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Abstract 

In this paper, a Galerkin weighted Residual method is used in providing an analytical solution of two-

dimensional contaminant flow problem with non-zero initial concentration. The equation is described by 

advection, dispersion, adsorption, first order decay and zero-order source. It is assumed that the adsorption term 

is modeled by Freudlich isotherm. Using Bubnov-Galerkin method, the governing equation was converted to a 

discrete problem. Thereafter, the approximate solution of the resulting system of initial value problem was 

obtained. The results obtained are expressed in graphical form to show the effect of change in the parameters on 

the concentration of the contaminants. From the analysis of the results, it was discovered that the contaminant 

concentration decreases with increase in the distance from the origin while it increases with increase in the zero-

order source coefficient. 
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1. Introduction 

The problem of contaminant transport in soil, groundwater and surface water has been in 

hydro-geological research history for many years. This is largely due to increased awareness 

of significant contamination of groundwater and surface water by industrial and human 

activities such as agricultural chemicals, accidental spills, landfills and buried hazardous 

materials. While agricultural chemicals are generally useful in the surface of the soil, their 

penetration into the vadose zone and groundwater could contaminate groundwater. 

Groundwater in its natural state is generally of excellent quality because the physical 

structure and mineral constituents of rock have facility for purifying water. 
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Before the establishment of industries, the major threat to groundwater came from viruses 

and bacteria. The presence of these microbiological contaminants like bacteria, viruses and 

parasites in groundwater constitute some threat to community health. 

The transport equation which models the movement of contaminants through groundwater 

and surface water environments was reported by (Bear, 1997). These equations describe 

advection, diffusion and interaction with the environment. They are often advection-

dominated and require a lot of care when solved numerically. In order to predict the 

contaminant migration in the geological formation more accurately, a tasking job emerges for 

scientists. The problem involves defining the flow lines of groundwater of the aquifers, the 

travel time of water along the flow lines and to predict the chemical reaction and zero order 

source coefficient which alter the concentration during transport. 

Most researchers are of the view that the flow in the solute transport or contaminant flow 

model is predominantly horizontal as found in (Bear, 1997). Further research by (Brainard 

and Gelhar, 1991) discovered that appreciable vertical flow components do occur in the 

domain of vertically penetrating wells and streams.  

In an effort to provide solutions to the contaminant flow problems, a lot of successes were 

achieved by some researchers but mostly on one-dimensional cases with various initial and 

boundary conditions. (Okedayo and Aiyesimi, 2005) studied the influence of retardation 

factor on the nonlinear contaminant flow problem. Okedayo et al. (2011) worked on the 1-

Dimensional nonlinear contaminant transport equation with an initial and instantaneous point 

source. Their investigation revealed that the contaminant concentration decreases with 

increase in the distance from the origin. On the dispersion of solute, Ramakanta and Mehta 

(2010) explored the effect of longitudinal dispersion of miscible fluid flow through porous 

media. 

The analytical solution to temporally dependent dispersion through semi-infinite 

homogeneous porous media by Laplace transform technique (LTT) was provided by Yadav et 

al. (2011). On the effect of reactive and non-reactive contaminant on the flow, Aiyesimi and 

Jimoh (2012; 2013) explored the computational analysis of 1-dimensional non-linear 

contaminant flow problem with an initial continuous point source using homotopy 

perturbation method. They discovered that the concentration decreases with increase in time 

and distance from the origin for the non-reactive case.   
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In this research, we provide an analytical solution of the two-dimensional contaminant flow 

problem incorporating flow in both horizontal and vertical direction in addition to first-order 

decay and zero order sources using the weighted residual method (Bubnov-Galerkin method).   

Bubnov-Galerkin Method 

Bubnov-Galerkin method is a weighted residual method which is used in solving differential 

equations. When the problem at hand is an ordinary differential equation, we call the method 

Galerkin weighted residual method and it requires only one equation residual. If the problem 

is a partial differential equation, the method is a Bubnov-Galerkin method and requires more 

than one equation residual. The method of weighted residual requires two types of functions 

namely, the basis functions and weight functions. The former is used to construct the trial 

solution while the latter is used as criterion to minimize the residual. In applying Bubnov-

Galerkin method, the trial solution is chosen to satisfy the boundary conditions while the 

basis functions must satisfy the homogeneous boundary conditions. In particular, the basis 

functions are chosen as the weight function. 

 

2. Materials and Methods 

 

Formulation of the Model 

We consider an incompressible fluid flow through a semi-infinite homogeneous porous 

media with non-zero initial concentration in the transport domain. We assume that the flow is 

two-dimensional and in the direction of x and y-axis. The source concentration is assumed at 

the origin, that is, at 0=x  and 0=y . 

Following (Bear, 1997; Yadav et al., 2011; Freezer and Cherry, 1979), the two dimensional 

parabolic partial differential equation describing hydrodynamic dispersion in adsorbing 

homogeneous, isotropic porous medium can be written as 
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The adsorbed contaminant S  is assumed to be a function of the concentration of the fluid. i.e.  
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Then, the two-Dimensional contaminant flow problem with the associated initial and 

boundary conditions is 
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where, dKR += 1 , is the retardation coefficient, accounting for equilibrium linear sorption 

process, dK  is the distribution coefficient which is defined as the ratio of the adsorbed 

contaminant to the dissolved contaminants t  is the time  T , 

x  is the distance measured from the origin in the longitudinal direction  L , 

y  is the distance measured from the origin in the transverse direction  L , 

S  is the mass of adsorbed contaminant to the solid matrix per unit mass of the solid 

(dimensionless), 

s  is a first order decay term  1−T , 

  is the zero order source term  13 −− TML , 

D  is the horizontal dispersion coefficient   12 −TL , 

D  is the vertical dispersion coefficient   12 −TL , 

U  is the flow velocity in the horizontal axis  1−LT , 

V  is the flow velocity in the vertical axis  1−LT , 

s  is the source coefficient   1−T .  

 

Method of Solution  

In solving the above problem (4), we apply the Galerkin weighted residual method precisely 

the Bubnov-Galerkin method. We choose our basis functions to satisfy the homogeneous 

boundary conditions as in Ames (1972), Edward (1972) and Finlayson (1972). The initial 

approximation is chosen as: 

,1),(0 xyyx −=           (5) 
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we use the basis functions: 
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We assume trial solution of the form: 
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we form the equation residual as follows: 
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By substituting equations (8) in the equation residual (9), we have 
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In order to minimize the equation residual, we have 
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Similarly, we apply the same procedure on the second weight function ),(2 yx  to minimize 

the equation residuals as follows: 
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From equations (12) and (14), we obtain the following equations: 
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Equation (14) and (16) can be rewritten as: 

0)()()(' 211 =+++ rtqAtpAtA ,           (17) 

0)()()(' 212 =−+− ztwAtsAtA ,           (18) 

where 
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To find the initial conditions of the equations (17) and (18), we use another Galerkin 

approximation which involves forming initial residual as in (Kythe et al., 1997), that is, the 

initial residual is 
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In order to minimize the initial residual: 
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Similarly, to minimize the initial residual using the weight function, we have 

  
b a

I dxdyyxAAyxR
0 0

221 ),())0(),0(.,,(  =0 ,                           (24) 

400144
)0(

11025
)0(

3600

3322

2

33

1

22 baba
A

ba
A

ba
−=+ .               (25) 

We solve equations (23) and (25) simultaneously to obtain the values of )0(1A  and )0(2A  as 

follows: 
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Equations (26) and (27) serve as initial conditions for equations (17) and (18), respectively. 
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Rewriting equation (17) and (18) in matrix form, we have  
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with the initial conditions  
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The solution of the system (28) and (29) are obtained as:  
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and 
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Consequently, substituting equations (30) and (31) in equation (8), we have the solution of 

the contaminant flow problem (4) as: 

),()(),()(),(),,( 22110 yxtAyxtAyxtyxC  ++=
,     (32) 
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where 

),(),,( 10 yxyx   and ),(2 yx are as defined in equations (5), (6) and (7) and )(1 tA , )(2 tA   

are as given in equations (30) and (31), 25
15

41
+= abCo  and 

15

539
1 −=C . 

3. Results and Discussion  

The analytical solution obtained for equation (4) is displaced on the following graphs using 

hypothetical data and Maple software. The contaminant concentration is plotted against the 

distance with: ,1.0=D  ,01.0=D ,1.0=U ,01.0=V ,1== ba ,1.0=s ,1.0=s

1.0,1 == yR   and t ranges from 0.1 to 0.5 as shown in figure (4.1) below. By replacing 

values of the parameters with: ,01.0,1.0,01.0,1.0 ====  VUDD ,1== ba ,1.0=s  

1.0,1.0,1 === tyR
 
with 

s  ranging from 0 to 1, we have the Graph of Concentration 

against the zero order source coefficient as in figure (4.2) below.  

 

Similarly, values of the parameters were replaced with the following:   

1.0,1.0,1,1.0,1,01.0,1.0,01.0,1.0 ========== tyRbaVUDD s   with 
s  

ranging from 0 to 1 and concentration is plotted against the decay coefficient, we have figure 

(4.3) below. Lastly, figure 4.4 is obtained when s  is varied as 0.1, 0.2 and 0.3 and other 

parameters remain as in Figure 4.1.  Figure 4.4 shows that as the source coefficient s  

increases, the concentration increases and later decreases with increase in distance from 

source.
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Fig. 4.1: Graph of concentration against Distance in the presence of first order decay and zero order source.  

 

Fig. 4.2: Graph of Concentration against the zero order source coefficient   
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Fig. 4.3: Graph of Concentration against the decay coefficient 

 

Fig. 4.4: Graph of Concentration of Contaminant against distance with varying values of source coefficient s . 
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4. Conclusion 

In this article, the Galerkin weighted residual method is used to solve a two-dimensional 

contaminant flow problem with non-zero initial concentration in a finite domain which has 

proven to be simple and effective. The study reveals that the concentration of the contaminant 

decreases with increase in the distance from the origin and increases with increase in the 

zero-order source coefficient. Similarly, as evident from the graphs, the contaminant 

concentration decreases with increase in the decay coefficient. As the source coefficient s  

increases, the contaminant concentration increases and later decreases with increase in the 

distance from the source. This can be seen from figure 4.4. 
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