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Abstract 

In this article, He’s variational iteration and Homotopy Perturbation methods are modified by adding a 

perturbation term to the resulting system of first integro-differential equation obtained after reducing higher 

order Fredholm-Volterra integro-differential equations. The resulting revealed that both methods, are very 

effective and simple. We also observed that the higher the values of n  (the degree of approximant), the closer 

the approximate solutions obtained to the exact solutions. Numerical examples are given to illustrate the 

applications of the methods.  
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1. Introduction 

Mathematical modeling of real life problems usually results in functional equations, like 

ordinary or partial differential equations, integral and integro-differential equations, 

stochastic equations. Many Mathematical formulation of physical phenomena contain 

integro-differential equations, these equations arise in many fields like Fluid dynamics, 

Biological models and chemical kinetics. Integro-differential equations are usually difficult to 

solve analytically, so it is required to obtain an efficient approximate solution (Sweilam, 

2007). Variational iteration method (He, 1997, 1999, 2007) is a powerful device for solving 

various kinds of equations, linear and nonlinear.  

The method has successfully been applied to many situations. for example, He (2007) used 

the method to solve some integro differential equations where he chose initial approximate 

solution in the form of exact solution with unknown constants.  
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Abbasbandy and Shivanion (2009) used VIM to solve systems of nonlinear Volterra’s 

Integro-differential equations. Biazar et al. (2010) employed VIM to solve linear and 

nonlinear system of IDEs.  

A new perturbation method called Homotopy Perturbation Method (HPM) was proposed by 

He in 1997 and description in 2000, which is, in fact, coupling of the traditional perturbation 

method and homotopy in topology. The method has equally been applied successfully to 

many situations. For example, Mirzaei (2011) employed HPM and VIM to solve Volterra 

integral equations. Biazar and Eslami (2010) applied HPM to solve nonlinear Volterra-

Fredholm integro-differential equations.  

In this paper, we considered the Tau reduction of nth  order Fredholm-Volterra integro-

differential equation into systems of first order Fredholm-Volterra integro differential 

equations. The resulting systems are then perturbed and solved by Variational Iteration and 

Homotopy Perturbation Methods. The basic motivation here is to get a better approximation. 

In case of nonlinear Fredholm-Volterra Integro differential equations; Newton’s linearization 

scheme of appropriate order is used to linearize and hence leads to iterative procedure. 

 

2. Variational Iteration Method 

Variational Iteration Method (VIM) is based on the general Langranges’s multiplier method 

(Inokuti et al., 1978). The main feature of the method is that the solution of a Mathematical 

problem with linearization assumption is used as initial approximation. Then a more highly 

precise approximation at some special point can be obtained.  

To illustrate the basic concepts of VIM, we consider the following nonlinear differential 

equation  

 = ( )Lu Nu g x+  (1) 

 where L  is a linear operator, N  is a nonlinear operator and ( )g x  is an inhomogeneous 

term. According to VIM (He 1999, 2000, 2006), we can construct a correction functional as 

follows  

  1( ) = ( ) ( ) ( ) ( )
x

n n n nu x u x Lu T Nu T g T dT+ + + −  (2.2) 
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  is a general langrangian multiplier (Inokuti et al., 1978) which can be identified optimally 

via Variational theory. Subscript n  denotes the nth -order approximation, nu  is considered as 

a restricted variation (He, 1999, 2000) i.e = 0nu
 

3.   Homotopy Perturbation Method 

Consider the nonlinear algebraic equation  

 ( ) = 0,    f x xR . (3.1) 

The basic idea of the homotopy perturbation method is to construct a homotopy 

( , ) : [0,1]H v p  →R R  which satisfies  

 ( , ) = ( ) (1 )( ( ) ( )) = 0,  ; [0,1]H v p pf v p f v f x v p+ − −  R  (3.2) 

or  

 ( , ) = ( ) ( ) ( ) = 0,  ; [0,1]H v p f v f x pf x v p− +  R
,
 

where p  is an embedding parameter, and x  is an initial approximation of equation (3.1) 

(Usually x  is an initial guess close to  ). 

 

Obviously from equation (3.2), we have  

 ( ,0) = ( ) ( ) = 0, H v f v f x−  (3.3) 

 and  ( ,1) = ( ) = 0, H v f v  (3.4) 

The embedding parameter p  increases from 0 to 1 monotonically as trivial problem 

( ,0) = ( ) ( ) = 0H v f v f x−  is continuously transformed to the original problem 

( ,1) = ( ) = 0H v f v . The HPM uses the embedding parameter p  as a "small parameter” and 

writes the solution of equation (3.2) as a power series of p  i.e. 

 
2

1 2=v x x p x p+ + +  (3.5) 

setting = 1p  results in the approximate solution of equation (3.1)  

 1 2
1

= =lim
p

x x x x
→

+ + +  (3.6) 

where 1 2, , ,x x x  are the coefficients of the power series (3.5). 
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If = ( )v v p  in equation (3.5), then 1= (0), = (0),x v x v  

 
( )

2

1 1
= (0), , = (0),

2! !

n

nx v x v
n

  (3.7) 

and ( ) (0)nv  can be determined from ( )( ), ( ), , ( )nf x f x f x  by equation (3.2) or by the 

equation  

 ( ( )) ( ) ( ) = 0F v p f x pf x− +  

recursively. 

 

4.   Solution Techniques 

Consider the nonlinear Fredholm-Volterra Integro differential equation of the form  

 

2 2

1 2

=0 =1 =1

( ) ( , ) ( ) ( , ) ( ) = ( )
m b x

i i j

i i j
a a

i i j

p y x f x t y t dt k x t y t dt g x + +     (4.1) 

under the mixed conditions  

 
1

=0

( 1) (1) ( ) = ,  = 0,1, , 1
m

j j

ij j ij ij

j

a y b y c y c i i m
−

 − + + − −   (4.2) 

 1 1c−    

where ( )y x  is an unknown function, the functions ( ), ( ), ( , )i ig x p x f x t  and ( , )jk x t  are 

defined on the interval ,a x t b   and 
1 2, , , , ,ij ij ij ia b c     are constants.  

Now the general nth  order Fredholm-Volterra integro differential equation is of the form :  

 

2 2

1 2 1 2

=1 =1

( ) ( ) ( ) = ( ) ( , ) ( ) ( , ) ( ) = ( )
b x

m i j

m i j
a a

i j

p y x p y x p y x p y x f x t y t dt k x t y t dt g x  + + + + +  

  (4.3) 

 ,a x t b   
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under the mixed conditions stated in equation (4.2) using the transformation  

 1 1 2( ) = ( ) ( ) = ( ) = ( )y x y x y x y x y x   

 2 2 3( ) = ( ) ( ) = ( ) = ( )y x y x y x y x y x  →  (4.4) 

                                  

 
1

1( ) = ( ) ( ) = ( ) = ( )m m

m m my x y x y x y x y x−

+
  

equation (4.4) can be written as a system of differential equations as  

 
1

2= ( )
dy

y x
dx

 

 
2

3= ( )
dy

y x
dx

 (4.5) 

  

 

2 2

1 2

=0 =1 =1

( ) = ( ) ( , ) ( ) ( , ) ( ) = ( )
m b x

i i j

i i j
a a

i i j

d
p y x g x f x t y t dt k x t y t dt g x

dx
 − −     

Thus, equation (4.5) is expressible in matrix form as  

 

1 1

2 2

3 3

1 2 3 4 5 1

1 0 0 0 0 0 0

0 1 0 0 0 0 0

= 0 0 1 0 0 0 0

( )m m m

y y

y y

y y

y p p p p p p y f x−

      
      
      
      +
      
      

     − − − − − −      

 (4.6) 

where  

 

2 2

1 1 2

=1 =1

( ) = ( ) ( , ) ( ) ( , ) ( )
b x

i j

i j
a a

i j

f x g x p y f x t y t dt k x t y t dt − − − −    

In view of VIM, a correction functional is of the form  

  , 1 , ,= ( ) ( )
x

j n j n j n jy y y f d   +
 + −  (4.7) 
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where  

 1 2 1 1 2 1= ( )j j j j jy g x p y p y p y p y− − −
 − − − −  

 
2 2

1 2 1

=1 =1

( , ) ( ) ( , ) ( )
b x

i j

i j N
a a

i j

f x t y t dt k x t y t dt T  − − +    (4.8) 

 = 1, 2, ,j m  

jf  is considered as a restricted variation i.e = 0jf , 1  is a constant parameter to be 

determined and ( )NT x  is a chebyshev polynomial of degree (= 1, 2)N  valid in the interval 

1 1x−    given by  

 1( ) = cos( )cosNT x N x−  (4.9) 

which satisfy the recurrence relation given by  

 1( ) = 2 ( ) ( ),    1N N NT x xT x T x N−−   

For nonlinear (FVIDE) (4.1) and (4.2), in order to solve the equations by Tau-variational 

iteration method, equation (4.1) is linearized using Newton’s linearization scheme of the form  

 

2 2

1 2( ) ( )
=0 =1 =1

( ) ( ) ( , ) ( , )
m b b

k j j

k n j n jj ja a
k j jn n

G G
p x y x y F x t dt y K x t

y y
 

    
+  +    

    
     (4.10) 

where  

 
( ) ( ) ( )

1=j j j

n n ny y y+ −  (4.11) 

The basic idea of Tau-HPM is the addition of perturbation terms to equation (4.1) and then 

writing the equation as a system of IDEs using the transformation in (4.4). Thus, we have a 

system of equations of the form  

 
( )

1 1 2( ) = ( )                                       
z

ky x p y t dt +   

( )

2 2 3( ) = ( )
z

ky x p y t dt +   (4.12) 
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  1 2 1 1 2 1( ) = ( ) ( ) ( ) ( ) ( )
z

m m m m m my x p g t p y t p y t p y t p y t dt − − −+ − − − − −  

 

2 2

1 2

=1 =1

( , ) ( ) ( , ) ( ) ( )
x b x w x

i j

j j n
a a

i j

p f w t y t dw p k w t y t dw p H t dt 
  

− +   
   

       

 

 2

=1

( ) = ( ),    
m

n k n k

k

H x T x n + −   (4.13) 

is the perturbation term. Thus, by HPM, equation (4.12) can be written in expansion form and 

coefficients of like power of  ( 0)ip i   can be compared to give the values of the constants 

,i ia s b s   and ic s . The unknown function function ( )y x  can be expressed as summation of 

ia s  i.e. 

 1 1 2

=0

( ) = ( ) = =i

i

y x y x a a a a


+ + +  (4.14) 

using the initial/boundary conditions, the unknown constants can be evaluated, the values of 

which are then substituted back into the approximate solutions earlier obtained. 

 

5. Applications 

We illustrate the ability and reliability of the methods with the following examples. 

Example 1: 

Consider the Volterra-Fredholm integro differential equations (Biazer and Eslami, 2010).  

 
1

2

1 1
( ) ( ) ( ) = ( ) ( 2 )( ( )) ( )

x

y x xy x xy x f x x t y t dt xty t dt
− −

 − + + − +   

where  

 
6 4 3 22 1 23 5

( ) = 2
25 3 15 3

f x x x x x x− + − − +  
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with condition (0) = 1, (0) = 0y y−  and exact solution 2( ) = 1y x x − . 

Now using the transformation in equation (4.4), we have  

 
1 1

1
2

2 2
1 1

00 1
=

( ) ( 2 ) ( ) ( )
x

y y

y yx x f x x t y t dt xty t dt
− −

     
 +    
 − + − +       

 

and  

 
7 5 4 3 2

2, 1 2, 1, 2,

5 2 1 1 2 1 23
( ) =

3 175 15 4 3 2 15
n n n ny x y x x x x x y y x+

 
+ + − + − + − + − 

 
 

 

 
2 2 2 2

1, 1, 1

1
( 1) ( 1) (2 1)

2
n ny x x y x x x− − + + + −  

Example 2: 

 

 
1

2 2

1
( ) ( ) sin ( ) = (1 sin ) 2 ( )x ty x xy x xy x e x x e y t dt−

−
 − + − + − +   

with conditions  

 (0) = (0) = (0) = 1y y y   

Exact solution for the problem is ( ) = xy x e
 

The Newton’s linearization scheme of order three is given as  

 = 0k k k k

k k k k

G G G G
G y y y y

y y y y

   
  +  +  +  + 

     
 

where 1=i i i

k k ky y y+ −  

and  

 
1

2 2

1
= ( ) ( ) sin ( ) (1 sin ) 2 ( )x tG y x xy x xy x e x x e y t dt−

−
 − + − − + − +   
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1 1

2 2 2 2

1 1
( ) ( ) sin ( ) 2 ( ) = (1 sin ) 2 (1 2 )t x ty x xy x xy x yy e y t dt e x x e y y dt− −

− −
   − + − + − + − + −   

 
2 3 4 2

1 2(2 1) (4 3 ) (8 8 1)x x x x x  + − + − + − +  

thus following the procedure and comparing the coefficients as like powers of  ( 0)iP i  , we 

have: 

Coefficients of p :          = 1a  

                                   = 1b  

                                      =1c  

Coefficients of 4p :           2

4 2=a c x  

4 3                                    =b c x  

2 3 3

4 3 1 1        = sin 7.253720816c x c c x x c x yy− +  and  

2 2 4 2 3

1( ) =1 ( ) sin 7.253720816 (1 sin )xy x x x x x x x x c x yy xe x x+ + + + − + + − +

 2 3 4 2 5 3

1 2 37.253720816 (1 2 ) 2 (2 ) (4 3 ) (8 8 )y y x x x x x x x x  + − − + − + − + − +  

 4 4sin 7.253720816x x yy x− +  

Remark: The values of Tau-parameters are determined in each example using the conditions 

given. 
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 Table 1: Results obtained for example 1 and error 

x  Exact Sol  Approx. Sol  Error  

-1.0   0.000000  0.000041   4.00E-6 

-0.8   -0.3600000   -0.3599971   3.00E-6 

-0.6   -0.640000   -0.639902   9.80E-6 

-0.4   -0.840000   -0.839004   9.96E-4 

-0.2   -0.960000   -0.959793   2.07E-4 

0.0   -1.000000   -0.999782   2.18E-4  

0.2   -0.960000   -0.959793   2.07E-4  

0.4   -0.840000   -0.839004   9.96E-4 

0.6   -0.640000   -0.639902   9.80E-5 

0.8   -0.360000   -0.359997   3.00E-6 

1.0   0.000000   0.000004   4.00E-6 
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 Table 2: Results obtained for example 2 and error 

x  Exact  Sol Approx. Sol  Error  

-1.0  0.367879442 0.367873572   5.87E-6 

-0.8  0.449328961  0.449322301   6.66E-6 

-0.6  0.544881166  0.544880516   6.51E-6 

-0.4  0.670320040  0.690318600  1.44E-6 

-0.2  0.818730751  0.818729641   1.11E-6 

0.0  1.000000000  0.999996890   3.12E-6  

0.2  1.221402750  1.221362550   4.02E-5  

0.4  1.491824698  1.491742398   8.23E-5 

0.6  1.822118800  1.822112900   7.51E-5 

0.8  2.225540928 2.225508428   3.25E-5 

1.0  2.718281828  2.718271628  1.02E-5 

 

 

 6.  Conclusion 

In this paper, Tau-VIM and Tau-HPM have been successfully applied to find solutions of 

Fredholm-Volterra integro differential equations. The solutions are expressed as polynomials 

and the errors are also obtained. Both methods performed creditably well for the examples 

considered.The proposed method took advantage of traditional perturbation methods and the 

simplicity, effectiveness and accuracy of the new method is revealed in the results. It is 

observed that the higher the values of n (the degree of approximant), the closer the 

approximate solutions obtained to the exact solutions.  
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