
 

431 
 

A  

 

 

 

ILJS-14-053  

A Collocation Technique Based on Orthogonal Polynomials for Construction of 

Continuous Hybrid Methods.  

 

Adeniyi, R. B.*1 and Yahaya,  H.2 
1Department of Mathematics, University of Ilorin, Ilorin, Nigeria. 
2Department of Mathematics, Sa’datu Rimi College of Education, Kumbotso –Kano, Nigeria. 

 

  

Abstract 

The paper focuses on formulation of a number of algorithms for the numerical solution of first order ordinary 

differential equations with applications to initial value problems. For this purpose, an orthogonal polynomial 

valid in interval [-1,1] and with respect to weight function w(x)=x2 was constructed and employed as basis 

function for the development of some continuous hybrid schemes in a collocation and interpolation technique. 

To make the continuous schemes self-starting, some block methods of discrete hybrid form were derived. The 

schemes were analyzed using appropriate existing theorems to investigate their stability, consistency and 

convergence. The investigation shows that the developed schemes are consistent, zero-stable and hence 

convergent. The self-starting methods were implemented on some test problems from the literature to show the 

accuracy and effectiveness of the schemes. 
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1. Introduction 

The desirability of deriving a continuous scheme for solving first order and higher order 

ordinary differential equations cannot be over emphasized. This is as a result of the need to 

increase the effectiveness and efficiency of multistep methods in solving differential 

equations. Over the years, techniques for the derivation of Linear Multistep Methods (LMMs) 

for the numerical solution of the Initial Values Problems (IVPs) in first order ordinary 

differential equation of the form: 

𝑦′ = 𝑓(𝑥, 𝑦(𝑥)),   𝑎 ≤ 𝑥 ≤ 𝑏 < +∞                                    (1.1a) 

𝑦(𝑎) = 𝑦0                                                                                (1.1b) 

have been reported in the literature, Onumanyi et al (1993) and Adeniyi et al (2006, 2007, 

2008). These include, among others, collocation, interpolation, integration of interpolation 

polynomials. 
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Differential equations play an important role in the modeling of physical problems arising 

from almost every discipline of study. However, it is relatively uncommon for a differential 

equation to have a solution that can be written in terms of elementary functions. Usually the 

only information about the solution is that it is known to exist and to be unique. Numerous 

ordinary differential equation solvers have been developed and implemented since the digital 

computer was introduced some decades ago. The criteria that are normally put into 

consideration are whether or not the solver gives an accurate approximation, uses less 

computation time, is easy to implement and obtains a unique numerical solution.  

 

Most conventional ODE solvers such as Runge-Kutta, Taylor's algorithm and Linear 

Multistep Methods (LMMs) are easy to implement and also meet the first two criteria in 

normal circumstances. Among these methods, LMMs are very popular and useful. They are 

very suitable in providing solutions to ODEs within a given interval and they are also useful 

for information about the solution at more than one point. However, the effectiveness of these 

ODE solvers depends on the types of trial functions used in developing the schemes. Various 

trial functions such as, the Chebyshev polynomials 𝑇𝑛(𝑥), the Legendre polynomials 𝑃𝑛(𝑥), 

the monomials 𝑥𝑟, and the Canonical polynomials (𝑄𝑟(𝑥), 𝑟 ≥ 0)of the Lanczos Tau method 

in a perturbed collocation approach have been employed for this purpose, Henrici (1962), 

Fox and Parker(1968), Lambert (1973), Lanczos (1973). Problems arising from ODEs can 

either be formulated as an Initial Value Problems (IVPs) or a Boundary Value Problems 

(BVPs). 

 

In the quest for solution to general second order ODEs, Anake (2011) derived finite 

difference methods by power series in the form: 

𝑦(𝑥) = ∑𝑎𝑗𝑥
𝑗                                                                              (1.2)

𝑘

𝑗=0

 

                              

for the solution of IVPs for ODEs. This proposed power series based one-step hybrid method 

was developed by appropriate selection of points for both interpolation and collocation to 
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obtain block methods through which many useful classes of finite difference methods were 

generated to implement the new method. Adeyefa (2014) employed the polynomial 

𝑇𝑛(𝑥) = cos [𝑛𝑐𝑜𝑠−1 (
2𝑥 − 𝑏 − 𝑎

𝑏 − 𝑎
)] = ∑ 𝐶𝑟

(𝑛)𝑥𝑟                             (1.3)

𝑛

𝑟=0

 

             

to develop many classes of finite difference methods for the solution of second order IVPs in 

ODEs. 

 

In this work, our concern is on the first order IVPs and the choice of the orthogonal 

polynomials shall be considered to develop a class of continuous hybrid block methods which 

simultaneously generates solutions of (1) without the need for any predictor.  

 

2.0 Derivation of the Methods 

We consider the derivation of a class of continuous schemes which shall be used to generate 

the discrete counterparts required to set up the block methods. This we do by approximating 

the analytical solution of problem (1.1) with the orthogonal polynomials which shall be 

defined and constructed hereunder. 

 

2.1 The Orthogonal Polynomial 

Consider the equation 

∫ 𝑤(𝑥)𝜑𝑚(𝑥)𝜑𝑛(𝑥)𝑑𝑥 = ℎ𝑛𝛿𝑚𝑛
𝑏

𝑎
                                                  (2.1) 

with 

𝛿𝑚𝑛 = {
0,   𝑚 ≠ 𝑛
1,   𝑚 = 𝑛

 

where the weight function w(x) is continuous and positive on [a, b] such that the moments 

𝜇 = ∫ 𝑤(𝑥)𝑥𝑛𝑑𝑥,     𝑛 = 0,1,2, ………
𝑏

𝑎
                                            (2.2) 

exist and ℎ𝑛 is a non-zero constant. 

 

Then the integral 

< 𝜑𝑚, 𝜑𝑛 >= ∫ 𝑤(𝑥)𝜑𝑚(𝑥)𝜑𝑛(𝑥)𝑑𝑥
𝑏

𝑎
                                               (2.3) 

denotes an inner product of the polynomials 𝜑𝑚 𝑎𝑛𝑑 𝜑𝑛. 

 For orthogonality, 

< 𝜑𝑚, 𝜑𝑛 >= ∫ 𝑤(𝑥)𝜑𝑚(𝑥)𝜑𝑛(𝑥)𝑑𝑥 = 0,   𝑚 ≠ 𝑛,     [−1,1]
𝑏

𝑎
      (2.4) 
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In this study, we shall adopt the weight function 𝑤(𝑥) = 𝑥2 in the [a,b]≡[-1,1]. 

The construction of the basis function 𝜑𝑛(𝑥), 𝑛= 1, 2, 3 ... of the approximant: 

𝑦𝑛(𝑥) = ∑ 𝑎𝑟𝜑𝑟(𝑥) ≅ 𝑦(𝑥)𝑛
𝑟=0                                                        (2.5) 

now follows: 

2.1.1   Construction of Orthogonal Basis Function 

For the purpose of constructing the basis function, we use additional property that 

𝜑𝑛(1) = 1 

where 𝜑𝑛(𝑥) defined by 

𝜑𝑟(𝑥) = ∑ 𝐶𝑟
(𝑛)

𝑥𝑟𝑛
𝑟=0                                                                                (2.6) 

satisfies the orthogonality property (2.4), i.e., 

< 𝜑𝑚, 𝜑𝑛 > {
= 0,   𝑚 ≠ 𝑛
≠ 0,   𝑚 = 𝑛

 

Concisely, we have that 

𝜑𝑟(𝑥) = ∑𝐶𝑟
(𝑛)

𝑥𝑟

𝑛

𝑟=0

 

<𝜑𝑚, 𝜑𝑛>= 0,  𝑚 ≠ 𝑛 

𝜑𝑛(1) = 1. 

When r = 0 in (2.6) 

𝜑0(𝑥) = 𝐶0
(0)

. 

By definition 

𝜑0(1) = 𝐶0
(0)

= 1. 

Hence 

𝜑0(𝑥) = 1. 

 

The other orthogonal polynomials 𝜑𝑟(𝑥), 1 ≤ 𝑟 ≤ 7 are developed in the same way and 

employed in this work. The first few of them are listed below: 

𝜑1(𝑥) = 𝑥, 

𝜑2(𝑥) =
1

2
(5𝑥2 − 3), 

𝜑3(𝑥) =
1

2
(7𝑥3 − 5𝑥), 

𝜑4(𝑥) =
1

8
(63𝑥4 − 70𝑥2 + 15),                   
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𝜑5(𝑥) =
1

8
(99𝑥5 − 126𝑥3 + 35𝑥), 

𝜑6(𝑥) =
1

16
(429𝑥6 − 693𝑥4 + 315𝑥2 − 35), 

𝜑7(𝑥) =
1

16
(715𝑥7 − 1287𝑥5 + 315𝑥3 − 105𝑥). 

In what now follows, we shall use the derived polynomials to develop the proposed 

continuous schemes. 

 

We set out by considering the IVP (1.1) in the subinterval [𝑥𝑛, 𝑥𝑛+𝑝] of 

𝑦′ = 𝑓(𝑥, 𝑦(𝑥)),   𝑥𝑛 ≤ 𝑥 ≤ 𝑥𝑛+𝑝 , where p = 1, 2, 3, . . .   .    (2.7) 

We seek an approximation of the form 

𝑌(𝑥) = ∑ 𝑎𝑟𝜑𝑟(𝑥) ≅ 𝑦(𝑥),      𝑥𝑛 ≤ 𝑥 ≤ 𝑥𝑛+𝑝

𝑘−1

𝑟=0

                           

where p varies as the method to be derived and 𝑛 = 0,1,2, …. That is 

𝑌(𝑥) = ∑𝑎𝑟𝜑𝑟 (
2(𝑥 − 𝑥𝑛)

𝑝ℎ
− 1)    , 𝑥𝑛 ≤ 𝑥 ≤ 𝑥𝑛+𝑝                 

𝑘

𝑟=0

                               (2.8 ) 

where ℎ = 𝑥𝑛+1 − 𝑥𝑛  is the uniform step-length. 

 

The procedures involve interpolating (2.8) at both grid and off-grid points while we collocate 

the first order derivative of (2.8) at some grid and off-grid points. The coefficients of the 

resulting system of equations will thereafter be determined through the Gaussian elimination 

method and, the values of which will be substituted into (2.8). Consequently, we construct a 

continuous implicit hybrid method. The continuous implicit hybrid method will be evaluated 

at the collocation points to yield some corresponding discrete hybrid schemes which 

constitute a block through which the solution of (1.1) will be obtained. In what now 

immediately follows, we shall develop one-step, two-step and three-step hybrid methods. 

 

2.2 Derivation of Continuous One-Step Method with One Off-step Point 

In this section, we derived a continuous one step method with one off-step point. 

Considering equation (2.8) for k = 4 and p = 1, we have 

𝑌(𝑥) = ∑𝑎𝑟𝜑𝑟 (
2(𝑥 − 𝑥𝑛)

ℎ
− 1)                                                                                                (2.9)

3

𝑟=0
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where 𝑥 ∈ [𝑥𝑛, 𝑥𝑛+1]. 

Expanding (2.9), we obtain 

𝑌(𝑥) = 𝑎0 + 𝑎1 (
2(𝑥 − 𝑥𝑛)

ℎ
− 1) + 𝑎2 (

5

2
(
2(𝑥 − 𝑥𝑛)

ℎ
− 1)

2

−
3

2
)

+ 𝑎3 (
7

2
(
2(𝑥 − 𝑥𝑛)

ℎ
− 1)

3

−
5

2
(
2(𝑥 − 𝑥𝑛)

ℎ
− 1))                       (2.10𝑎) 

by engaging the first four  orthogonal polynomials obtained earlier. Expanding (2.10a) and 

simplifying in terms of a function t, we have 

𝑌(𝑡) = 𝑎0 + 𝑎1(2𝑡 − 1) + 𝑎2(10𝑡2 − 10𝑡 + 1) + 𝑎3(28𝑡3 − 42𝑡2 + 16𝑡 − 1)       (2.10𝑏) 

where 𝑡 =
𝑥−𝑥𝑛

ℎ
. 

Differentiating (2.10b), we obtain 

𝑌′(𝑡) = 2𝑎1 + 𝑎2(20𝑡 − 10) + 𝑎3(84𝑡2 − 84𝑡 + 16)                                               (2.11) 

Then, collocating (2.11) at t = 0,  
1

2
, 1 and interpolating (2.10b) at t=0 lead to a system of 

equations written in the matrix form AX = B as: 

[

1 −1 1 −1
0 2 −10 16
0 2 0 −5
0 2 10 16

] [

𝑎0

𝑎1

𝑎2

𝑎3

] =

[
 
 
 

𝑦𝑛

ℎ𝑓𝑛
ℎ𝑓

𝑛+
1

2

ℎ𝑓𝑛+1]
 
 
 

   .                                                                   (2.12) 

Equation (2.12) is solved by Gaussian elimination method to obtain the value of the unknown 

parameters 𝑎𝑗, j = 0, 1, 2, 3 as follows: 

𝑎0 = 𝑦𝑛 +
ℎ

30
(𝑓𝑛+1 + 10𝑓

𝑛+
1

2

+ 4𝑓𝑛), 

𝑎1 =
ℎ

84
(𝑓𝑛+1 + 32𝑓

𝑛+
1

2

+ 5𝑓𝑛),                                                                                   (2.13) 

𝑎2 =
ℎ

20
(𝑓𝑛+1 − 𝑓𝑛), 

𝑎3 =
ℎ

42
(𝑓𝑛+1 − 2𝑓

𝑛+
1

2

+ 𝑓𝑛). 

Substituting (2.13) into (2.10) yields a continuous implicit hybrid one-step method in the 

form 

𝑦(𝑥) = 𝛼𝑗(𝑥)𝑦𝑛 + ℎ (∑𝛽𝑗

1

𝑗=0

(𝑥)𝑓𝑛+𝑗 + 𝛽𝑗(𝑥)𝑓
𝑛+

1

2

)  ,                              (2.14) 

where αj(x)and βj(x)are continuous coefficients obtained as: 
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                                                                       𝛼0(𝑡) = 1,          

   𝛽0(𝑡) =
2

3
𝑡3 −

3

2
𝑡2 + 𝑡, 

𝛽1

2

(𝑡) =
−4

3
𝑡3 + 2𝑡2, 

𝛽1(𝑡) =
2

3
𝑡3 −

1

2
𝑡2. 

Evaluating (2.14) at 𝑥𝑛+1   𝑎𝑛𝑑   𝑥
𝑛+

1

2

 gives the discrete schemes 

𝑦𝑛+1 = 𝑦𝑛 +
ℎ

6
(𝑓𝑛 + 4𝑓

𝑛+
1

2

+ 𝑓𝑛+1),                                                   (2.15) 

𝑦
𝑛+

1

2

= 𝑦𝑛 +
ℎ

24
(5𝑓𝑛 + 8𝑓

𝑛+
1

2

− 𝑓𝑛+1).                                                (2.16) 

 

2.3  Derivation of Continuous Two-Step Method with Two Off-Step Points 

We consider here in this section the derivation of continuous two-step method with two off-

step points. In equation (2.8), if k = 6 and p = 2, we will obtain 

𝑌(𝑥) = ∑𝑎𝑟𝜑𝑟(𝑥)      .                                                                                                         (2.17)

3

𝑟=0

 

Expanding (3.17), we have 

𝑌(𝑥) = 𝑎0 + 𝑎1 (
(𝑥−𝑥𝑛

ℎ
− 1) + 𝑎2 (

5

2
(

(𝑥−𝑥𝑛)

ℎ
− 1)

2

−
3

2
) + 𝑎3 (

7

2
(

(𝑥−𝑥𝑛)

ℎ
− 1)

3

−

5

2
(

(𝑥−𝑥𝑛)

ℎ
− 1)) + 𝑎4 (

63

8
(

(𝑥−𝑥𝑛)

ℎ
− 1)

4

−
70

8
(

(𝑥−𝑥𝑛

ℎ
− 1)

2

+
15

8
) + 𝑎5 (

99

8
(

(𝑥−𝑥𝑛)

ℎ
−

1)
5

−
126

8
(

(𝑥−𝑥𝑛

ℎ
− 1)

3

+
35

8
(

(𝑥−𝑥𝑛

ℎ
− 1)).     (2.18)                                                                     

 

For simplicity, equation (2.18) is arranged as 

𝑌(𝑡) = 𝑎0 + 𝑎1(𝑡 − 1) + 𝑎2 (
5

2
(𝑡 − 1)2 −

3

2
) + 𝑎3 (

7

2
(𝑡 − 1)3 −

5

2
(𝑡 − 1)) +

𝑎4 (
63

8
(𝑡 − 1)4 −

70

8
(𝑡 − 1)2 +

15

8
)+ 𝑎5 (

99

8
(𝑡 − 1)5 −

126

8
(𝑡 − 1)3 +

35

8
(𝑡 − 1)),           

                     (2.19) 

where 𝑡 =
𝑥−𝑥𝑛

ℎ
. 



Adeniyi and Yahaya       ILORIN JOURNAL OF SCIENCE 

438 
 

Differentiating (2.19), we obtain 

𝑌′(𝑡) = 𝑎1 + 𝑎2(5𝑡 − 5) + 𝑎3 (
21

2
𝑡2 − 21𝑡 + 8) + 𝑎4 (

63

2
𝑡3 −

189

2
𝑡2 + 77𝑡 − 14) +

𝑎5 (
495

8
𝑡4 −

495

2
𝑡3 + 324𝑡2 − 153𝑡 + 19).                                                                          (2.20)                                       

Interpolating (2.19) at t = 0 and collocating (2.20) at t = 0,   
1

2
, 1,   

3

2
   and 2, we have a system 

of equations written in the matrix form AX = B as 

[
 
 
 
 
 
 
 
1 −1 1 −1 1 −1
0 1 −5 8 −14 19

0 1
−5

2

1

8

77

16

−457

128

0 1 0
−5

2
0

35

8

0 1
5

2

1

8

−77

16

−457

128

0 1 5 8 14 19 ]
 
 
 
 
 
 
 

[
 
 
 
 
 
𝑎0

𝑎1

𝑎2

𝑎3

𝑎4

𝑎5]
 
 
 
 
 

=

[
 
 
 
 
 
 

𝑦𝑛

ℎ𝑓𝑛
ℎ𝑓

𝑛+
1

2

ℎ𝑓𝑛+1

ℎ𝑓
𝑛+

3

2

ℎ𝑓𝑛+2]
 
 
 
 
 
 

    .                                                 (2.21) 

 

Solving equation (2.21) using Gaussian elimination method, we obtain the value of the 

unknown parameters 𝑎𝑗 , j= 0(1)5 as follows: 

                          𝑎0 = 𝑦𝑛 +
ℎ

315
(44𝑓𝑛 + 136𝑓

𝑛+
1

2

+ 42𝑓𝑛+1 + 88𝑓
𝑛+

3

2

+ 5𝑓𝑛+2), 

                        𝑎1 =
ℎ

378
(13𝑓𝑛 + 128𝑓

𝑛+
1

2

+ 96𝑓𝑛+1 + 128𝑓
𝑛+

3

2

+ 13𝑓𝑛+2), 

                           𝑎2 =
ℎ

270
(−11𝑓𝑛 − 32𝑓

𝑛+
1

2

+ 32𝑓
𝑛+

3

2

+ 11𝑓𝑛+2),   (2.22) 

 𝑎3 =
ℎ

3465
(113𝑓𝑛 + 208𝑓

𝑛+
1

2

− 642𝑓𝑛+1 + 208𝑓
𝑛+

3

2

+ 113𝑓𝑛+2), 

                           𝑎4 =
ℎ

189
(−4𝑓𝑛 + 8𝑓

𝑛+
1

2

− 8𝑓
𝑛+

3

2

+ 4𝑓𝑛+2), 

                           𝑎5 =
ℎ

1485
(16𝑓𝑛 − 64𝑓

𝑛+
1

2

+ 96𝑓𝑛+1 − 64𝑓
𝑛+

3

2

+ 16𝑓𝑛+2). 

 

Substituting (2.22) into (2.19) yields a continuous implicit hybrid two-step method in the 

form 

𝑦(𝑡) = 𝛼𝑗(𝑡)𝑦𝑛 + ℎ ∑𝛽𝑗(𝑡)𝑓𝑛+𝑗 + 𝛽1

2

(𝑡)𝑓
𝑛+

1

2

+ 𝛽3

2

𝑓
𝑛+

3

2
 ,                          

                              (2.23)

2

𝑗=0

 

where αj(x)and βj(x)are continuous coefficients obtained as: 

                                                      𝛼0(𝑡) = 1,          

   𝛽0(𝑡) =
2

15
𝑡5 −

5

6
𝑡4 +

35

18
𝑡3 −

25

12
𝑡2 + 𝑡, 
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                                                     𝛽1

2

(𝑡) =
−8

15
𝑡5 + 3𝑡4 −

52

9
𝑡3 + 4𝑡2, 

                                                    𝛽1(𝑡) =
4

5
𝑡5 − 4𝑡4 +

19

3
𝑡3 − 3𝑡2, 

                                                    𝛽3

2

(𝑡) =
−8

15
𝑡5 +

7

3
𝑡4 −

28

9
𝑡3 +

4

3
𝑡2, 

                                                    𝛽2(𝑡) =
2

15
𝑡5 −

1

2
𝑡4 +

11

18
𝑡3 −

1

4
𝑡2. 

Evaluating (2.23) at 𝑥
𝑛+

1

2

, 𝑥𝑛+1,  𝑥𝑛+
3

2

   𝑎𝑛𝑑   𝑥𝑛+2 the following discrete schemes are 

obtained: 

                 𝑦
𝑛+

1

2

= 𝑦𝑛 +
ℎ

1440
(251𝑓𝑛 + 646𝑓

𝑛+
1

2

+ 264𝑓𝑛+1 + 106𝑓
𝑛+

3

2

+ 19𝑓𝑛+2), 

               𝑦𝑛+1 = 𝑦𝑛 +
ℎ

180
(29𝑓𝑛 + 124𝑓

𝑛+
1

2

+ 24𝑓𝑛+1 + 4𝑓
𝑛+

3

2

− 𝑓𝑛+2),             (2.24)                                 

                 𝑦
𝑛+

3

2

= 𝑦𝑛 +
ℎ

160
(27𝑓𝑛 + 102𝑓

𝑛+
1

2

+ 72𝑓𝑛+1 + 42𝑓
𝑛+

3

2

− 3𝑓𝑛+2), 

                𝑦𝑛+2 = 𝑦𝑛 +
ℎ

45
(7𝑓𝑛 + 32𝑓

𝑛+
1

2

+ 12𝑓𝑛+1 + 32𝑓
𝑛+

3

2

+ 7𝑓𝑛+2). 

 

2.4  Derivation of Continuous Three-Step method with Three Off-Step Points 

In like manner, we consider here the derivation of continuous three-step method with three 

off-step points. Also, the three points here are selected in such a way of maintaining equally 

spaced interval. 

 

By letting k = 8 and p = 3 in equation (2.8), we obtain 

𝑌(𝑥) = ∑𝑎𝑟𝜑𝑟(𝑥)                                                                                                             (2.25)

7

𝑟=0

 

Expanding (2.25), we have 

𝑌(𝑥) = 𝑎0 + 𝑎1 (
2(𝑥−𝑥𝑛

3ℎ
− 1) + 𝑎2 (

5

2
(

2(𝑥−𝑥𝑛)

3ℎ
− 1)

2

−
3

2
) + 𝑎3 (

7

2
(

2(𝑥−𝑥𝑛)

3ℎ
− 1)

3

−

5

2
(

2(𝑥−𝑥𝑛)

3ℎ
− 1)) + 𝑎4 (

63

8
(

2(𝑥−𝑥𝑛)

3ℎ
− 1)

4

−
70

8
(

2(𝑥−𝑥𝑛

3ℎ
− 1)

2

+
15

8
) + 𝑎5 (

99

8
(

2(𝑥−𝑥𝑛)

3ℎ
−

1)
5

−
126

8
(

2(𝑥−𝑥𝑛

3ℎ
− 1)

3

+
35

8
(

2(𝑥−𝑥𝑛

3ℎ
− 1)) + 𝑎6 (

429

16
(

2(𝑥−𝑥𝑛)

3ℎ
− 1)

6

−
693

16
(

2(𝑥−𝑥𝑛

3ℎ
−
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1)
4

+
315

16
(

2(𝑥−𝑥𝑛)

3ℎ
− 1)

2

−
35

16
) +  𝑎7 (

715

16
(

2(𝑥−𝑥𝑛)

3ℎ
− 1)

7

−
1287

16
(

2(𝑥−𝑥𝑛

3ℎ
− 1)

5

+

693

16
(

2(𝑥−𝑥𝑛

3ℎ
− 1)

3

−
105

16
(

2(𝑥−𝑥𝑛

3ℎ
− 1))  .                                                                        (2.26)                                                                                                      

Expanding (2.26) and simplifying in terms of function t, we have 

𝑌(𝑡) = 𝑎0 + 𝑎1 (
2

3
𝑡 − 1) + 𝑎2 (

10

9
𝑡2 −

10

3
𝑡 + 1) + 𝑎3 (

28

27
𝑡3 −

14

3
𝑡2 +

16

3
𝑡 − 1) +

𝑎4 (
14

9
𝑡4 −

28

3
𝑡3 +

154

9
𝑡2 −

28

3
𝑡 + 1)+ 𝑎5 (

44

27
𝑡5 −

110

9
𝑡4 + 32𝑡3 − 55𝑡2 +

265

6
𝑡 −

67

4
)+ 𝑎6 (

572

243
𝑡6 −

572

27
𝑡5 +

638

9
𝑡4 −

968

9
𝑡3 + 72𝑡2 − 18𝑡 + 1) + 𝑎7 (

5720

2187
𝑡7 −

20020

729
𝑡6 +

9152

81
𝑡5 −

18590

81
𝑡4 +

6424

27
𝑡3 −

352

3
𝑡2 +

68

3
𝑡 − 1),                                                           

(2.27) 

where 𝑡 =
𝑥−𝑥𝑛

ℎ
. 

Differentiating (2.27), we obtain 

𝑌′(𝑡) =
2

3
𝑎1 + 𝑎2 (

20

9
𝑡 −

10

3
) + 𝑎3 (

28

9
𝑡2 −

28

3
𝑡 +

16

3
) + 𝑎4 (

56

9
𝑡3 − 28𝑡2 +

308

9
𝑡 −

28

3
) +

𝑎5 (
220

27
𝑡4 −

440

9
𝑡3 + 96𝑡2 − 110𝑡 +

265

6
) + 𝑎6 (

1144

81
𝑡5 −

2860

27
𝑡4 +

2552

9
𝑡3 −

968

3
𝑡2 +

144𝑡 − 18) + 𝑎7 (
40040

2187
𝑡6 −

40040

243
𝑡5 +

45760

81
𝑡4 −

74360

81
𝑡3 +

6424

9
𝑡2 −

704

3
𝑡 +

68

3
).                          

(2.28) 

 

Interpolating (2.27) at t = 0 and collocating (2.28) at t = 0 (
1

2
) 3, we have a system of 

equations written in the matrix form AX = B as 

 

[
 
 
 
 
 
 
 
 
 
 
 
 1 −1 1 −1 1

−67

4
1 −1

0
2

3

−10

3

16

3

−28

3

265

3
−18

68

3

0
2

3

−20

9

13

9

14

9

817

108

421

162

−9269

17496

0
2

3

−10

9

−8

9

28

9

−571

54

−398

81

4868

2187

0
2

3
0

−5

3
0

−343

12
0

−35

8

0
2

3

10

9

−8

9

−28

9

−2839

54

398

81

4868

2187

0
2

3

20

9

13

9

−14

9

−8255

108

−421

162

−9269

17496

0
2

3

10

3

16

3

28

3

−491

6
18

68

3 ]
 
 
 
 
 
 
 
 
 
 
 
 

[
 
 
 
 
 
 
 
𝑎0

𝑎1

𝑎2

𝑎3

𝑎4

𝑎5

𝑎6

𝑎7]
 
 
 
 
 
 
 

=

[
 
 
 
 
 
 
 
 
 

𝑦𝑛

ℎ𝑓𝑛
ℎ𝑓

𝑛+
1

2

ℎ𝑓𝑛+1

ℎ𝑓
𝑛+

3

2

ℎ𝑓𝑛+2

ℎ𝑓
𝑛+

5

2

ℎ𝑓𝑛+3]
 
 
 
 
 
 
 
 
 

  .                                            

     (2.29) 
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Solving equation (2.29) using Maple software, we obtain the value of the unknown 

parameters 𝑎𝑗,  j = 0(1)7 as follows: 

𝑎0 = 𝑦𝑛 +
ℎ

77000
(71363𝑓𝑛 − 45738𝑓

𝑛+
1

2

− 198450𝑓𝑛+1 + 487220𝑓
𝑛+

3

2

− 191025𝑓𝑛+2

− 69498𝑓
𝑛+

5

2

+ 61628𝑓𝑛+3), 

𝑎1 =
ℎ

15400
(13391𝑓𝑛 − 14211𝑓

𝑛+
1

2

− 38925𝑓𝑛+1 + 102590𝑓
𝑛+

3

2

− 38925𝑓𝑛+2

− 14211𝑓
𝑛+

5

2

+ 13391𝑓𝑛+3), 

𝑎2 =
ℎ

11000
(3411𝑓𝑛 − 7386𝑓

𝑛+
1

2

− 12075𝑓𝑛+1 + 27540𝑓
𝑛+

3

2

− 12225𝑓𝑛+2 − 3306𝑓
𝑛+

5

2

+

4041𝑓𝑛+3), 

𝑎3 =
ℎ

80080
(2219𝑓𝑛 − 11880𝑓

𝑛+
1

2

− 16011𝑓𝑛+1 + 3824𝑓
𝑛+

3

2

− 16011𝑓𝑛+2 +

11880𝑓
𝑛+

5

2

+ 2219𝑓𝑛+3),                                                                                                                                    

(2.30) 

𝑎4 =
ℎ

7280
(−183𝑓𝑛 − 48𝑓

𝑛+
1

2

+ 645𝑓𝑛+1 − 645𝑓𝑛+2 + 48𝑓
𝑛+

5

2

+ 183𝑓𝑛+3), 

𝑎5 =
ℎ

3850
(69𝑓𝑛 − 99𝑓

𝑛+
1

2

− 225𝑓𝑛+1 + 510𝑓
𝑛+

3

2

− 225𝑓𝑛+2 − 99𝑓
𝑛+

5

2

+ 69𝑓𝑛+3), 

𝑎6 =
ℎ

2800
(−27𝑓𝑛 + 108𝑓

𝑛+
1

2

− 135𝑓𝑛+1 + 135𝑓𝑛+2 − 108𝑓
𝑛+

5

2

+ 27𝑓𝑛+3), 

𝑎7 =
ℎ

50050
(243𝑓𝑛 − 1458𝑓

𝑛+
1

2

+ 3645𝑓𝑛+1 + 4860𝑓
𝑛+

3

2

+ 3645𝑓𝑛+2 − 1458𝑓
𝑛+

5

2

+ 243𝑓𝑛+3). 

Substituting (2.30) into (2.28) yields a continuous implicit hybrid three-step method in the 

form 

𝑦(𝑡) = 𝛼𝑗(𝑡)𝑦𝑛 + ℎ (∑ 𝛽𝑗(𝑡)𝑓𝑛+𝑗 + 𝛽1

2

(𝑡)𝑓
𝑛+

1

2

3
𝑗=0 + 𝛽3

2

(𝑡)𝑓
𝑛+

3

2

+ 𝛽5

2

(𝑡)𝑓
𝑛+

5

2

),                     

(2.31) 

where αj(t)  and βj(t)  are continuous coefficients obtained as 

                                        𝛼0(𝑡) = 1, 

           𝛽0(𝑡) =
4

315
𝑡7 −

7

45
𝑡6 +

7

9
𝑡5 −

49

21
𝑡4 +

406

135
𝑡3 −

49

20
𝑡2 + 𝑡, 
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𝛽1

2

(𝑡) =
−8

105
𝑡7 +

8

9
𝑡6 −

62

15
𝑡5 +

29

3
𝑡4 −

58

5
𝑡3 + 6𝑡2, 

     𝛽1(𝑡) =
4

21
𝑡7 −

19

9
𝑡6 +

137

15
𝑡5 −

461

24
𝑡4 +

39

2
𝑡3 −

15

2
𝑡2, 

    𝛽3

2

(𝑡) =
−16

63
𝑡7 +

8

3
𝑡6 −

484

45
𝑡5 +

62

3
𝑡4 −

508

27
𝑡3 +

20

3
𝑡2, 

     𝛽2(𝑡) =
4

21
𝑡7 −

17

6
𝑡6 +

107

15
𝑡5 −

307

24
𝑡4 + 11𝑡3 −

15

4
𝑡2, 

                                    𝛽5

2

(𝑡) =
−8

105
𝑡7 +

32

45
𝑡6 −

38

15
𝑡5 +

13

3
𝑡4 −

18

5
𝑡3 +

6

5
𝑡2 , 

     𝛽3(𝑡) =
4

315
𝑡7 −

1

9
𝑡6 +

17

45
𝑡5 −

5

8
𝑡4 +

137

270
𝑡3 −

1

6
𝑡2. 

Evaluating (2.31) at 𝑥
𝑛+

1

2

, 𝑥𝑛+1,  𝑥𝑛+
3

2
,
   𝑥𝑛+2,   𝑥𝑛+

5

2
  
  𝑎𝑛𝑑  𝑥𝑛+3, the following discrete 

schemes are obtained: 

𝑦
𝑛+

1

2

= 𝑦𝑛 +
ℎ

120960
(19087𝑓𝑛 + 65112𝑓

𝑛+
1

2

− 46461𝑓𝑛+1 + 37504𝑓
𝑛+

3

2

− 20211𝑓𝑛+2

+ 6312𝑓
𝑛+

5

2

− 863𝑓𝑛+3), 

𝑦𝑛+1 = 𝑦𝑛 +
ℎ

7560
(1139𝑓𝑛 + 5640𝑓

𝑛+
1

2

+ 33𝑓𝑛+1 + 1328𝑓
𝑛+

3

2

− 807𝑓𝑛+2 + 264𝑓
𝑛+

5

2

−

37𝑓𝑛+3), 

𝑦
𝑛+

3

2

= 𝑦𝑛 +
ℎ

4480
(685𝑓𝑛 + 3240𝑓

𝑛+
1

2

+ 1161𝑓𝑛+1 + 2176𝑓
𝑛+

3

2

− 729𝑓𝑛+2 + 216𝑓
𝑛+

5

2

−

29𝑓𝑛+3),           (2.32) 

    𝑦𝑛+2 = 𝑦𝑛 +
ℎ

945
(143𝑓𝑛 + 696𝑓

𝑛+
1

2

+ 192𝑓𝑛+1 + 752𝑓
𝑛+

3

2

+ 87𝑓𝑛+2 + 24𝑓
𝑛+

5

2

− 4𝑓𝑛+3), 

𝑦
𝑛+

5

2

= 𝑦𝑛 +
ℎ

24192
(3715𝑓𝑛 + 17400𝑓

𝑛+
1

2

+ 6375𝑓𝑛+1 + 16000𝑓
𝑛+

3

2

+ 11625𝑓𝑛+2

+ 5640𝑓
𝑛+

5

2

− 275𝑓𝑛+3), 

     𝑦𝑛+3 = 𝑦𝑛 +
ℎ

280
(41𝑓𝑛 + 216𝑓

𝑛+
1

2

+ 27𝑓𝑛+1 + 272𝑓
𝑛+

3

2

+ 27𝑓𝑛+2 + 216𝑓
𝑛+

5

2

+

41𝑓𝑛+3). 
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3.0  Analysis of the Methods 
 

Basic properties of the methods are analyzed to establish their validity. These properties, 

namely; order, error constant, consistency and zero stability reveal the nature of convergence 

of the methods. In what follows, a brief introduction of these properties is made for a better 

comprehension of the Section. 

3.1  Order and Error Constant 

The linear difference operator L associated with the continuous implicit multistep method 

developed is defined as: 

∑𝛼𝑗(𝑥)𝑦(𝑥𝑛+𝑗)

𝑘

𝑗=0

= ℎ ∑𝛽𝑗(𝑥)𝑓(𝑥𝑛+𝑗)                                                          (3.1)

𝑘

𝑗=0

 

with 

ℒ[𝑦(𝑥); ℎ] = ∑[𝛼𝑗(𝑥)𝑦(𝑥 + 𝑗ℎ) − ℎ𝛽𝑗(𝑥)𝑦′(𝑥 + 𝑗ℎ)] = 0,                       (3.2)

𝑘

𝑗=0

 

where y(x) is an arbitrary test function that is continuously differentiable in the interval [a,b].  

 

The Taylor's series expansion about the point x gives 

ℒ[𝑦(𝑥); ℎ] = 𝐶0ℎ𝑦(𝑥) + 𝐶1ℎ𝑦′(𝑥) + 𝐶2ℎ
2𝑦"(𝑥) + ⋯+ 𝐶𝑝ℎ𝑝𝑦𝑝(𝑥).         (3.3) 

The difference operator L and the associated continuous implicit hybrid methods are of order 

p if  𝐶0 = 𝐶1 = 𝐶2 = ⋯ 𝐶𝑝 = 0  𝑎𝑛𝑑  𝐶𝑝+1 ≠ 0 . The term 𝐶𝑝+1 ≠ 0 is called the error 

constant. The order and the error constants of the main methods and block methods are 

presented below: 

 

Table 3.1: The order and the error constants of the main methods and block methods 

Step number                        Main Method                     Order                 Error Constant 

        1                                           (2.15)                                4                                  
−1

2880
 

        2                                          (2.24d)                               6                                   
−1

15120
 

        3                                          (2.32f)                                8                                   
−9

716800
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Table 3.2: The order and the error constants of the main methods and block methods 

Step number                        Main Method                     Order                 Error Constant 

        1                                           (2.16)                                3                                   
1

384
 

        2                                          (2.24a)                               5                                   
3

10240
 

                                                    (2.24b)                                5                                   
1

5760
 

                                                 (2.24c)                                5                                   
3

10240
 

         3                                          (2.32a)                                7                                   
275

6193152
 

                                                 (2.32b)                            7                                 
1

30240
 

                                                 (2.32c)                                7                                   
9

229376
 

                                                 (2.32d)                            7                                 
1

30240
 

                                                 (2.32e)                                7                                   
275

6193152
                                                 

 

 

3.2  Consistency of the Methods 

The concept consistency is related to the convergence of the multistep methods in the sense 

that it controls the magnitude of the local truncation error committed at every integration 

step. According to Fatunla (1991), the linear multistep method (3.1) is said to be consistent if 

it has order 𝑝 ≥ 1.  The order of all the schemes derived have been investigated in the 

preceding section to satisfy this condition i.e. they all have order 𝑝 > 1. This shows that all 

the schemes derived are consistent. 

 

3.3  Zero Stability of the Methods 

The stability property of a method reveals the extent at which a method copes with a problem 

for a given step-length h. To analyze the methods for zero-stability, we use vector notation 

and the matrices  

𝑨 = (𝑎𝑖𝑗),     𝑩 = (𝑏𝑖𝑗), column vectors 𝒆 = (𝑒1, … . 𝑒𝑟)
𝑇 , 𝒅 = (𝑑1, … . 𝑑𝑟)

𝑇,   

𝒚𝒎 = (𝑦𝑛+1, … . 𝑦𝑛+𝑟)
𝑇, 𝑭(𝒚𝒎) = (𝑓𝑛+1, … . 𝑓𝑛+𝑟)

𝑇  

and write them as block method given by 

𝐴𝑦𝑚 = ℎ𝐵𝐹(𝑦𝑚) + 𝑒𝑦𝑛 + ℎ𝑑𝑓𝑛                                                                 (3.4) 
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where h is a fixed mesh size within a block. 

 

In equations (2.15) and (2.16) 

𝐴 = [
1 0
0 1

],                 e= [
0 1
0 1

],              B= [
1

6⁄
2

3⁄

−1
24⁄ 1

3⁄
]     and         𝑑 = [

0 1
6⁄

0 5
24⁄

]. 

The first characteristic polynomial of the block method is given by 

𝓅(𝑅) = det(𝑅𝐴0 − 𝐴1),                                                                         (3.5) 

where 

𝐴0 = [
1 0
0 1

],     and           𝐴1 = [
0 1
0 1

]. 

Substituting  𝐴0 𝑎𝑛𝑑 𝐴1 in equation (3.5) and solving for R, the values of R are obtained as 0 

and 1. According to [8], the block method equations (2.15) and (2.16) are zero-stable, since 

from (3.5), 𝓅(𝑅) = 0 , satisfy |𝑅𝑗| ≤ 1 , j = 1,...,k, and for those roots with |𝑅𝑗| = 1, the 

multiplicity does not exceed one. 

 

Considering equation (2.24) and arranging it in accordance with equation (3.4), we have 

𝐴 = [

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

] , e = [

0 0 0 1
0 0 0 1
0 0 0 1
0 0 0 1

] ,        B =

[
 
 
 
 
 

4
15⁄ 32

45⁄ 32
45⁄ 7

45⁄

−11
60⁄ 53

720⁄ 323
720⁄ −19

1440⁄

2
15⁄ 1

45⁄ 31
45⁄ −1

180⁄

9
20⁄ 21

80⁄ 51
80⁄ −3

160⁄ ]
 
 
 
 
 

      

and         𝑑 =

[
 
 
 
 
 0 0 0 7

45⁄

0 0 0 251
1440⁄

0 0 0 29
180⁄

0 0 0 27
160⁄ ]

 
 
 
 
 

. 

The first characteristic polynomial of the block method is given by 

𝓅(𝑅) = det (𝑅𝐴0 − 𝐴1),                                                                        (3.6) 

where 

𝐴0 = [

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

],     and           𝐴1 = [

0 0 0 1
0 0 0 1
0 0 0 1
0 0 0 1

]. 
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Substituting  𝐴0 𝑎𝑛𝑑 𝐴1 in equation (3.6) and solving for R, the values of R are obtained as 0 

and 1. According to Fatunla (1991), the block method equations (2.24) are zero-stable, since 

from (3.6), 𝓅(𝑅) = 0 , satisfy |𝑅𝑗| ≤ 1 , j = 1,...,k, and for those roots with |𝑅𝑗| = 1, the 

multiplicity does not exceed one. 

 

In like manner, the following are obtained from equation (2.32). 

𝐴 =

[
 
 
 
 
 
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1]

 
 
 
 
 

   ,                                               e=

[
 
 
 
 
 
0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 0 1]

 
 
 
 
 

,       

  B =

[
 
 
 
 
 
 
 
 

41
280⁄ 27

35⁄ 27
280⁄ 34

35⁄ 27
280⁄ 27

35⁄

−863
120960⁄ 263

5040⁄ −6737
40320⁄ 293

945⁄ −15487
40320⁄ 2713

5040⁄

−37
7560⁄ 11

315⁄ −269
2520⁄ 166

945⁄ 11
2520⁄ 47

63⁄

−29
4480⁄ 27

560⁄ −729
4480⁄ 17

35⁄ 1161
4480⁄ 81

122⁄

−4
945⁄ 8

315⁄ 29
315⁄ 752

945⁄ 64
315⁄ 232

315⁄

−275
24192⁄ 235

1008⁄ 3875
8064⁄ 125

189⁄ 2125
8064⁄ 725

1008⁄ ]
 
 
 
 
 
 
 
 

     

and         𝑑 =

[
 
 
 
 
 
 
 
 0 0 0 0 0 41

280⁄

0 0 0 0 0 19087
120960⁄

0 0 0 0 0 1139
7560⁄

0 0 0 0 0 137
896⁄

0 0 0 0 0 143
945⁄

0 0 0 0 0 3715
24192⁄ ]

 
 
 
 
 
 
 
 

, 

where in (3.6), 𝐴0 𝑎𝑛𝑑 𝐴1 are 

𝐴0 =

[
 
 
 
 
 
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1]

 
 
 
 
 

,     and           𝐴1 =

[
 
 
 
 
 
0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 0 1]

 
 
 
 
 

. 

Substituting  𝐴0 𝑎𝑛𝑑 𝐴1 in equation (3.6) and solving for R, the values of R are obtained as 0 

and 1. According to Fatunla (1991), the block method equations (2.32) are zero-stable, since 

from (3.6), 𝓅(𝑅) = 0 , satisfy |𝑅𝑗| ≤ 1 , j = 1,...,k, and for those roots with |𝑅𝑗| = 1, the 

multiplicity does not exceed one. 
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3.4  Convergence 

According to the fundamental theorem of Dahlquist (1979), the necessary and sufficient 

conditions for convergence are consistence and zero stability. All the schemes derived satisfy 

the conditions for consistency and stability. Hence, the schemes are convergent. 

 

3.5  Numerical Examples 

Here, we consider the application of the derived schemes to three test problems for the 

efficiency and accuracy of the methods implemented as block methods. 

 

Problem 3.1:  (A constant coefficient nonlinear homogeneous problem) 

𝑦′ + 𝑦2 = 0, 𝑦(0) = 1,   ℎ = 0.1, 

𝐸𝑥𝑎𝑐𝑡 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛:      𝑦(𝑥) =
1

𝑥+1
. 

Problem 3.2:  (A variable coefficient linear homogeneous problem) 

                                                      𝑦′ − 𝑥𝑦 = 0,     𝑦(0) = 1,    ℎ = 0.01, 

𝐴𝑛𝑎𝑙𝑦𝑡𝑖𝑐𝑎𝑙 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛:       𝑦(𝑥) = 𝑒0.5𝑥2
. 

Problem 3.3:  (A constant coefficient nonhomogeneous linear problem) 

𝑦′ + 𝑦 = 𝑥,      𝑦(0) = 0,    ℎ = 0.1, 

𝑇𝑟𝑢𝑒 𝑆𝑜𝑙𝑢𝑡𝑖𝑜𝑛:      𝑦(𝑥) = 𝑥 + 𝑒−𝑥 − 1. 

 

3.6  Tables of Results 

Table 3.3a:  Numerical Results of IHS for Problem 3.1 

X EXACT  ISIHM 2SIHM 3SIHM 

0.0 1.0000000000 1.0000000000 1.0000000000 1.0000000000 

0.1 0.9090909091 0.9090911939 0.9090908517 0.9090909054 

0.2 0.8333333333 0.8333337388 0.8333333466 0.8333333303 

0.3 0.7692307692 0.7692312161 0.7692307624 0.7692307702 

0.4 0.7142857143 0.7142861638 0.7142857276 0.7142857147 

0.5 0.6666666667 0.6666671002 0.6666666715 0.6666666670 

0.6 0.6250000000 0.6250004093 0.6250000113 0.6250000007 
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0.7 0.5882352941 0.5882356762 0.5882353013 0.5882352946 

0.8 0.5555555556 0.5555559101 0.5555555649 0.5555555560 

0.9 0.5263157895 0.5263161175 0.5263157966 0.5263157900 

1.0 0.5000000000 0.500000303 0.5000000077 0.5000000005 

The exact solutions and the computed results from the proposed methods for problem 3.1 

 

Table 3.3b:  Error of IHS for Problem 3.1 

 

X 

 

Error in 1SIHM 

 

Error in 2SIHM 

 

Error in 3SIHM 

 

Error in Areo (2011) 

0.1 2.848E-07 5.740E-08 3.700E-09 2.400E-04 

0.2 4.055E-07 1.330E-08 3.000E-09 5.600E-04 

0.3 4.469E-07 6.800E-09 1.000E-09 7.100E-04 

0.4 4.495E-07 1.330E-08 4.000E-10 8.400E-04 

0.5 4.335E-07 4.800E-09 3.000E-10 9.600E-04 

0.6 4.093E-07 1.130E-08 7.000E-10 1.100E-04 

0.7 3.821E-07 7.200E-09 5.000E-10 1.100E-03 

0.8 3.545E-07 9.300E-09 4.000E-10 1.300E-03 

0.9 3.280E-07 7.100E-09 5.000E-10 1.500E-03 

1.0 3.030E-07 7.700E-09 5.000E-10 1.600E-02 

Comparing the absolute errors in the new methods to errors in Areo (2011) for Problem 3.1 

 

 

 

 

Table 3.4a:  Numerical Results of IHS for Problem 3.2 

X EXACT  ISIHM 2SIHM 3SIHM 
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0.00 1.000000000 1.000000000 1.000000000 1.000000000 

0.01 1.000050001 1.000050001 1.000050001 1.000050001 

0.02 1.000200020 1.000200020 1.000200020 1.000200020 

0.03 1.000450101 1.000450101 1.000450101 1.000450101 

0.04 1.000800320 1.000800320 1.000800320 1.000800320 

0.05 1.001250782 1.001250781 1.001250781 1.001250782 

0.06 1.001801621 1.001801620 1.001801621 1.001801621 

0.07 1.002453004 1.002453003 1.002453003 1.002453004 

0.08 1.003205125 1.003205125 1.003205124 1.003205125 

0.09 1.004058212 1.004058212 1.004058212 1.004058211 

0.10 1.005012521 1.005012521 1.005012520 1.005012520 

0.11 1.006068338 1.006068338 1.006068338 1.006068338 

0.12 1.007225982 1.007225982 1.007225982 1.007225982 

0.13 1.008485802 1.008485802 1.008485802 1.008485802 

0.14 1.009848177 1.009848177 1.009848177 1.009848177 

0.15 1.011313519 1.011313519 1.011313519 1.011313519 

0.16 1.012882271 1.012882270 1.012882270 1.012882271 

0.17 1.014554906 1.014554905 1.014554906 1.014554906 

0.18 1.016331931 1.016331931 1.016331931 1.016331931 

0.19 1.018213886 1.018213885 1.018213885 1.018213885 

0.20 1.020201340 1.020201339 1.020201340 1.020201339 

The exact solutions and the computed results from the proposed methods for problem 3.2 

 

 

Table 3.4b:  Error of IHS for Problem 3.2 

X Error in ISIHM Error in 2SIHM Error in 3SIHM Error in Adeniyi et al 
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(2008) 

 

0.01 0.000000E+00 0.000000E+00 0.000000E+00 9.044090E-4 

0.02 0.000000E+00 0.000000E+00 0.000000E+00 1.607698E-3 

0.03 0.000000E+00 0.000000E+00 0.000000E+00 2.109971E-3 

0.04 0.000000E+00 0.000000E+00 0.000000E+00 2-411305E-3 

0.05 1.000000E-09 1.000000E-09 0.000000E+00 2.511744E-3 

0.06 1.000000E-09 0.000000E+00 0.000000E+00 2-411304E-3 

0.07 9.999999E-10 9.999999E-10 0.000000E+00 2.109970E-3 

0.08 0.000000E+00 1.000000E-09 0.000000E+00 1.607697E-3 

0.09 0.000000E+00 0.000000E+00 9.999999E-10 9.044090E-4 

0.10 0.000000E+00 1.000000E-09 1.000000E-09 0.000000 

0.11 0.000000E+00 0.000000E+00 0.000000E+00 9.317440E-4 

0.12 0.000000E+00 0.000000E+00 0.000000E+00 1.656287E-3 

0.13 0.000000E+00 0.000000E+00 0.000000E+00 2.173737E-3 

0.14 0.000000E+00 0.000000E+00 0.000000E+00 2.484176E-3 

0.15 0.000000E+00 0.000000E+00 0.000000E+00 2.587649E-3 

0.16 1.000000E-09 1.000000E-09 0.000000E+00 2.484171E-3 

0.17 1.000000E-09 0.000000E+00 0.000000E+00 2.173734E-3 

0.18 0.000000E+00 0.000000E+00 0.000000E+00 1.656284E-3 

0.19 1.000000E-09 1.000000E-09 1.000000E-09 9.317430E-4 

0.20 1.000000E-09 0.000000E+00 1.000000E-09 0.000000 

Comparing the absolute errors in the new methods to errors in Adeniyi (2008) for Problem 

3.2 

 

 

 

Table 3.5a:  Numerical Results of IHS for Problem 3.3 
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X EXACT  ISIHM 2SIHM 3SIHM 

0.0 0.000000000000 0.000000000000 0.000000000000 0.000000000000 

0.1 0.004837418036 0.004837430611 0.004837417896 0.004837418037 

0.2 0.018730753080 0.018730775840 0.018730753110 0.018730753080 

0.3 0.040818220680 0.040818251580 0.040818220600 0.040818220680 

0.4 0.070320046040 0.070320083310 0.070320046090 0.070320046040 

0.5 0.106530659700 0.106530701900 0.106530659700 0.106530659700 

0.6 0.148811636100 0.148811681900 0.148811636200 0.148811636100 

0.7 0.196585303800 0.196585352100 0.196585303800 0.196585303800 

0.8 0.249328964100 0.249329014100 0.249328964200 0.249328964100 

0.9 0.306569665970 0.306569710600 0.306569659800 0.306569659700 

1.0 0.367879441200 0.367879492300 0.367879441300 0.367879441100 

Showing the exact solutions and the computed results from the proposed methods for 

problem 3.3 

 

Table 3.5b:  Error of IHS for Problem 3.3 

X Error in ISIHM Error in 2SIHM Error in 3SIHM Error in Areo (2011) 

0.1 1.257E-08 1.400E-10 1.000E-12 0.000 

0.2 2.276E-08 3.000E-11 0.000E+00 0.000 

0.3 3.090E-08 8.000E-11 0.000E+00 6.000E-10 

0.4 3.727E-08 5.000E-11 0.000E+00 2.000E-11 

0.5 4.220E-08 0.000E+00 0.000E+00 7.000E-10 

0.6 4.580E-08 1.000E-10 0.000E+00 1.000E-10 

0.7 4.830E-08 0.000E+00 0.000E+00 8.000E-10 

0.8 5.000E-08 1.000E-10 0.000E+00 2.000E-10 

0.9 4.463E-08 6.170E-09 6.270E-09 9.000E-10 

1.0 5.110E-08 1.000E-10 1.000E-10 4.000E-10 

Comparing the absolute errors in the new methods to errors in Areo (2011) for Problem 3.3 

 

 

4.  Conclusion 
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In this work, the derivation of continuous hybrid schemes for the numerical solution of first 

order IVPs in ODEs have developed through collocation and interpolation technique with 

orthogonal polynomials of weight function 𝑤(𝑥) = 𝑥2 as basis function. The derived 

schemes are implemented on three test problems to test the applicability, efficiency and 

accuracy of the schemes. The schemes, when compared with existing methods, compete 

favourably well and behave like theoretical solution. 
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