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Abstract  

This work investigates the influence of slip condition and couple stresses on entropy generation rate in a steady 

flow of an incompressible viscous fluid through a porous channel occupied by a highly porous medium with 

suction/injection. It is assumed that the “no-slip” condition at one of the walls of the channel is no longer valid 

for both velocity and temperature. Also the porous medium is the non-Darcian type known as the Darcy-

extended Brinkman-Forchheimer model. Semi-Analytical solutions of the dimensionless momentum and energy 

equations are obtained using Differential transform method (DTM). The approximate solutions for velocity and 

temperature are used to compute the Entropy generation rate, Bejan number and the Irreversibility distribution 

ratio in the flow field. The variation of the velocity and temperature fields are examined for various values of 

couple stresses parameter, slip parameter, Brinkman number, entropy generation number, Darcy number, 

Nusselt number, skin fiction and other parameters. It is found that each of these parameters has significant effect 

on the velocity, temperature and Entropy generation rate profiles. 

 

Keywords: Couple stresses, Slip condition, Entropy generation rate, porous medium, Differential transform  

      method. 

 

1. Introduction 

The theory of fluids for which the shear stress depends on the shear rate has many practical 

applications in industries and modern technology. For instance, they could be used to 

describe the rheological properties of complex fluid (Adesanya and Makinde, 2012). This 

fluid such as, paints, coal tar, and polymer solutions are known as Non-Newtonian. One type 

of such fluids which is of a particular interest is the couple stress fluid. Couple stress fluid 

theory may be defined as a direct extension of the classical theory of viscous Newtonian fluid  
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for which the body couples and corresponding couple stresses in the in the fluids are 

continuously retained (Devakar et al., 2014).  

For instance (Devakar et al., 2014) obtained exact solution of couette, poiseuille and 

generalized couette flows of an incompressible couple stresses fluid between parallel plates 

with slip boundary conditions. Also in (Adesanya and Makinde, 2012) the effect of radiative 

heat transfer to oscillatory magneto-hydrodynamic couple stress fluid flow through a porous 

channel was investigated. An analysis of an unsteady Non-Newtonian flow of an 

incompressible couple stress fluid was carried out in (Eldabe et al., 2003). The flow of couple 

stress fluid between two parallel porous plates is also studied in (Mohammadyari et al., 

2014). Moreover, it was assumed for a long time in several works on both Newtonian and 

Non-Newtonian fluids that the velocity of the fluid close to the surface of the solid boundary 

assumes the velocity of the solid boundaries.  

However it has been found that for many applications such assumptions no longer remain 

valid. For instance, the works of (Adesanya and Gbadeyan, 2011; Ellahi, 2009; Adesanya and 

Makinde, 2014; Eegunjobi and Makinde, 2012; Khalid and Vafia, 2014) to mention a few, 

showed the occurrence of slippage at the solid boundary and that such effects can no longer 

in general be discarded. 

Entropy production occurs frequently in industrial and engineering flow systems. It deals 

with the consumption of power due to thermodynamics losses in such flow systems. To 

maximize power generation in such system one needs to minimize entropy production. A 

basic engineering problem during convective heat transfer in a fluid flow is that of having 

efficient energy utilization. Hence it becomes paramount to study entropy generation and the 

combined influence of slippage, porous medium, wall suction or injection and couple stresses 

on it. In a related works, (Eegunjobi and Makinde, 2012) studied combined effects of 

suction/injection and Navier slip on the entropy generation rate in a steady flow of an 

incompressible viscous fluid through a porous channel subjected to non-uniform temperature 

at the wall.  

Some other interesting investigations on entropy generation include (Eegunjobi and Makinde, 

2012; Srinivasacharya et al., 2010; Ajibade et al., 2011; Adesanya and Makinde, 2014; 

Adesanya and Makinde, 2015). Furthermore in fluid flow through porous channel and/or 

media is of great importance both in biophysical and technological flows Applications are 

found in food preservations, blood flow transpiration cooling, cosmetic industry, soil 
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mechanic and haemodialysis. Several models involving both Darcian and non Darcian 

abound. For example, (Dada and Disu, 2014) investigated heat transfer with radiation and 

temperature dependent heat source in MHD free convective flow in a porous medium 

between two vertical wavy walls. The effect of slip condition on forced convection and 

entropy generation in a circular channel occupied by non Darcian highly porous medium was 

investigated in (Chauhan and Kumar 2009).  

Other investigations can be found in (Eegunjobi and Makinde, 2012; Eegunjobi and Makinde 

2012; Chinyoka and Makinde, 2013; Bejan, 1982; Bejan, 1995; Makinde and Eegunjobi, 

2013). However, it seems that the literature lacks investigations that take into account the 

combined effects of temperature slip, couple stress, velocity slip, non-Darcy porous medium 

on entropy generation in a porous channel with suction/injection which this paper considered. 

The aim of the present study is, therefore, to investigate the combined effects of couple 

stresses, non-Darcy porous parameters and slippage of velocity and temperature on the 

entropy generation rate of an incompressible fluid through a porous channel filled with highly 

porous medium having suction/injection. By employing the appropriate non-dimensional 

variables, the governing non-linear boundary-value problem is transformed into its 

dimensionless form. The resulting set of differential equations and the boundary conditions 

are then solved using a semi-analytic technique known as differential transform method DTM 

(Ayaz F, 2004; Mohammadyari, 2014). Results are presented graphically and discussed for 

the Nusselt number, Skin friction entropy generation rate, velocity distribution as well as 

temperature distribution. 

The rest of the paper is organised in terms of four sections. Section two is devoted for 

presenting the formulation of the governing equations. This is followed by the solution of the 

governing equations in section three. The results are discussed in section four while 

conclusions are given in the last section. 

      

2.0 Mathematical Model 

Consider the steady flow of couple stress non Newtonian fluid flowing through a porous 

channel filled by a highly porous medium under the combined action of constant axial 

pressure gradient, with wall suction/injection and slip. 
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The flow is subjected to injection of the fluid at the lower plate and sucked off at the upper 

plate with the same velocity. The wall plates are assumed to be subjected to the exchange 

heat in an asymmetrical manner with the ambient temperature. Under these assumptions the 

governing equations for the momentum and heat balance following (Chauhan and Kumar, 

2009; Adesanya and Makinde, 2014) can be written as 

𝜌𝑣0
𝑑𝑢′

𝑑𝑦′
= −

𝑑𝑝

𝑑𝑥′ + 𝜇
𝑑2𝑢′

𝑑𝑦2 − 𝜂
𝑑4𝑢′

𝑑𝑦′4 −
𝜇

𝑘0
𝑢′ −

𝜌𝑏

𝑘0
𝑢′2

,                 (1) 

𝜌𝐶𝑝𝑣0
𝑑𝑇′

𝑑𝑦′
= 𝑘

𝑑2𝑇′

𝑑𝑦2 + 𝜇 (
𝑑𝑢′

𝑑𝑦′
)

2

+ 𝜂 (
𝑑2𝑢′

𝑑𝑦′2)
2

+
𝜇

𝑘0
𝑢′2.               (2) 

 The entropy generation is also given as 

𝐸𝐺 =
𝑘

𝑇0
2 (

𝑑𝑇′

𝑑𝑦′
)

2

+
𝜇

𝑇0
(

𝑑𝑢′

𝑑𝑦′
)

2

+
𝜂

𝑇0
(

𝑑2𝑢′

𝑑𝑦′2
)

2

+
𝜇

𝑇0𝑘0
𝑢′2.                                                            (3) 

The corresponding boundary conditions are (Chauhan and Kumar, 2009) 

𝑢′ = 𝛼
𝑑𝑢′

𝑑𝑦′
  ,

𝑑2𝑢′

𝑑𝑦′2 = 0 , 𝑇 = 𝛽
𝑑𝑇′

𝑑𝑦′
  𝑜𝑛 𝑦 = 0, 

 

𝑢′ = 0 =  
𝑑2𝑢′

𝑑𝑦′2
 ,

𝑑𝑇′

𝑑𝑦′
= 0  𝑜𝑛 𝑦 = ℎ.                                                                                              (4) 

y=h (suction)  

y=0 (injection)  

Fig.1 Schematic Diagram of the problem   
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In these equations 𝑢’ is the axial velocity, 𝜇 is the dynamics viscosity, ρ is the fluid density, 𝑇 

is the fluid temperature, 𝑇0 is the initial fluid temperature, 𝑇𝑓 is the final fluid temperature, 𝑘 

is the thermal conductivity of the fluid, 𝑘0  is the porous media permeability, ρ is the fluid 

density, 𝐶𝑝 is the specific heat at constant pressure, 𝑣0 is the constant velocity of fluid 

suction/injection η is the fluid particle size due to couple stress, 𝑘0 is the porous permeability, 

𝑏 is the Forchheimer geometrical inertia parameter of the medium, 𝛼’ 𝑎𝑛𝑑 𝛽’ are the non-

dimensionalized velocity slip and temperature slip coefficient respectively, 𝐸𝐺  is the local 

volumetric entropy generation rate. 

 

The following dimensionless variables are introduced for non-dimensionalizing the 

governing equations 

𝑦 =
𝑦′

ℎ
 𝑢 =

𝑢′

𝑣0
   𝐷𝑎 =

𝑘0

ℎ2
    𝐺 =

ℎ

𝜇𝑣0

𝑑𝑝

𝑑𝑥′
     𝑎2 =

𝜇ℎ2

𝜂
, 

𝐹 =
𝑏

ℎ
, 𝑠 =

𝑣0ℎ

𝑣
 , 𝑃𝑟 =

𝑣𝜌𝐶𝑝

𝜇𝑣0
, 𝐵𝑟 =

𝜇𝑣0
2

𝑘(𝑇𝑓−𝑇0)
, 𝛼 =

𝛼′

ℎ
,                                       

𝛽 =
𝛽′

ℎ
, 𝑣 =

𝜇

𝜌
, 𝑁𝑠 =

𝑇0
2ℎ2𝐸𝐺

𝐾(𝑇𝑓−𝑇0)2 , 𝛺 =
𝜇𝑣0

2

𝑘(𝑇𝑓−𝑇0)
 .       (5) 

 

Substituting (5) into equations (1) - (4), we obtained 

 

𝑠
𝑑𝑢

𝑑𝑦
− 𝐺 −

𝑑2𝑢

𝑑𝑦2 +
1

𝑎2

𝑑4𝑢

𝑑𝑦4 +
1

𝐷𝑎
𝑢 +

𝑠𝐹

𝐷𝑎
𝑢2 = 0,                           (6) 

𝑠𝑃𝑟
𝑑𝜃

𝑑𝑦
=

𝑑2𝜃

𝑑𝑦2 + 𝐵𝑟 (
𝑑𝑢

𝑑𝑦
)

2

+
𝐵𝑟

𝑎2 (
𝑑2𝑢

𝑑𝑦2)
2

+
𝐵𝑟

𝐷𝑎
𝑢2,                     (7) 

𝑁𝑆 = (
𝑑𝜃

𝑑𝑦
)

2

+
𝐵𝑟

𝛺
(

𝑑𝑢

𝑑𝑦
)

2

+
𝐵𝑟

𝛺𝑎2 (
𝑑2𝑢

𝑑𝑦2)
2

+
𝐵𝑟

𝛺𝐷𝑎
𝑢2.                    (8) 

The corresponding boundary conditions are: 

𝑢 = 𝛼
𝑑𝑢

𝑑𝑦
 ,

𝑑2𝑢

𝑑𝑦2
= 0 , 𝜃 = 𝛽

𝑑𝜃

𝑑𝑦
          on 𝑦 = 0, 

𝑢 = 0 =
𝑑2𝑢

𝑑𝑦2  ,
𝑑𝜃

𝑑𝑦
= 0                       on 𝑦 = 1 .                                (9) 

In equations (6) – (9), 𝑢 is the dimensionless velocity, 𝑠 is the suction/injection parameter, 𝜃 

is the dimensionless temperature, 𝑎2 is the couple stress parameter, 𝛼 and 𝛽 are the 

dimensionalized velocity slip and temperature slip coefficient 𝑃𝑟 is the prandtl number, 𝐵𝑟 is 

the Brinkman number, 𝛺 is the parameter that measure the temperature difference between 

the two heat reservoirs, 𝐷𝑎 is the Darcy number and 𝐹 is the Forchheimer inertia number, 𝑁𝑠 

is the dimensionless entropy generation rate and 𝐵𝑒 is the Bejan number. 
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Denoting 𝑁𝑠1 and 𝑁𝑠2 as the entropy generation due to heat transfer and entropy generation 

due viscous dissipation respectively, then  

𝑁𝑠 = 𝑁𝑠1 + 𝑁𝑠2, 

where 

𝑁𝑠1 = (
𝑑𝜃

𝑑𝑦
)

2

,  𝑁𝑠2 =
𝐵𝑟

𝛺
(

𝑑𝑢

𝑑𝑦
)

2

+
𝐵𝑟

𝛺𝑎2 (
𝑑2𝑢

𝑑𝑦2)
2

+
𝐵𝑟

𝛺𝐷𝑎
𝑢2. 

We also obtain the Bejan number 𝐵𝑒, the ratio of  𝑁𝑠1 to the total entropy generation rate, as 

𝐵𝑒 =
𝑁𝑠2

𝑁𝑠
=

1

1+𝛷
, 𝛷 =

𝑁𝑠1

𝑁𝑠2
. 

While the Skin friction and the Nusselt number are given as 𝑆𝑓 =
𝑑𝑢

𝑑𝑦
 and 𝑁𝑢 =

𝑑𝜃

𝑑𝑦
 .     

It is stated, at this junction that the work of (Adesanya and Makinde, 2014) is completely 

recovered in the asymptotic limit as𝑘0 ⇾∞. This implies that the work (Adesanya and 

Makinde, 2014) is extended in this paper by including the effect of porous medium. On the 

other hand, the boundary conditions hereby adopted equation (9) is similar to those in 

(Chauhan and Kumar, 2009). 

 

3.0 Differential Transform Method 

 

Taking the differential transform of (6)-(8) using the following table: 
 

 

Table 1: Some operations of DTM  

 

Original function Transformed Function 

𝑢(𝑦) = 𝑔(𝑦) ± ℎ(𝑦) 𝑈(𝑘) = 𝐺(𝑘) ± 𝐻(𝑘) 

𝑢(𝑦) = 𝜆𝑔(𝑘) 𝑈(𝑘) = 𝜆𝐺(𝑘) 

𝑢(𝑦) = 𝑔(𝑘)ℎ(𝑦) 

𝑈(𝑘) = ∑ 𝐺(𝑙)𝐻(𝑘 − 𝑙)

𝑘

𝑙=0

 

𝑢(𝑦) =
𝑑𝑛𝑔(𝑘)

𝑑𝑦𝑛
) 𝑈(𝑘) =

(𝑘 + 𝑛)!

𝑘!
𝐺(𝑘 + 𝑛) 

𝑢(𝑦) = 𝑦𝑛 𝑈(𝑘) = 𝛿(𝑘 + 𝑛)

= {
0, 𝑘 ≠ 𝑛
1, 𝑘 = 𝑛

 

 

We have 

𝑈(𝑘 + 4) =
𝑎2

(𝑘+1)(𝑘+2)(𝑘+3)(𝑘+4)
{𝐺𝛿(𝑘) + (𝑘 + 1)(𝑘 + 2)𝑈(𝑘 + 2) − 𝑠(𝑘 + 1)𝑈(𝑘 + 1) −

1

𝐷𝑎
𝑈(𝑘) −

𝑠𝐹

𝐷𝑎
(∑ 𝑈(𝑟)𝑈(𝑘 − 𝑟)𝑘

𝑟=0 )} ,                                           (10) 
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𝜃(𝑘 + 2) =
1

(𝑘+1)(𝑘+2)
{𝑠𝑃𝑟(𝑘 + 1)𝜃(𝑘 + 1) − 𝐵𝑟(∑ (𝑟 + 1)𝑈(𝑟 + 1)𝑈(𝑘 − 𝑟 + 1)𝑘

𝑟=0 ) −
𝐵𝑟

𝑎2 (∑ (𝑟 + 1)(𝑟 + 2)𝑈(𝑟 + 2)(𝑘 − 𝑟 + 2)(𝑘 − 𝑟 + 1)𝑈(𝑘 − 𝑟 + 2)𝑘
𝑟=0 ) −

𝐵𝑟

𝐷𝑎
(∑ 𝑈(𝑟)𝑈(𝑘 − 𝑟)𝑘

𝑟=0 )}.                                                                             (11)     

 

The transformed boundary conditions are 

 

𝑈(0) = 𝛼. 𝐴 , 𝑈(1) = 𝐴, 𝑈(2) = 0, 𝑈(3) = 𝐵, 𝜃(0) = 𝛽. 𝐶, 𝜃(1) = 𝐶,                         (12) 

𝑈(1) = 0 , ∑ 𝑘(𝑘 − 1)𝑈(𝑘) = 0 , ∑ 𝑘𝜃(𝑘)

𝑘

𝑟=0

𝑘

𝑟=0

= 0,                                                             (13) 

where A, B, and C are constants. 𝑈 (𝑘) 𝑎𝑛𝑑 𝜃(𝑘) for 𝑘 = 0,1,2,3 … 12 values can now be 

evaluated in terms of 𝑎 = 1, 𝐹 = 1, 𝑠 = 1, 𝐺 = 1, 𝐷𝑎 = 0.1, 𝛼 = 0.1, 𝛽 = 0.1, 𝐵𝑟 = 1, 𝑃𝑟 =

0.71, 𝐴, 𝐵 𝑎𝑛𝑑 𝐶. Specifically these values were obtained by using mathematical software 

(MAPLE). 

𝑈(4) =
𝑎2

24
[𝐺 − 𝑠𝐴 −

𝛼𝐴

𝐷𝑎
−

𝑠𝐹𝛼2𝐴2

𝐷𝑎
] , 

𝑈(5) =
𝑎2

120
[6𝐵 −

𝐴

𝐷𝑎
−

2𝑠𝐹𝛼𝐴2

𝐷𝑎
], 

𝑈(6) =
𝑎2

360
[
𝑎2

2
(𝐺 − 𝑠𝐴 −

𝛼𝐴

𝐷𝑎
−

𝑠𝐹𝛼2𝐴2

𝐷𝑎
) − 3𝑠𝐵 −

𝑠𝐹𝐴2

𝐷𝑎
],                                          (14) 

and so on. 

𝜃(2) =
1

2
[𝑠𝑃𝑟𝐶 −

𝐵𝑟𝛼2𝐴2

𝐷𝑎
], 

𝜃(3) =
1

3
[(

𝑠𝑃𝑟𝐶

2
−

𝐵𝑟𝛼2𝐴2

2𝐷𝑎
) −

𝐵𝑟𝛼2𝐴2

𝐷𝑎
], 

𝜃(4) =
𝑠𝑃𝑟

4
[

𝑠𝑃𝑟

3
(

𝑠𝑃𝑟

2
𝐶 −

1

2

𝐵𝑟𝛼2𝐴2

𝐷𝑎
) −

1

3

𝐵𝑟𝛼𝐴2

𝐷𝑎
] − 3

𝐵𝑟𝐵2

𝑎2 −
𝐵𝑟𝐴𝐵

2
−

𝐵𝑟𝐴2

12𝐷𝑎
, 

and so on. 

Substituting the 𝑈(𝑖)𝑎𝑛𝑑 𝜃(𝑖), 𝑖 = 0, 1, 2, 3 …terms into the following inverse formulae 

𝑢(𝑦) = ∑ 𝑈(𝑘)𝑘
𝑖=0 𝑎𝑛𝑑 𝜃(𝑦) =  ∑ 𝜃(𝑖)𝑘

𝑖=0                          (15) 

gives the finite series solution of the velocity and temperature distribution respectively. 

𝑢(𝑦) = 𝛼𝐴 + 𝐴𝑦 + 𝐵𝑦3 +
𝑎2

24
[𝐺 − 𝑠𝐴 −

𝛼𝐴

𝐷𝑎
−

𝑠𝐹𝛼2𝐴2

𝐷𝑎
] 𝑦4 +

𝑎2

120
[6𝐵 −

𝐴

𝐷𝑎
−

2𝑠𝐹𝛼𝐴2

𝐷𝑎
] 𝑦5

+ ⋯ 
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𝜃(𝑦) = 𝛽𝐶 + 𝐶𝑦 + 𝐵𝑦2 +
1

3
[(

𝑠𝑃𝑟𝐶

2
−

𝐵𝑟𝛼2𝐴2

2𝐷𝑎
) −

𝐵𝑟𝛼2𝐴2

𝐷𝑎
] 𝑦3

+ [
𝑠𝑃𝑟

4
(

𝑠𝑃𝑟

3
(

𝑠𝑃𝑟

2
𝐶 −

1

2

𝐵𝑟𝛼2𝐴2

𝐷𝑎
) −

1

3

𝐵𝑟𝛼𝐴2

𝐷𝑎
) − 3

𝐵𝑟𝐵2

𝑎2
−

𝐵𝑟𝐴𝐵

2

−
𝐵𝑟𝐴2

12𝐷𝑎
] 𝑦4 + ⋯ 

 

 To obtain the constants 𝐴, 𝐵 𝑎𝑛𝑑 𝐶, the second boundary conditions, equation (13) are used 

[21] and taking 𝑎 = 1, 𝐹 = 1, 𝑠 = 1, 𝐺 = 1, 𝐷𝑎 = 0.1, 𝛼 = 0.1, 𝛽 = 0.1, 𝐵𝑟 = 1, 𝑃𝑟 = 0.71 

as the default thermo physical parameters, three set of linear equations were obtained and 

solved simultaneously. The values of 𝐴, 𝐵 and 𝐶 were obtained as 𝐴 =  0.3097026195, 𝐵 =
 −0.6928834300, 𝐶 =  0.004210192473. Therefore substituting the above defaults 

parameter and constants A, B and C into the above finite series solutions, the desired 

analytical solutions for velocity and temperature are obtained as follows: 

 

𝑢(𝑦) =  0.003097026195 +  0.03097026195𝑦 −  0.06928834300𝑦3

+  0.03908181501𝑦4 −  0.006061258265𝑦5  +  0.001853486772𝑦6  
+  0.0004995509058𝑦7 −  0.0001573871673𝑦8 +  0.00001542353062𝑦9

−  0.00001492352798𝑦10  +  6.357748068 ∗ 10−6𝑦11 −  2.010194184
∗ 10−6𝑦12  + ⋯,                                                                                            

(16) 

𝜃(𝑦) =  0.0004210192473 +  0.004210192473𝑦 +  0.001446660472𝑦2  +
 0.000226572699𝑦3 −  0.01412496029𝑦4  +  0.01722167610𝑦5 −
 0.008681157272𝑦6  +  0.003891074507𝑦7 − 0.1994468458𝑦8  +  0.5875135754𝑦9 −
 0.0001331545464𝑦10 −  0.00001004213352𝑦11 +  0.00001496100212𝑦12  +
 …                                                                                                                                  (17) 

Equations (16) and (17) were then substituted into equation (8) to calculate the rate of 

entropy generation and we obtained 

 

𝑁𝑠 =  0.001072798559 +  0.001942677127 𝑦 +  0.1341607538𝑦6   −
 0: 3850237664 𝑦3  +  0.3219697943 𝑦4   +  0.1695567272 𝑦2 –  0.06334359851 𝑦7   +
 0.02899447856 𝑦8  +
0.007145604001 𝑦10  –  0.0000000002556061638 𝑦23  –  0.000003781637034 𝑦18  +
 0.000001749358700 𝑦19  –  0.0000003728930123 𝑦20  –  0.00000004555514843 𝑦21  +
 0.0000003381782831 𝑦22  –  0.004593137071 𝑦11  –  0.001466348060 𝑦13  +
0.0006285495479 𝑦14  –  0.0002151035418 𝑦15   +  0.00005161935258 𝑦16  −
0.000003348834325 𝑦17   +  4.040880657 ∗  1011  𝑦24   −  0.01187162222 𝑦9  −
 0: 2003548538 𝑦5   +  0.002755923091 𝑦12  + ⋯                                           (18) 
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𝐓𝐚𝐛𝐥𝐞 𝟐: 𝐶𝑜𝑛𝑣𝑒𝑟𝑔𝑒𝑛𝑐𝑒 𝑟𝑒𝑠𝑢𝑙𝑡 𝑓𝑜𝑟 𝑃𝑟 = 0.71, 𝐵𝑟 = 1, 𝑎 = 1, 𝐺 = 1, 𝐷𝑎 = 0.1, 𝛼 = 0.1, 𝛽 = 0.1, 𝑠 = 1, 𝑦 = 0.1 

 

Table 3: Comparison of the semi-analytical DTM Solution of the velocity u with previous 

corresponding ADM Solution [2], when G = 1, s = 𝛼 = 0.1 

𝑛 𝑢𝑛 ∑ 𝑢𝑛

𝑚

𝑛=0

 𝜃𝑛 ∑ 𝜃𝑛

𝑚

𝑛=0

 

0 0.003097026194 0.003097026194 0.0004210192473 0.0004210192473 
1 0.030970261940 0.006194052388 0.004210192473 0.0008420384916 
2 0.00000000000 0.006194052388 0.001446660472 0.0008565050963 
3 −0.06928834300 0.006124764045 0.000022657269 0.0008565277536 
4 0.03908181502 0.006128672227 −0.01412496029 0.0008551152576 
5 −0.006061258263 0.006128611614 0.01722167610 0.0008552874744 
6 0.001853486772 0.006128613467 −0.008681157272 0.0008552787932 
7 0.0004995509058 0.006128613517 0.003891074506 0.0008552791823 
8 −0.000157387167 0.006128613515 −0.001994468458 0.0008552791624 
9 0.00001542353062 0.006128613515 0.0005875135756 0.000855279163 

10 −0.0000149235279 0.006128613515 −0.000133154546 0.000855279163 
11 6.357748068 × 10

− 6 
0.006128613515 −0.000010042133 0.000855279163 

12 −2.01019418 × 10
− 6 

0.006128613515 0.0000149610021 0.000855279163 

𝑦 𝑢𝐸𝑥𝑎𝑐𝑡 𝑢𝐴𝐷𝑀 𝑢𝐷𝑇𝑀 𝐴𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑒𝑟𝑟𝑜𝑟 

0 0.0030316 0.0030316 0.0030316 1.04453432448609
× 10−10 

0.1 0.00599037 0.00599037 0.00599037 2.072959390947426
× 10−10 

0.2 0.00854451 0.00854451 0.00854451 3.016574681019568
× 10−10 

0.3 0.0103768 0.0103768 0.0103768 3.78986992994574
× 10−10 

0.4 0.0112628 0.0112628 0.0112628 4.504766092200207
× 10−10 

0.5 0.0110683 0.0110683 0.0110683 4.4712230966303394
× 10−10 

0.6 0.00974853 0.00974853 0.00974853 4.196588371946364
× 10−10 

0.7 0.00734757 0.00734757 0.00734757 3.387224424555857
× 10−10 

0.8 0.00399891 0.00399891 0.00399891 1.959608300280968
× 10−10 

0.9 −0.0000730536 −0.0000730536 −0.0000730536 1.18590777474465
× 10−11 

1 −0.00455071 −0.00455071 −0.00455071 2.70713184399651
× 10−10 
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4.0 Discussion of Results 

 

In this work, the effects of slip conditions and couple stresses fluid on entropy generation rate 

in a steady flow of an incompressible viscous fluid through a porous channel occupied by a 

highly porous medium with suction/injection were studied. A semi-analytical solution is 

obtained for velocity profile, temperature profile and entropy generation. It is important to 

note that the fluid suction takes place at the upper wall while the fluid injection takes place at 

the lower wall simultaneously. Following (Chauhan and kumar 2009; Adesanya and 

Makinde, 2014) the default values for the thermo-physical parameter are 𝑎 = 1, 𝐹 = 1, 𝑠 =

1, 𝐺 = 1, 𝐷𝑎 = 0.1, 𝛼 = 0.1, 𝛽 = 0.1, 𝛺 = 1, 𝑃𝑟 = 0.71.  

 

The DTM approximate solutions to the problem under consideration are in the convergent 

series of equations (16) and (17). It is confirmed in Table 1 above that the series solutions for 

the velocity and temperature profile are convergent and hence reliable. A comparison with 

previously obtained velocity result in (Adesanya and Makinde, 2014) is carried in Table 2 

above. It is observed that the DTM results of the velocity agreed totally with the exact result 

in (Adesanya and Makinde, 2014). The observation confirms the uniqueness of the solution. 

 Fig. 2 shows the effect of couple stresses on the flow velocity. As observed from the graph, 

an increase in the inverse of the couple stress parameter‘𝑎’, leads to an increase in the flow 

velocity at the lower channel. The velocity profile attains its maximum at the centre-line 

region and becoming zero at the suction wall. 

 

 Fig. 3 depicts the effect of suction/injection on the velocity flow. It is observed that an 

increase in suction/injection parameter ′𝑠′, the fluid injection into the channel through the 

lower wall of the channel increases, while the rate of fluid suction at the upper wall of the 

channel increases as well. This leads to a decrease in the fluid velocity at the lower channel 

wall and an increase in flow reversal at the upper wall region. In Fig. 4, the influence of slip 

parameter ‘α’ on velocity profile is illustrated. It is found that an increase in slip parameter at 

the lower wall causes an increase in the velocity at the wall, while the velocity increases 

slightly at the suction wall, which gives a clear effect on the fluid. 

 

 Fig. 5 depicts effect of Forchheimer number on velocity profile. It is observed that an 

increase in Forchheimer number has an increasing influence on the maximum value of the 
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velocity. Fig. 6 depicts effect of the Darcy number ′𝐷𝑎′ on velocity profile. It is seen that 

velocity profile increases by increasing the Darcy number ′𝐷𝑎′. Effect of couple stress on 

temperature profile is shown in Fig. 7 it is found that an increase in couple stress inverse 'a' 

leads to an increase in the temperature profile across the channel. Fig. 8 depicts the effects of 

suction/injections on temperature profile. It is found that as the suction/injection parameter, 𝑠, 

increases the fluid temperature decreases. This shows that as less fluid is injected into the 

channel the fluid temperature increases. 

 

Fig. 9 shows the effect of Prandtl number on fluid temperature. It is observed that when 

Prandtl number increases the fluid temperature decreases across the channel. The temperature 

profile when there is an increment in Brinkman number ′𝐵𝑟′ due to viscous dissipation 

effects is shown in Fig. 10. The fluid temperature increases with an increase in 𝐵𝑟 with 

minimum value at the injection wall and maximum value at the suction wall. Fig. 11 

describes the effect of slip parameter ′𝛽′ on temperature profile. It is seen that increasing the 

slip parameter ′𝛽′ enhances the fluid temperature. The effect of couple stress inverse ′𝑎′ on 

the entropy generation rate within the channel is depicted in Fig. 12.  

It is found that an increase in couple stress inverse ‘𝑎’ leads to a decrease in the entropy 

generation rate at the upper plate while the entropy generation rate is slightly decreases at the 

injection wall. Fig. 13 shows the effect of fluid suction/injection on the entropy generation 

rate. The result shows that as the suction/injection parameter, s, increases, the entropy 

generation rate slightly increase at the injection wall and increases throughout the channel. 

Fig. 14 deals with the effect of slip coefficient ‘𝛼’ on entropy generation rate. It is found that 

when the slip coefficient α increases, the entropy generation rate increases throughout the 

channels. Figs. 15 and 16 show the variation of entropy generation rate with the Darcy 

number and Forchheimer parameter respectively. It is observed that an increase in 

Forchheimer number causes an increase in the entropy generation rate at the suction wall and 

a slight increase at the injection wall while an increase in Darcy number reduces the entropy 

generation rate.  

 

The effects of various thermo-physical parameters on the Bejan number are depicted 

in Figs. 17 –  20. In Fig. 17, it is observed that increase in couple stress inverse ′𝑎′ decreases 

the Bejan number at the injection wall. Fig. 18 shows the effect of fluid suction/injection 

parameter on Bejan number. It is observed that as the suction/injection parameter increases, 
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the Bejan number decreases at the injection wall. Fig. 19 demonstrates the effect of slip 

parameter α on the Bejan number. It is found that the Bejan number at the injection wall 

decreases while it increases slightly at the suction wall with an increase in ′𝛼′. Furthermore it 

is observed in Fig. 20 that the Bejan number increases with increasing Darcy number 

parameter.The plot of the variation of the skin friction with respect to velocity slip coefficient 

𝛼 is depicted in Fig 21. It is observed that as the slip parameter increases the skin friction 

decreases. Figs. 22 and 23, depict, the plot of Nusselt number versus couple stress inverse ′𝑎' 

and Prandtl number 𝑃𝑟 respectively. It shows that increase in couple stress inverse ‘𝑎’ 

increases Nusselt number while Prandtl number number decreases it. 
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 Fig 3: Variation of suction/injection parameter on velocity 

profile 

 Fig 2: Variation of couple stress inverse on velocity profile 



Gbadeyan et al.                             ILORIN JOURNAL OF SCIENCE 

61 
 

 

 

 

 

 

 

 

 

 

 

  

Fig 4: Variation of slip parameter on velocity 

temperature distribution profile 

Fig 6: Variation of Da on velocity profile 

Fig 7: Variation of couple stresses parameter on 

temperature distribution 

Fig 8: Variation of suction/injection parameter on 

temperature distribution 
Fig 9: Variation of Prandtl number on temperature 

Fig 5: Variation of Forchheimer parameter on 

velocity profile 
Variation of slip parameter on velocity temperature 

distribution profile 
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Fig 10: Variation of Brinkman number on 

temperature distribution 
Fig 11: Variation of slip parameter on temperature 

distribution 

Fig 12: Variation of couple stress inverse on entropy 

generation rate 

Fig 13: Variation of suction/injection on entropy 

generation rate 
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Fig 14: Variation of slip parameter ‘α’ on entropy 

generation rate 
Fig 15: Variation of Darcy number on entropy 

generation rate 

Fig 16: Variation of Forchheimer number on 

entropy generation rate 

Fig 17: Variation of couple stress parameter on Bejan 

number 

Fig 18: Variation of suction/injection on Bejan number 

Fig 19: Variation of slip parameter ‘α’ on Bejan number 
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Fig 20: Variation of ’Da’ on Bejan number 

Fig 21: Variation of slip parameter on skin friction 



Gbadeyan et al.                             ILORIN JOURNAL OF SCIENCE 

65 
 

 

  

 

5.0 Conclusion 

 

The effects of slip conditions and couple stress fluid on entropy generation rate in a porous 

channel occupied by a highly porous medium were examined. The following observations 

and conclusions are drawn 

• The effect of slip parameter is to increase the temperature and velocity profile. 

Fig 22: Variation of  couple stress parameter on Nusselt number 

Fig 23: Variation of prandtl number on Nusselt number 
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• The presence of couple stress inverse ′𝑎′ also has an increasing effect on the fluid 

velocity and fluid temperature. 

• Increase in slip coefficient increases the entropy generation rate within the channel. 

• Increase in couple stress inverse ′𝑎′ decreases the Bejan number at the injection wall 

and a slight variation occurs at the suction wall. 
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