate the Q*-compactness of topological spaces with separable, Q*-metrizable, Q*-Hausdorff, 

homeomorphic, connected and finite intersection properties. 
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1. Introduction 

Borel proved, in his 1894 Ph.D. thesis, that a countable covering of a closed interval by open 

intervals has a finite subcover. It turns out that Borel approach was similar to the approach 

used by Heine in 1872 to prove that a continuous function on a closed interval was uniformly 

continuous which was first proved, but unpublished for 60 years, by Dirichlet in 1852. 

Lebesgue (1898) and Cousins (1895) removed countable from the hypothesis of Borel's 

result. Thus, we have the generalized theorem, which is now called the Heine-Borel theorem. 

For references see Borel’s work of 1919. 

 

Murugalingam and Lalitha (2010) introduced the concept of Q* sets. They further studied the 

properties of Q* closed and Q* open sets in affine space in (2011). Padma and Udayakumar 

(2015a) and (2015b) introduced the concept of Q*O compact spaces and obtained some 

interesting results by applying the results to pairwise SC compact spaces (Padma et al., 2013). 

Some important results on bitopological spaces are obtained in Kannan (2009), Padma & 

Udayakumar (2012a), Padma and Udayakumar (2012b) and Sharma (1990). Let ( , )X   be a 

topological space. A subset S  in X  is Q* closed in ( , )X   if S is closed and Int ( )S = . 
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Its compliment 𝑆′ is therefore Q* open (Sidney, 2011; Tom et. al., 2007). If every open cover 

of X  has a finite sub cover then X  is called a compact space. ( , )X   which is separable if it 

has a countable dense subset. Let X  be a set and   a family of subsets of X . Then   is 

said to have finite intersection property if for any finite number 1 2, ,..., nF F F  of members of  , 

1 ... nF F    , Sidney (2011). 

2. Preliminaries 

In this Section, we give some useful definitions to the proof of our main results:  

Definition 2.1 (Tom et al., 2007): A subset B of a topological space ( , )X   is said to be 

compact if every open covering of B has a finite subcovering. If the compact subset B equals 

X, then ( , )X   is said to be a compact space. 

Definition 2.2 (Tom et al., 2007): Let ( , )X   be a topological space. Then, it is said to be 

connected if the only clopen subsets of X are X and  . 

Definition 2.3 (Tom et al., 2007): A subset A of a topological space ( , )X   is said to be Q*O 

- compact space if every *Q −  open cover of X has a finite sub cover. 

Definition 2.4 (Tom et al., 2007): Let ( , )X   be a topological space. Then it is said to be Q*- 

connected if the only Q* clopen subsets of X are X and  . 

 

3. Generalization of Q*O Compact space 

We state our main results in this section: 

Theorem 3.1: The closed interval [0, 1] is Q*-compact. 

Proof: Let G ,   be any open covering of [0, 1]. Then for each [0,1]x , there is a G  

such that x G . As G  is open in x , there exist an interval xU , open in [0, 1] such that 

xx U G  . Now, we define  𝑆 of [0, 1] as: 

  : [0, ]                      xS z z canbecovered by a finitenumberof thesetsU= . 

Then, [
1 2

[0, ] ...
nx x xz S z U U U       for some 1 2, ,..., nx x x ]. Let x S  and xy U . 

Then as xU  is an interval containing x  and y , [ , ] xx y U . Here we are assuming without 

loss of generality that x y . Therefore,  
1 2

[0, ] ...
nx x x xy U U U U      and hence y S . 

For each [0,1], x xx U S U  =  or  . This implies that 
x

x S

S U


=  and [0,1] | x

x S

S U


= . Thus, 

we have that 𝑆 is open in [0, 1] and 𝑆 is closed in [0, 1]. But [0, 1] is connected. Therefore 
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[0,1]S =  or  . However, 0 S  and [0,1]S =  that is, [0, 1] can be covered by a finite 

number of xU . So that
1 2

[0,1] ...
mx x xU U U    . But each xU  is contained in  ,G   . 

Hence, 
1 2

[0,1] ...
m

G G G       which implies that [0, 1] is Q*-compact. 

 

Example 3.1: If  (𝑋, 𝜏) = 𝐺𝛼 and (0, )A =   then A  is not Q*-compact. 

Proof: For any integer  , Let G  be any interval (0, ) . Then clearly, 
1

A G





=

 . But there 

do not exist 1 2, ,..., n    such that 1 2(0, ) (0, ) ... (0, )nA       . Therefore, A is not Q*-

compact. 

Corollary 3.1: For a  and b  in Gά  with a b , [a, b] is Q* compact, while (a, b) is not Q*-

compact. 

Proof: The space [a, b] is homeomorphic to Q*- compact [0, 1] and by Padma (2015b), Q*- 

compact. The space ( , )a b  is homeomorphic to (0, ) . If ( , )a b  were Q*-compact, then 

(0, )  would be Q*-compact, but by example 3.1 (0, )  is not Q*-compact. Hence ( , )a b  is 

not Q*-compact. 

 

Example 3.2: Suppose       , , , , , , , , , , ,X e f g h X e f g e f h = = , Let  , ,S e g h= . Now 

   , ,A a d b c  . By definition, S  is compact set. But, S  is not a Q*O - compact set 

because S  is not Q* closed since its complement  b  is not Q* open. 

Remark: Every Q*O - compact space is compact, but the converse is obviously not 

necessarily true from example 3.2. 

Theorem 3.2: A subset S  of Gά is Q*-compact if and only if S  is closed and bounded. 

Proof: Suppose that S  is Q*-compact. To see that S is bounded, we let ( ),nI n n= −  

Then ⋃ 𝐼𝑛
∞
𝑛=1 = 𝐺𝛼, therefore, S  is covered by the collection of nI . Since S  is Q*-

compact, finitely many will suffice ( )
1

...
kn n mS I I I   = , where  1,..., km max n n= . 

Therefore, | |x m  for all x S  and S  is bounded. Now, we will show that S  is closed.  

Suppose not, then, there exists a point 𝑝 ∈ 𝑐𝑙(𝑆)| S; for each n , define the neighborhood 

around p  of radius 1/ n , ( ),1 /nN N p n= . Take the complement of the closure of 

| ( )n n nN U R cl N=  is open, since its complement is closed and we have ⋃ ∪𝑛=∞
𝑛=1

𝐺𝛼| ⋂ 𝑐𝑙(𝑁𝑛) = 𝐺𝛼{𝑝} ⊇ 𝑆∞
𝑛=1  . 



Rauf et al.                               ILORIN JOURNAL OF SCIENCE 

337 
 

Therefore,  nU  is an open cover of S. Since S is Q*-compact, there is a finite subcover 

1
,...,

kn nU U  for S .  

 

Furthermore, they are constructed as i jU U   if i j . It follows that mS U where 

 1,..., km max n n= . But, ( ,1 / )S N p m  =  which contradicts the choice of 𝑝 ∈ 𝑐𝑙(𝑆)| S .  

Conversely, we need to show that if S  is closed and bounded, then S  is Q*-compact. Let   

be an open cover for S . For each 𝑥 ∈ Gά, define the set ( , ],xS S x=  − and let

 :                xB x S iscovered by a finite subcoverof=  . 

Since S  is closed and bounded, by hypothesis, S  has both a maximum and a minimum. Let 

d minS= . Then  xS d=  and this is certainly covered by a finite subcover of  . Therefore, 

d B  and B  is nonempty. If we can show that B is not bounded above, then it will contain a 

number p  greater than max S. But then, pS S=  so we can conclude that S  is covered by a 

finite subcover, and is therefore Q*-compact. Toward this end, suppose that B  is bounded 

above and let m supB= . We shall first show that m S  and then m S  both lead to 

contradictions. 

 

If m S , then since   is an open cover of S , there exists 0F  in   such that 0m F . Since 

0F  is open, there exists an interval 1 2[ , ]x x  in 0F  such that 1 2x m x  . Since 1x m  and 

m supB= , there exists 1,..., kF F  in   that cover 
1xS . But then 0 1, ,..., kF F F  cover 

2xS , so that 

2x B . But this contradicts m supB= . If m S , then since S  is closed there exists 0ò  

such that ( , )N m S  =ò . But then m mS S− +=ò ò . Since m B− ò  we have m B+ ò , which 

again contradicts m supB= . 

Therefore, either way, if B  is bounded above, we get a contradiction. We conclude that B is 

not bounded above, and S must be Q*-compact. 

Theorem 3.3: Let ( , )X   be a Q*-compact metrizable space. Then, ( , )X   is separable. 

Proof: Let d  be a metric space on X  which induces the topology  . For each positive 

integer n , let nS  be the family of all open balls having centres in X  and radius 
1

n
. Then, nS  

is an open covering of X  and so there is a finite subcovering  
1 2
, ,...,

kn n n nU U U = , for some 
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k. Let 
jny  be the centre of 

jnU , j=1,…k
, and  

1 2
, ,...,

kn n n nY y y y= . Put 
1

n

n

Y Y


=

= . Then, Y  

is a countable subset of X . We now show that Y  is dense in ( , )X  . If V  is any non-empty 

open set in ( , )X  , then for any v V , V  contains an open ball, B , of radius 
1

n
, about v , 

for some n. As n  is an open cover of X , 
jnv U , for some j . Thus, ( ) 1

,
jnd v y

n
  and 

so 
jny B V  . Hence, V Y   , and so Y  is dense in X . 

 

Theorem 3.4: Let ( , )X   be a topological space. Then ( , )X   is Q*-compact if and only if 

every family   of closed subsets of X  with the finite intersection property satisfies

F

F 


 . 

Proof: Assume that every family   of closed subsets of X  with the finite intersection 

property satisfies 
F

F 


 . Let   be any open covering of X . Put   equal to the family of 

complements of members of  . So each F is closed in ( , )X  . as   is an open 

covering in X , 
F

F 


 . By the assumption, then   does not have finite intersection 

property. So for some 1 2, ,..., nF F F  in  , 1 2 ... nF F F     . Thus 1 2 ... nU U U X   = , 

where |i iU X F= , 1,...,i n= . So   has a finite subcovering. Hence, ( , )X   is Q*-compact. 

The converse statement is proved similarly. 

 

Theorem 3.5: Let f  be a continuous mapping of a Q*-compact metric space (X, d) onto a 

Q*-Hausdorff space 1( , )Y  . Then 1( , )Y   is Q*-compact and metrizable. 

Proof: Since every Q*-continuous image of a compact space is compact (Padma 2015b), the 

space 1( , )Y   is certainly compact and metrizable. As the map f  is surjective, we can define 

the metric 1d  on Y  as follows:  𝑑(𝑦1, 𝑦2) = inf {𝑑(𝑎, 𝑏): 𝑎 𝜖  1

1f y− and 𝑎 𝜖  1

1f y− for all 

1y  and 2y  in Y . We need to show that 1d  is indeed a metric. Since  1y  and  2y  are closed 

in the Q*-Hausdorff space 1( , )Y  ,  1

1f y−  and  1

2f y−  are Q*- compact. So the product 

   1 1

1 2f y f y− − , which is a subspace of the product space ( , ) ( , )X X  , is Q*-compact, 

where   is the topology induced by the metric d . Observing that 𝑑 ∶ (𝑋, 𝜏) → 𝐺𝛼 is a 
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continuous mapping, then    ( )1 1

1 2d f y f y− −  has a least element. So there exists an 

element  1 1 1x f y−  and an element  2 1 2x f y−  such that: 

 ( ) ( )      ( )1 1

1 2 1 2 1 1 2, , : , ,d x x inf d a b a f y b f y d y y− −=   = . 

Clearly, if 1 2y y , then    1 1

1 2f y f y − − = . Thus, 1 2x x  and hence ( )1 2, 0d x x  ; that 

is ( )1 1 2, 0d y y  . It is easily verified that 1d  has the other properties required of a metric and 

so a metric on Y . Let 2  be the topology induced on Y  by 1d , we have to show that 1 2 = . 

Firstly, by the definition of 1d , 2: ( , ) ( , )f X X →  is certainly continuous. Observe that for a 

subset C  of Y , C  is a closed subset of 1( , )Y   implies ( )1f C−  is a closed subset of ( , )X  . 

Hence ( )1f C−  is a Q*-compact subset of ( , )X   which implies that ( )( )1f f C−  is a Q*-

compact subset of 2( , )X  . Hence 1 2  . Similarly, we have 2 1   and thus 1 2 = . 

 

Theorem 3.6: An infinite subset of a Q*-compact space must have a limit point. 

Proof: Let X be a Q*-compact space with an infinite subset S which has no limit point. Our 

interest is to show that S is finite. We can find an open cover of X consisting of open 

neighborhoods T(x) such that 𝑇(𝑥) ∩ 𝑆 = {
∅ 𝑖𝑓 𝑥 ∉ 𝑆 
{𝑥}𝑖𝑓 𝑥𝜖𝑆 

each of these T(x) exist since otherwise 

x is a limit point of S. The open cover T(x) must admit a finite subcover and since we defined 

T(x) to contain no more than one point of S, S must be finite. 

 

Theorem 3.7: Let ( , )X   be a Q*-compact space and 𝑓 ∶ (𝑋, 𝜏) → 𝐺𝛼 a continuous mapping. 

Then, ( )f X  has a greatest element and a least element. 

Proof: Since f  is continuous and ( )f X  is Q*-compact, therefore, ( )f X  is a closed 

bounded subset of 𝐺𝛼. Since ( )f X  is closed and ( )f X  is a subset of 𝐺𝛼, it is obvious that if 

p  is the supremum of ( )f X  then ( )p f X . That is, we need to show that the supremum of 

( )f X  is contained in ( )f X .  Suppose 𝑝 𝜖 𝐺𝛼⃒𝑓(𝑥). As 𝐺𝛼 ⃒𝑓(𝑥) is open, there exist real 

numbers a  and b  with a b  such that ( , ) | ( )p a b f X  . As p  is the least upper bound 

for ( )f X  and a p , it is clear that there exists an ( )x f X . Also, x p b   and 

so 𝑝 𝜖 (𝑎, 𝑏) ⊆ 𝐺𝛼⃒𝑓(𝑥). But this is a contradiction, since  ( )x f X . Hence, our 
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supposition is false and ( )p f X . Thus, ( )f X  has a greatest element p . Similarly, it can 

be shown that ( )f X  has a least element. 

Theorem 3.8: If 1 1 2 2( , ),( , ),..., ( , )n nX X X    are Q*- compact spaces, then 
1

( , )
n

i i

i

X 
=

  is a 

Q*- compact space. 

Proof: The first part of this proof is to show that the product of any two Q*- compact 

topological spaces is Q*- compact. Suppose 1 1( , )X   and 1 1( , )X   are Q*- compact then 

1 1 2 2( , ) ( , )X X   is also Q*- compact Padma (2015) [8].Then by induction, we can say that: 

1 1 2 2 3 3 1 1 2 2 3 3( , ) ( , ) ( , ) [( , ) ( , )] ( , )X X X X X X       =    is also Q*- compact since it is also 

a product of two Q*- compact spaces. Conclusively, suppose that the product of any two N 

Q*- compact spaces is Q*- compact. Consider the product 

1 1 2 2 1 1( , ) ( , ) ... ( , )N NX X X  + +    of Q*- compact spaces ( , )i iX  , i = 1, ..., N+1. Then, 

1 1 1 1 1 1 1 1( , ) ... ( , ) ( , ) [( , ) ... ( , )] ( , )N N N N N N N NX X X X X X     + + + +       . 

By inductive hypothesis 1 1( , ) ... ( , )N NX X    is Q*- compact, so the right-hand side is the 

product of two Q*- compact spaces and thus is Q*- compact. Therefore, the left-hand side is 

also Q*- compact. 

 

Theorem 3.9: Let ( ) , :i iX i I   be any family of topological spaces. Then, ( ),i i

i I

X 


  is 

Q*-compact if and only if each ( ),i iX   is Q*-compact. 

Proof: We shall use Theorem 3.6 to show that ( )( , ) ,i i

i I

X X 


=  is Q*-compact. Let   be 

any family of closed subsets of X  with the finite intersection property. We have to prove that 

F

F 


= . By Sydney (2011), there is a maximal family   of (not necessarily closed) 

subsets of ( , )X   that contains   and has the finite intersection property. We shall prove that 

H

H 


= , from which follows the required result 
F

F 


= , since each F Im  is closed. 

Since   is maximal with the property that it contains   and has a finite intersection 

property, if 1 2, ,..., nH H H  , for any n, then the set 1 2' ... nH H H H=     . 

Suppose this was not the case, then the set ' { '}H =    would properly contain   and 

also have the property that it contains   and has the finite intersection property. This is a 

contradiction to   being maximal. So ' H =  or 1 2' ... nH H H H=     . Let S  be 
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any subset of X  that intersects non-trivially every member of  , we claim that  S has 

the finite intersection property.  To see this, let ' ' '

1 2, , ..., HmH H  be members of ' , we shall 

show that 
' ' '

1 2, ... mS H H H     . But, 
' ' '

1 2, ... mH H H   . By assumption 

' ' '

1 2( , ... )mS H H H     .  Hence,  S  has the finite intersection property which 

contains  . 

 

Again, using the fact that   is maximal with the property that it contains   and has the 

finite intersection property, we see that S. Fix i I  and let ( ): , ( , )i i i i i

i I

p X X 


→  be 

the projection mapping, then the family  ( ) :ip H H   has a finite intersection property. 

Therefore, the family  ( ) :ip H H   has a finite intersection property.  As ( , )i iX   is Q*-

compact, ( )i

H

p H 


 .  Let ( )i i

H

x p H


 , then for each i I , we can find a point 

( )i i

H

x p H


 . Put ix x X
i I

 


 , we shall prove that ( )i

h

x p H


 . Let T be any open 

set containing x . Then, T contains a basic open set about x for the form 1( )i i

i J

p U−



, where 

i iU  , i ix U  and J  is a finite subset of I . As ( )i ix p H , ( )i iU p H   , for all H  . 

Thus, 1( )i ip U H −    for all H  . By the observation above, this implies that 

1( )i ip U−  , for all i J . As   has the intersection property, 1( )i i

i J

p U H −



   for all 

H  .  Hence, 
H

x H


 , as required. Conversely, if ( ),i i

i I

X 


  is Q*-compact, by 

Corollary 3.1 and Theorem 3.6 each ( ),i iX   is Q*-compact. 

Theorem 3.10: If X  is not Q*-compact, then X  is homeomorphic to an open dense set in 

 .(where   is not too larger than X ). 

Proof:  Suppose we ensure that   is not too large, that is, not too much larger than X . First, 

we shall show that X  is homeomorphic to the set  X  . Construct a function that sends 

each point of X  to the corresponding point in  X . This function is obviously one-to-one 

and onto and it is continuous (and so is it has inverse) because the open sets in  X  are 

exactly the open sets in X . The set  X  is open in   because it does not contain   and it is 
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open in X . To show that  X  is dense, we can simply show that it is not closed or that   is 

not open. (If that is the case, then  X  is not its own closure and the only other option is that 

its closure is  ). If   is open, then its complement,  X , must be compact. But this would 

imply that X is Q*-compact, contradicting our earlier assumption. So   cannot be open, 

meaning  X  must be dense. 

 

Theorem 3.11: If none of the components of X is Q*-compact, then   is connected. 

Proof: Assume that   is not connected. That is, there is some set U in   that is open and 

closed, but is not   or  . It’s complement, V , is also open and closed without being   or 

 . Either U  or V  contains  ; take the one that does not, and call it W. W is Q*-compact 

because its complement is open and contains  . First let us consider the case that X  is 

connected. We have already established that W  is not  . It cannot be all of X  either, 

because W  is Q*-compact and X  is not. W  is open in X  because it is open in   and does 

not contain  . It is closed in X because its complement (either U X  or V X ) is open in 

X . Hence, W is open, closed, not  , and not X , which implies that X  is not connected. 

This contradicts the assumption, and   must be connected. 

Remark: Suppose X  is not connected? In this case, we look at the connected components of 

X . Any open set including   must also contain points in each of the components of X  

because the complement of the open set is Q*-compact, and if the complement included an 

entire connected component, then that component would need to be Q*-compact, but it is not. 

So W  contains some points in each of the components. But this would imply that the 

connected components are not connected, which is a contradiction. Again,   must be 

connected. 

4. Results and Discussion 

Some new properties of Q*-compactness of topological spaces with separable, Q*-

metrizable, Q*-Hausdorff, homeomorphic, connected and finite intersection properties were 

critically reviewed, generated and evaluated.  

5. Conclusion 

The results in this article are a refinement, extension and generalization of the work in Padma 

(2015) and Padma and Udayakumar (2015). 
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