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Abstract 

Kappa-like statistics such as Cohen Kappa and Intraclass Kappa have been in existence in the last four decades. 

They are mainly for the measurement of overall level of agreement that may exist between two raters. Subjects 

are being classified into categories by raters, interviewers or observers in all life or social science researches. In 

any experiment that involves measurement, counting, treatments or diagnosis, irrespective of the level of 

reliability, there could be likelihood for some elements of missing observations. In this research work, we 

examine the effects of these missing observations with different missing patterns from the square table of cross-

classified ratings of raters on these two Kappa-like statistics. We assumed a conventional missing at random 

(CMAR) which is a special case of missing at random (MAR) mechanism criteria. We observed that value from 

Intraclass Kappa statistic are consistently lower than their respective estimates from Cohen Kappa statistic and 

missingness improved or worsened the strength of agreement as the missing percentage increases depending on 

the missing pattern under consideration. 

 

Keywords: Agreement, Kappa statistic, intraclass, conventional missing at random (CMAR), raters. 

 

 

 

1. Introduction  

Statistical analysis with missing data is a common problem in practice. Nonresponse in a 

sample survey or drop-out in clinical trials may be two of many examples one could imagine. 

Any square contingency table can be used to display joint ratings from two raters.  We 

establish in this paper that during the process of collecting and classifying these ratings on the 

subjects into classes of categories, there are possibilities of missing values. Categorical data 

are data that the response variable is classified into either nominal or ordinal categories. For 

nominal data, which is our focus in this paper, as reviewed by Banerjee et al. (1999) a large 

numbers of estimation and testing procedures like the Cohen Kappa (Cohen, 1960), the 

intraclass Kappa (Block and Kraemer, 1988).  
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For other improved methods on Kappa statistic, see Shoukri (2004), Thomas et al. (2008), 

Manuel et al. (2011), Martin and Femia (2008) and Rueben (2015). On the side of ordinal 

data, most of the medical diagnoses data often involve responses taken on an ordinal scale 

and many of which are very subjective. As it has been pointed out by some authors with 

ordinal data, an intermediate category will often be subjective to more misclassification than 

an extreme category because there are two directions in which to err away from the extremes. 

Therefore a modified Kappa statistic called weighted Kappa (Cohen, 1968) which accounts 

for severity of discordance or size of discrepancy is better suited for ordinal data. 

 

Missing value problem in statistical analysis has being in existence over a long decades. For 

instance, in a medical screening study, an inexpensive or easily administered test can be 

given to a large number of subjects. For the purpose of calibration a second, or more 

expensive, and more reliable test is administered to the same subjects. Missing values are 

likely to occur in this study because not all will be available on the second occasion. In 

clinical trials of long-time studies, some individuals may not cooperate or do not participate 

over the whole period and drop out may be experienced. In the analysis of lifetime data, these 

individuals are called censored. Censoring is a mechanism causing nonrandomly missing data 

(Toutenburg and Nittner, 2002). 

 

In this paper we compare the two Kappa-like statistics and also examine their behaviour on 

raters agreement measure where there are missing observations with different patterns. In the 

next two sections we present missing value and description of the two Kappa-like statistics 

with and without missing observation. Some empirical examples are in section 4 and results 

and conclusion are in section 5. 

 

2. Materials and Methods  

Little and Rubin (1987) and Rubin (1976) have discussed fundamental concepts for handling 

missing data based on decision theory and models for the mechanism of nonresponse. 

Various standard statistical methods have been developed to analyse rectangular data sets, 

that is to analyze a matrix  
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The rows of this data matrix can be modelled as independently and identically distributed 

(iid) draws from some multivariate probability distribution. The missing values, denoted by 

‘*’ may occur in any pattern. The probability density function of the complete data may be 

written as 

 


=

=
n

ixfXP
1i

),|()|(       (2) 

 

where f is the density or probability function for a single row, and θ is a vector of unknown 

parameters. Under missing value analysis, data on any scales can be observed. 

 

In categorical data analysis, visualizing the structure of the data set with respect to the 

missing values may be the first way to get an impression of the situation on how to handle the 

problem. These patterns may give an impression of what extent the data are missing. If X is 

assumed to be missing for large values of y, the values can be ordered and a missing data 

pattern may describe this behaviour. However, this technique may be swamped with a high 

level of dependencies. A way to overcome this defect consists of defining the so called 

missing values pattern; see Toutenburg et al. (2002) for details on general missing values 

pattern. 

 

Missing values mechanisms 

Let the observed part of X be represented by Xobs, and the missing counterpart by Xmis. The 

next focus is whether the missing data mechanism can be ignored or not. It is possible to 

make an assumption that the mechanism is ignorable or including the missing data 

mechanism in the statistical model. By including the missing data mechanism means 

including the distribution of an indicator variable R indicating if a component of the data 

matrix Z=(Zobs,Zmis) is observed or missing. 

 



Adejumo, A. O.                             ILORIN JOURNAL OF SCIENCE 

113 
 

The random variable R indicating the missingness within the data matrix Z is defined as:  
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 for all i=1,2,...,n, j=1,2,...,p+1.   

 

The ignorability criteria of the missing data mechanism depends on whether statistical 

inference is based on the density f(R,Zobs|θ,φ) or on the simpler density f(Zobs,θ) which is 

ignoring the missing mechanism, where θ is the parameter of the density of Zobs,Zmis and φ is 

the unknown parameter of the missing mechanism. Therefore, the classification of missing 

data mechanisms is thus based on the density f(R| Zobs,Zmis φ) see Schafer (1997), Toutenburg 

and Nittner (2002), Toutenburg et al. (2002) for more details. 

 

In this research work we assume a conventional missing at random (CMAR) missing criteria 

mechanism for the missingness in such region of the square table (Adejumo et al. 2004). 

These sectional parts may be observations in cells along the diagonal, lower diagonal, upper 

diagonal, off diagonal of the square table and so on. CMAR is assumed because of the special 

attention given to such specific region of the table under consideration before assuming 

further missing at random (MAR) in such region rather than considering the complete parts of 

the table together. 

 

Missing values in the ratings of raters 

Missing observations can also be observed in the raw results for some of the subjects involve 

in an experiment or in trials. For example, consider a survey on the choice of decaffeinated 

Coffee at two different purchase dates for five different brands of Coffee. Somebody may be 

involved in the first purchase but not available again on the date for the second purchase or 

died before that date. Also if certain numbers of slides are to be examined for variability in 

the classification of carcinoma in situ of the uterine cervix by two different pathologists, if 

one pathologist has successfully classified the slides, but before getting to the next 

pathologist, some of the slides got broken, misplaced, or wrongly labelled or identified. We 

refer to these two cases as missing values in such experiments. Tables 7 and 8 presents the 
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complete tables of such experiments. To this effect, Table 1 described the pattern of how 

missing observations can occur in the raw ratings of two raters on some sets of subjects. 

 

Table 1: Missing pattern for ratings of two raters. 

 

 Rater 1 Rater 2  

Subject Resp   rating Resp   rating Status 

1 

2 

3 

4 

5 

6 

7 

. 

. 

. 

n 

1         1 

1         1 

0         - 

1         5 

1         3 

1         2 

0         - 

.         .         .         . 

.         . 

1         4 

   1       2 

   1       3 

   1       2 

   1       1 

   0       - 

   1       3 

   0       - 

   .       . 

   .       . 

   .       . 

   1       3 
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Obs 

 

 

The {resp} stands for the response status for ith subject with jth rater which we have defined in 

equation 3 as the random variable R indicating the missingness within the data matrix Z, 

defined in this case for two raters (j=1,2) as: 


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for all i=1,2,...,n, j=1,2,...,p+1, such that the matrix for R base on Table 1 can be of the form 
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Also each subject combined response status Si is defined as: 
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Missing value pattern in the ratings of raters 

The missing pattern depends on the nature of missingness as we have presented in Table 1. 

Take for instance if the categorical scale for the raters is numbered 1 to 5,  if the response of 

rater 1 to one subject is 1, and that of rater 2 to the same subject is missing, then if we assume 

that this missing response is also 1, this implies that the missing is in the diagonal cell, but if 

we assume it is not 1, that means it will be any of letters 2 to 5, then the missing of that 

particular subject is in the off-diagonal cells. Generally, if there are many responses, says 

'a,b,c,…', that are missing, all may fall along the diagonal or in the off-diagonal cells and 

sometimes there may be the combination of the two missing patterns, that is, off and along 

the diagonal combined. Examples of these tables with different patterns of missing for 2 x 2 

contingency tables are as given in Tables 3 to 5. 

 

Table 2: Complete cross-classified table for two raters. 

 

Category Rater 2  

Rater 1 1    2   ...  I total 

1 

2 

. 

. 

. 

I 

 

n11    n12  ...  n1I 

n21    n22  ...  n2I 

.       .    .       .   

.       .       .    .     

.       .          . .  

nI1    nI2  ...  nII      

n1+ 

n2+ 

. 

. 

. 

nI+ 

total N+1    n+2  ...  n+I n++ 

Now assume that we have a 2 x 2 contingency table for the ratings of two raters in Table 3. 

 

Table 3: 2 x 2 table for two raters with missing along the diagonal. 

 

Category rater 2   

rater 1 1     2   total missing 

1 

2 

 

n*11   n12   
n21    n*22       

n1+ 

n2+ 

a1 

a2 

total N+1     n+2   n++  

missing A1      a2  a 
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Table 4: 2 x 2 table for two raters with missing off the diagonal. 

 

Category rater 2   

rater 1 1       2   Total missing 

1 

2 

 

n11       n**12   
n**21    n22       

n1+ 

n2+ 

b1 

b2 

total N+1     n+2   n++  

missing b2      b1  b 

 

 

Table 5: 2 x 2 table for two raters with missing in both along and off the diagonal. 

 

Category rater 2   

rater 1  1        2   total missing 

1 

2 

 

n***11   n***12   
n***21   n***22       

n1+ 

n2+ 

a1+b1 

a2+b2 

 

total n+1          n+2   n++  

 

missing 

 

a1+b2      a2+b1 

 

       

  

a+b 

 

Kappa-like statistics 
We present two Kappa-like statistics (Cohen Kappa and Intraclass Kappa statistics) that are 

often used to measure agreement without necessarily attaching weights as in the case of 

weighted Kappa statistic which was proposed by Cohen (1968). 

 

Cohen's Kappa coefficient 

Cohen (1960) proposed a standardized coefficient of raw agreement for nominal scales in 

terms of the proportion of the subjects classified into the same category by the two observers, 

which is estimated as 

 =
=

I

i iio 1
          (7) 

and under the baseline constraints of complete independence between ratings by the two 

observers, which is the expected agreement proportion estimated as  

.
1 .. =

=
I

i iie         (8) 

The Kappa statistic can now be estimated by: 
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where o̂  and e̂  are as defined above. Cohen's Kappa was introduced for measuring 

nominal scale chance-corrected agreement. To determine whether ck̂  differs significantly 

from zero, one could use the asymptotic variance formulae given by Fleiss et al. (1969) for 

the general I x I tables. Under the hypothesis of only chance agreement, the estimated large-

sample variance of ck̂  is given by 
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Assuming that 

)(var co

c

k

k





        (11) 

follows a normal distribution, one can test the hypothesis of chance agreement by reference 

to the standard normal distribution. And the confidence interval (CI) of size 

)()%1(100
2

1
cc kSEzk



−



=−  can be obtained for ck̂ , where SE is the standard error. 

Intraclass Kappa  

Intraclass Kappa was defined for data consisting of blind dichotomous ratings on each of n 

subjects by two fixed raters. It is assumed that the ratings on a subject are interchangeable; 

that is in the population of subjects, the two ratings for each subject have a distribution that is 

invariant under permutations of the raters to ensure that there is no rater bias (Bloch and 

Kraemer, 1989; Barnhart and Williamson, 2002; and others). Let Xij denote the rating for the 

ith subject by the jth rater, i=1,2,...,n, j=1,2. For each subject ‘i’, let  ),1( == iji XP  be the 

probability that the rating is a success. Over the population of subjects, let  ,)ˆ( =iE   Π’=(1 

– Π) and .)ˆvar( 2

 =i  The intraclass Kappa as defined by Bloch and Kraemer (1989) is then  

.
'

2


= 

Ik         (12) 

Thus, the log-likelihood function is given as 
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with the estimated standard error for Ik̂  given as 
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This is only restricted to a 2 x 2 table.  

 

Barnhart and Williamson (2002) considered intraclass Kappa for measuring agreement 

between two readings for a categorical response with I categories if the two readings are 

replicated measurements. It assumes no bias because the probability of a positive rating is the 

same for the two readings due to replication, and it is given as:  
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with variance for the estimated value as: 
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We also assumed that: 
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follows a normal distribution. Also the confidence interval (CI) of size  
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. 

Kappa-like statistics with missing observations 

In a given I x I contingency table as in Table 2, we assume that the missingness mechanism 

criterion is a conventional missing at random (CMAR) with special missing patterns in the 

cells as given in Tables 3, 4, and 5.  

 

Now the joint probability distribution table for raters 1 and 2 for a 2 x 2 table will be as in 

Table 6. 

 

Table 6: 2 x 2 probability table 

 

Category rater 2  

rater 1 1         2 Total 

1 
11        12  +1  

2 
21        22   +2  

Total 
1+        2+   ++  

 

Cohen Kappa statistic was given in equation 9 as: 
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In terms of cell counts, Cohen Kappa statistic becomes 
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If I=2, Cohen Kappa is 

 

,
)(1

)()(ˆ

2211

22112211

++++

++++

+−

+−+
=




ck     (20) 

where  

,11
11

++

=
n

n
  ,22

22

++

=
n

n
  



Adejumo, A. O.                             ILORIN JOURNAL OF SCIENCE 

120 
 

++

+

+
=

n

nn 1211
1 , ,2212

2

++

+

+
=

n

nn


   ++

+

+
=

n

nn 2111
1 , .2221

2

++

+

+
=

n

nn
  

 

Intraclass Kappa statistic was given as: 
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This can also be expressed in terms of counts data rather than proportion as follows: 
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Now, as earlier mentioned we assume that the missing mechanism is a conventional missing 

at random (CMAR) with special missing patterns as in Tables 3 and 4 in some of the cells of 

the table. However, for simplicity in checking the effect of this missingness on the two 

Kappa-like statistics under consideration, we substitute 11n  with )( 111 an − , +1n  with 

)( 11 an −+ , 1+n  with  )( 11 an −+  and ++n  with )( 1an −++  for 'a1' missing observations along 

the diagonal as in Table 3, such that, 
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For 'b1' missing observations in the off diagonal of the table as in Table 4 by substituting 12n  
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Also for 'a1' and 'b1' respectively being the combinations of missing observations along and 

off the diagonal of the table as in Table 5, i.e, missing from the entire parts of the table, we 
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In order to generalize, we show mathematically the effects of missing observations on the 

two Kappa-like statistics by using only the last case which is combinations of the other two 

missing patterns as in Table 5. 

 

Cohen Kappa statistic will then become 
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where
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In a given I x I contingency table as in Table 2, we assume that the missingness mechanism 

criteria is a conventional missing at random (CMAR) with special missing patterns in the 

cells as given in Tables 3, 4, and 5.  

 

Case-by-case formulations 

We examine the effects of the missing observation with different missing patterns for a given 

table of ratings of raters on n++ subjects on the two Kappa-like statistics. We achieve this by 

considering the following cases with certain percentages missing. 

 

On each of the following cases we consider 0%, 5% and 10% missing observations of the 

total counts n++ from their respective region. 

 

Case 1:- When there are certain percentages missing along the diagonal. 

Case 2:- When there are certain percentages missing off the diagonal. 

Case 3:- When there are certain percentages missing in the entire table (along and off 

diagonal combined). 

 

For each of the cases we obtain the estimates for the two Kappa-like statistics, with their 

respective standard errors, Z-values based on equations (11) and (18). We create a bound for 

each statistic ( ck̂ , Ink̂ ) by obtaining the 95% confidence interval of size  
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3. Empirical examples and Results 

Example 1.  

Consider the data arising from the study reported in Holmquist et al. (1967) that investigated 

the variability in the classification of carcinoma in situ of the uterine cervix in which seven 

pathologists were requested to separately evaluate and classify 118 slides into one of the 

following five categorical scales based on the most involved lesion: 1 = negative; 2 = 

Atypical squamous hyperplasia; 3 = carcinoma in situ; 4 = squamous carcinoma with early 

stromal invasion; 5 = invasive carcinoma. These pathologists are labelled with letters A, B, C, 

D, E, F and G. See the Appendix for the Kappa-like statistics estimates with their respective 

confidence intervals for the following table on the cross-classification for pathologists D and 

F. 

 

Table 7: Cross-classification of pathologists D and F on carcinoma in situ of the uterine cervix of 118 slides. 

 

Category Pathologist F Total 

Pathologist D 1            2          3        4           5  

1 

2 

3 

4 

5 

35          3         0         0           0  

25          17       5         1           0 

2              9      11        0           1 

0              2        4        0           2 

0              0        0        0           1   

38 

48  

23 

8 

1 

Total 62           31       20      1           4  118 

 

Example 2. 

Consider a set of data on the choice of decaffeinated Coffee at two different purchase dates 

for five different brands of Coffee taken from Agresti (1996). See the Appendix for the 

Kappa-like statistics estimates with their respective confidence interval for the following 

table on choice of decaffeinated Coffee at two purchase dates; “Hp=High point”, “T=Taster”, 

“S=Sanka”, “N=Nescafe”, “B=Brim”. 
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Table 8: Choice of decaffeinated Coffee at two purchase dates. 

 

Category Second purchase Total 

First purchase Hp      T         S        N        B   

Hp 

T 

S 

N 

B 

93      17       44        7       10  

9         46      11         0       9 

17       11     155        9      12 

6          4        9         15      2 

10        4       12         2      27   

171 

75  

204 

36 

55 

Total 135     82     231       33     60  541 

 

 

From the tables in the Appendix, we observed that the estimates given by Cohen Kappa 

statistic for agreement measure are always bigger than the estimates given by Intraclass 

Kappa statistic for the same sets of tables. We also observed that the bounds of 95%CI( ck̂ ) 

for Cohen Kappa statistic are consistently fall within the lower and the upper bounds of 

95%CI( Ink̂ )for Intraclass Kappa statistic. This is true for all the cases considered with 

different missing percentages as seen in the tables. Also from the tables, under case 1, we 

observed that the higher the missing value percentages the worse the strength of agreement 

become. But for cases 2 and 3 the higher the percentages of missing observations the better 

the strength of agreement between the two raters become, these results justified the previous 

studies by Jolayemi, (1990 and 1991). 

 

4.  Conclusion 

Intraclass Kappa statistic estimates for the strength of agreement are consistently lower than 

the respective estimates obtained with the Cohen Kappa statistic. We also observed that 

increment in the percentages of missingness along the diagonal worsen the strength of the 

agreement between the two raters. However, increment in the percentages of missingness in 

the off diagonal part of the table of the ratings for two raters improves the strength of the 

agreement between them. This implies that the two statistics under considerations encourage 

missing in the off diagonal part of the table. To this effect, modelling the structure of 

agreement will be a better way of monitoring the effects of missing observation on the 

agreement measure. 
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Appendix 
Table 9: Cohen Kappa statistic estimates for pathologists D and F on carcinoma in situ when there are 

missing with different patterns. 

 

   

Cohen 

  95% CI for ck̂   

Cases %missing Kappa( ck̂ ) Stand. 

Error 

z-value Lower 

bound 

Upper 

bound 

Complete 0% 0.3368 0.0565 5.9668 0.2262 0.4474 

Case 1 5% 

10% 

0.3060 

0.2676 

0.0572 

0.0582 

5.3516 

4.5990 

0.1939 

0.1535 

0.4181 

0.3816 

Case 2 5% 

10% 

0.3773 

0.4136 

0.0588 

0.0611 

6.3461 

6.7724 

0.2578 

0.2939 

0.4883 

0.5333 

Case 3 5% 

10% 

0.3380 

0.3390 

0.0578 

0.0592 

5.8506 

5.7246 

0.2248 

0.2230 

0.4513 

0.4551 

 

 

 

 

 

 

 

Table 10: Intraclass Kappa statistic estimates for pathologists D and F on carcinoma in situ when there are 

missing with different patterns. 

 

   

Intraclass 

  95% CI for Ink̂   

Cases %missing Kappa( Ink̂ ) Stand. 

Error 

z-value Lower 

bound 

Upper 

bound 

Complete 0% 0.3203 0.0899 3.5652 0.1442 0.4964 

Case 1 5% 

10% 

0.2870 

0.2450 

0.0913 

0.0943 

3.1419 

2.5982 

0.1079 

0.0602 

0.4660 

0.4299 

Case 2 5% 

10% 

0.3600 

0.4022 

0.0933 

0.0982 

3.8573 

4.0965 

0.1771 

0.2098 

0.5430 

0.5946 

Case 3 5% 

10% 

0.3321 

0.3220 

0.0930 

0.0965 

3.4565 

3.3355 

0.1391 

0.1328 

0.5035 

0.5111 
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Table 11: Cohen Kappa statistic estimates for choice of decaffeinated Coffee at two purchase dates when 

there are missing with different patterns. 

 

   

Cohen 

  95% CI for ck̂   

Cases %missing Kappa( ck̂ ) Stand. 

Error 

z-value Lower 

bound 

Upper 

bound 

complete 0% 0.4765 0.0245 19.485 0.4285 0.5244 

Case 1 5% 

10% 

0.4473 

0.4147 

0.0252 

0.0260 

17.752 

15.939 

0.3979 

0.3637 

0.4967 

0.4657 

Case 2 5% 

10% 

0.5195 

0.5725 

0.0252 

0.0262 

20.619 

21.880 

0.4701 

0.5212 

0.5689 

0.6237 

Case 3 5% 

10% 

0.4839 

0.4922 

0.0252 

0.0261 

19.176 

18.859 

0.4344 

0.4410 

0.5333 

0.5433 

 

 

 

Table 12: Intraclass Kappa statistic estimates for choice of decaffeinated Coffee at two purchase dates when 

there are missing with different patterns. 

 

   

Intraclass 

  95% CI for Ink̂   

Cases %missing Kappa( Ink̂ ) Stand. 

Error 

z-value Lower 

bound 

Upper 

bound 

complete 0% 0.4751 0.0354 13.405 0.4057 0.5446 

Case 1 5% 

10% 

0.4458 

0.4129 

0.0367 

0.0380 

12.160 

10.861 

0.3739 

0.3384 

0.5176 

0.4874 

Case 2 5% 

10% 

0.5181 

0.5709 

0.0368 

0.0387 

14.077 

14.738 

0.4459 

0.4949 

0.5902 

0.6468 

Case 3 5% 

10% 

0.4824 

0.4904 

0.0368 

0.0382 

13.127 

12.834 

0.4103 

0.4155 

0.5544 

0.5653 

 

 

Table 13: Summary of Kappa-like statistics estimates for pathologists D and F on carcinoma in situ when 

there are missing with different patterns. 

 

   95% CI for ck̂    95% CI for Ink̂   

Cases %missing Kappa( ck̂ ) Lower 

bound 

Upper 

bound 
Kappa( Ink̂ ) Lower 

bound 

Upper 

bound 

complete 0% 0.3368 0.2262 0.4474 0.3203 0.1442 0.4964 

Case 1 5% 

10% 

0.3060 

0.2676 

0.1939 

0.1535 

0.4181 

0.3816 

0.2870 

0.2450 

0.1079 

0.0602 

0.4660 

0.4299 

Case 2 5% 

10% 

0.3773 

0.4136 

0.2578 

0.2939 

0.4883 

0.5333 

0.3600 

0.4022 

0.1771 

0.2098 

0.5430 

0.5946 

Case 3 5% 

10% 

0.3380 

0.3390 

0.2248 

0.2230 

0.4513 

0.4551 

0.3321 

0.3220 

0.1391 

0.1328 

0.5035 

0.5111 
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Table 14: Summary of Kappa-like statistics estimates for choice of decaffeinated Coffee at two purchase 

dates when there are missing with different patterns. 

 

   95% CI for ck̂    95% CI for Ink̂   

Cases %missing Kappa( ck̂ ) Lower 

bound 

Upper 

bound 
Kappa( Ink̂ ) Lower 

bound 

Upper 

bound 

complete 0% 0.4765 0.4285 0.5244 0.4751 0.4057 0.5446 

Case 1 5% 

10% 

0.4473 

0.4147 

0.3979 

0.3637 

0.4967 

0.4657 

0.4458 

0.4129 

0.3739 

0.3384 

0.5176 

0.4874 

Case 2 5% 

10% 

0.5195 

0.5725 

0.4701 

0.5212 

0.5689 

0.6237 

0.5181 

0.5709 

0.4459 

0.4949 

0.5902 

0.6468 

Case 3 5% 

10% 

0.4839 

0.4922 

0.4344 

0.4410 

0.5333 

0.5433 

0.4824 

0.4904 

0.4103 

0.4155 

0.5544 

0.5653 

 

 
 


