

ILJS-14-043

Convergence Rate Analysis of a Proposed Function Space Algorithm (FSA)

Omolehin¹, J. O., Rauf², K., Mabayoje³, M. A., Arowolo⁴, O. T. and Lukuman⁵, A.

¹Department of Mathematics, Federal University, Lokoja, Kogi State, Nigeria.

²Department of Mathematics, University of Ilorin, Ilorin, Nigeria.

³Department of Computer Science, University of Ilorin, Ilorin, Nigeria.

⁴ Department of Mathematics, Lagos State University, Lagos, Nigeria.

⁵ Federal College of Fisheries and Marine Technology, Lagos State, Nigeria.

Abstract

In this work, the numerical implementation of Function Space Algorithms (FSA) for the solution of quadratic continuous cost functional was considered. It is used to solve Reaction Diffusion Control problems. It considered specifically a parabolic problem characterized by dynamics constraints and the results obtained analyzed. The cumbersome nature of the line search techniques associated with FSA was addressed by time discretization approach. It is shown that the convergence rate of FSA improves as the penalty parameter grows.

Keywords: Optimization, FSA, Penalty parameter, Constraints, Convergence rate, Parameter.

1. Introduction

Optimization can be described as a process or methodology of making a design, system, or decision as functional or effective and fully perfect as possible. In particular, it is the mathematical procedures (for finding the maximum of a function) involved in a particular problem as it was used in quadratic functional. See, [6 &7].

Consider the quadratic functional of the form:

$$F(x) = F_o + < a, x >_H + \frac{1}{2} < x, Ax >_H,$$

where A is an nxn symmetric positive definite matrix operator on the Hilbert space H. α is a vector in H and F_0 is a constant term.

Let us also consider what is termed conjugate descent with *F*. With conjugate descent, it is assumed that a sequence $\{p_i\} = p_0, p_1, ..., p_k, ...$ is available with the members of the sequence conjugate with respect to the positive definite linear operator *A*.

^{*}Corresponding Author: Rauf, K.

E-mail: <u>krauf@unilorin.edu.ng</u>

By conjugate with respect to A, it means that:

$$< p_i, Ap_i >_H = \begin{cases} \neq 0, & if i \neq j \\ = 0, & if i = j \end{cases}$$

In this case, *A* is assumed positive definite so $\langle p_i, Ap_i \rangle_H > 0$. The conventional Conjugate Gradient Method (CGM) was originally designed for the minimization of a quadratic objective functional of the form stated above.

2. Stages Involved in Conjugate Gradient Method

Stage 1: The first element $x_0 \in H$ of the descent sequence is guessed while the remaining members of the sequence are computed with the aid of the following formulae:

Stage 2: $p_0 = -g_0 = -(a + Ax_0)$

 $(p_0 \text{ is the descent direction and } g_0 \text{ is the gradient of } F(x) \text{ when } x = x_0)$

Stage 3: $x_{i+1} = x_i + \alpha_i p_i$, $\alpha_i = \langle g_i, g_i \rangle_H / \langle p_i, Ap_i \rangle_H$

$$g_{i+1} = g_i + a_i A p_i;$$

 α is the step length

$$p_{i+1} = -g_{i+1} + \beta_i p_i; \ \beta_i = \langle g_{i+1}, g_{i+1} \rangle_H \ / \langle g_i, g_i \rangle_H$$

Stage 4: if g_i for some *i* terminate the sequence else, set i = i + 1 and go to stage 3.

The CGM has a well worked out theory with an elegant convergence profile. It has been proved that the algorithm converges, at most, in n iterations in a well posed problem and the convergence rate is given as:

$$E(x_n) = \left\{ \frac{1 - \frac{m}{M}}{1 + \frac{m}{M}} \right\}^{2n} E(x_0)$$

where m and M are smallest and spectrums of matrix A respectively. That is, for an n dimensional problem, the algorithm will converge in at most n iterations. The CGM algorithm cannot handle quadratic cost functional of the form:

Minimise

$$\int_{0}^{T} \left\{ av^{2}(t) + bu^{2}(t) \right\} dt$$

Omolehin et al.

subject to

$$\dot{v} = cv(t) + du(t) \ .$$

For the reason that operator A was not known explicitly in continuous cost functional, researchers came up with different approximation – based techniques that could estimate α_i that minimizes $F(x_i + \alpha p_i)$. ⁽¹⁾ In this fashion, there came into being various cumbersome techniques. The most popular among such methods is the conventional function space (CFS) algorithm, ⁽¹⁾ to minimize the continuous cost functional of the form:

Problem (1)

Minimise $\int_{0}^{\delta} \{x^{T}(t)Qx(t) + u^{T}(t)Pu(t)\}dt$,

subject to the dynamic constraints

 $\dot{x}(t) = C x (t) + Du (t),$

 $0 < t < \delta$ (δ given); where x(t) denotes the transpose of x(t), $\dot{x}(t)$ stands for the first derivative of x(t) with respect to t. x(t) is the n x 1 state vector, u(t) is the q x 1 control vector, C and D are n x q constant matrices respectively, while Q and R are symmetric, positive definite, constant square matrices of dimensions n and q, respectively.

The control operator A is associated with problem (1) satisfying

$$< A, AZ >_{K} = J(x, u, \mu) = \int_{0}^{\delta} \{x^{T}(t)Qx(t) + u(t)^{T}Pu(t)\}$$

$$+\mu || \dot{x}(t) - Cx(t) - Du(t) ||^{2} dt \quad (\mu > 0)$$

by transforming problem (1) into an unconstrained optimal control problem. Where μ is the penalty constant *K* is given by $K = H_1[0, \delta] \ge L^{q_2}[0, \delta]$, and $H_1[0, \delta]$, denotes sobolev space of the absolutely continuous functions x(.), square integrable over the closed interval $[0, \delta]$.

 $L_2^q[0, \delta]$ stands for the Hilbert space consisting of the equivalence classes of square integrable functions from $[0, \delta]$ into Rq, with norm denoted by $||.||_E$ and defined by

 $||u|| = \int_0^{\delta} \{||u||^2\}^{\frac{1}{2}} dt$ and with scalar product conventionally denoted by < .,.> and defined by $\langle u_1, u_2 \rangle = \int_0^{\delta} \langle u_1, u_2 \rangle_E$ dt where $||.||_E$ and $\langle .,. \rangle_E$ denote the norm and scalar product in Euclidean q – dimensional space.

Function Space Algorithm

The Function space algorithm is constructed to solve the optimal control problem (1):

$$Min J (x, u, \mu) = Min \int_0^R \{x^T(t) Px (t) + u^T(t) Qu(t)\} dt$$
$$+\mu \int_0^T ||(\dot{x}(t) - Cx(t) - Du(t)||^2 dt$$

where C and D are constant matrices of appropriate dimensions. The steps involve in FSA is as follows:

<u>Step 1</u>

choose the initial values $\dot{x}_0(t)$, $u_0(t)$,

where 0 < t < T, T is known and compute, $x_0(t) = \int_0^T \dot{x}_0(t) dt$

<u>Step 2</u>

Initialize the Counter: i = 0, and compute $[\nabla_x^J]_{i}$, $[\nabla_U^J]_{i}$ using formulae for

$$\begin{aligned} \nabla J &= \begin{bmatrix} \nabla_X^J \\ \nabla_U^J \end{bmatrix} \\ \begin{bmatrix} \nabla_X^J \end{bmatrix} &= 2\mu \left(\dot{x} \left(t \right) - f \left(x(t), u(t), t \right) \right] - \int_T^t \left(\frac{\partial T}{\partial x} \right)^T - \left(\frac{\partial f}{\partial x} \right)^T \left[2\mu (\dot{x}(s) - f(x(s), u(s), s) \right] \right\} ds \\ 0 &\le t \le T \\ \begin{bmatrix} \nabla_u^J \end{bmatrix} &= \left(\frac{\partial I}{\partial u} \right) - \left(\frac{\partial F}{\partial v} \right)^T \left[2\mu (\dot{x} \left(t \right) - f(x \left(t \right), u(t), t \right) \right], \quad 0 < t < T \end{aligned}$$

Step 3

Compute the current descent direction.

$$\dot{s}_{x,i}(t) = \begin{cases} \{-[\nabla]o, \text{ for } i=o \\ -[\nabla^{J}_{X}]i + \beta_{i-1}S_{X,i-1}(t), \text{ for } i>0, \text{where } t \in [o,T] \end{cases}$$
$$s_{x,i}(t) = \int_{o}^{t} \dot{s}_{x,i}(t) dt$$

$$\dot{s}_{u,i}(t) = \begin{cases} \left\{ - \left[\nabla_U^J \right]_0, \ for \ i = o \\ - \left[\nabla_U^J \right]_i + \beta_{i-1} S_{i-1}(t) \ for \ i > 0 \end{cases} \end{cases}$$

where $t \in [0, T]$, and

$$\beta_{i-1} = \frac{\int_{o}^{T} || \left[\nabla_{x}^{J}\right]_{i} ||^{2} dt + \int_{o}^{T} || \left[\nabla_{u}^{J}\right]_{i} ||^{2} dt}{\int_{o}^{T} || \left[\nabla_{x}^{J}\right]_{i-1} ||^{2} dt + \int_{o}^{T} || \left[\nabla_{u}^{J}\right]_{i-1} ||^{2} dt}$$

STEP 4

Find P^{*}_i

such that $J(x_i + P_i^* s_{x,i}, u_i + P_i^* s_{u,i}, \mu,) \le J(x_i + p_i s_{x,i} u_i + p_i s_{u,i}, \mu,), p \ge 0$

<u>STEP 5</u>

Test for the stopping criterion of the algorithm by verifying if

where ε is a chosen predetermined tolerance to indicate that the desired accuracy required for the computational programming method.

<u>STEP 6</u>

Set	$x_{i+1}(t) = x_i(t) + p *_i s(t)$	0 <u><t< u="">≤ T</t<></u>
	$u_{i+1}(t) = u_i(t) + p *_i s(t)$	0 <u>≤t≤</u> T

<u>STEP 7</u>

Set i = i + 1 and go ostep 2

To the best knowledge of the authors, no numerical work has been carried out prior to the time this work was concluded.

3. **Results and Discussion**

Numerical Results on FSA

In carrying out this numerical investigation using FSA algorithm, the convergence rate of various diffusion equation problems which are only dimensionally different from one another were vividly studied. Thus, the dimensionality of the resulting diffusion control problem is \mathbb{R}^{12} and \mathbb{R}^{11} it means that is $\alpha, u \in \mathbb{R}^{12}$ and $\alpha, u \in \mathbb{R}^{11}$, respectively. Thus, in \mathbb{R}^{12} and \mathbb{R}^{11} will have problems (1) and (2) respectively as stated below:

PROBLEM(1)

Minimize $\int_{0}^{1} \{\alpha_{1}^{2}(t) + \alpha_{2}^{2}(t) + ... + \alpha_{12}^{2}(t) + u_{1}^{2}(t) + u_{2}^{2}(t) + ... + u_{12}^{2}(t)\} dt$ Subject to

$$\alpha_1 (t) = -\pi^2 \alpha_1 (t) + u_1 (t)$$

 $\alpha_2 (t) = -4\pi^2 \alpha_2 (t) + u_2 (t)$

 $\alpha_{12} (t) = -144\pi^2 \alpha_{12} (t) + u_{12} (t)$

The problem is transformed into an unconstrained problem with the introduction of a penalty constant μ and it becomes:

$$\begin{aligned} &\text{Min J } (\alpha, u, \mu) = \text{Min } \int_{0}^{1} \{\alpha_{1}^{2}(t) + \alpha_{2}^{2}(t) + ... + \alpha_{12}^{2}(t) + u_{1}^{2}(t) + u_{2}^{2}(t) + ... + u_{12}^{2}(t)\} dt \\ &+ \mu \{\int_{0}^{1} \{ \left| |\alpha_{1}(t) + \pi^{2}\alpha_{1}(t) - u_{1}(t)| \right|^{2} + \left| |\alpha_{2}(t) + 4\pi^{2}\alpha_{2}(t) - u_{2}(t)| \right|^{2} + \left| |\alpha_{3}(t) + 9\pi^{2}\alpha_{3}(t) - u_{3}(t)| \right|^{2} + ... + \left| |\alpha_{12}(t) + 144\pi^{2}\alpha_{12}(t) - u_{12}(t)| \right|^{2} \} dt \end{aligned}$$

Also, problem in \mathbb{R}^{11} i.e. when α , $u \in \mathbb{R}^{11}$, the following equivalent problem formulation was obtained:

PROBLEM (2)

The problem is now transformed into an unconstrained problem with the introduction of a penalty constant μ .

$$\begin{aligned} \operatorname{Min J}(\alpha, u, \mu) &= \operatorname{Min } \int_{0}^{1} \{ \alpha_{1}^{2}(t) + \alpha_{2}^{2}(t) + \dots + \alpha_{11}^{2}(t)(\alpha, u) \\ &+ u_{1}(t) + u_{2}^{2}(t) + \dots + u_{11}^{2}(t) \} dt + \mu \{ \int_{0}^{1} \{ \left| |\alpha_{1}(t) + \pi^{2}\alpha_{1}(t) - u_{1}(t) \right| \right|^{2} + \left| |\alpha_{2}(t) + 4\pi^{2}\alpha_{2}(t) - u_{2}(t) \right| \Big|^{2} + \left| |\alpha_{3}(t) + 9\pi^{2}\alpha_{3}(t) - u_{3}(t) \right| \Big|^{2} + \dots + \left| |\alpha_{11}(t) + 121\pi^{2}\alpha_{11}(t) - u_{11}(t) \right| \Big|^{2} \} dt. \end{aligned}$$

The problems in other dimensions can easily be formulated in similar manner. Meanwhile, the convergence rate for various values of penalty constants in \mathbb{R}^{12} is shown by Tables (1.1) -(1.6).

Table-1. FSA Algorithm in \mathbb{R}^{12}

<u>Table (1.1): $\mu = 10$ </u>

Time (t)Iteration Num			l	U 1		U 2	I	13		U 4	U 5	
U 6		U 7										
0.2	4		0.99	899	.99229)	0.9816	0.9677	0.	95179	0.93507	0.9192
0.4	9		1		0		30	77	9		1	81
0.6	9		0.99 1	736	0.9865 62	5	0.9691 75	0.9461 2	0. 3	91868	0.88851 6	0.8576 44
0.8	8	0.99646 4		0.9835 78		0.9625 85	0.9342 12	0. 5	89947	0.85968 0	0.8164 28	
		0.99607 3		607	0.9824 62		0.9600 30	0.9291 57	0.89037 9		0.84438 1	0.7920 0
u 8			U 9		U 10		u	1		U 12	Objective	
Function	n											
0.906385	5	0.898	730	0.89	8913	0.	.909716	0.934522	2	14.064	660	
0.828453	3	0.803	700	0.78	6510	0.	780373	0.789148	3	11.817	70	
0.771602	2	0.727	384	0.68	6244	0.	650937	0.624517	0.624517		700	
0.734227	7	0.672	205	0.60	7229	0.	540747	0.474358 13		13.855	20	

<u>Table (1.2): $\mu = 20$ </u>

Time (t)Iteration	Num	u	1		U 2	U 3			U 4	U 5
U 6	U 7										
0.2	5	0.99	9893	0.9922	2	0.9815	0.9677	0.	.95174	0.93501	0.9192
0.4	8	3		32		72	19	2		7	13
0.6	9) 0.99731 5		0.9865 16		0.9691 29	0.9460 74	0. 6	.91863	0.88847 1	0.8575 98
0.8	10	10 0.996 7		0.9835 41		0.9625 49	0.9341 75	0. 8	.89943	0.85964 4	0.8163 91
		0.990 4		04 0.9824 33		0.9600 01	0.9291 0.89035 28 0		.89035	0.84435 2	0.7919 71
U 8		U 9		U 10		u 1	1		U 12	Objective	
Function	n										
0.90630	6 0.898689		0.89	8843	0.	909705	0.934476		14.063	360	
0.82840	6 0.803654		0.78	6463	0.	780326	0.789102		11.180	790	
0.77156	5 0.727	7347	0.68	6207	0.	650901	0.624480		11.099970		
0.73419	8 0.672	2176	0.60	7200	0.	540718	0.474329		13.854	660	

<u>Table (1.3): $\mu = 30$ </u>

Time(t) I	Iteration Nu	ım		u 1		U 2	U 3		U 4	U 5
U 6	u 7									
0.2	4	0.9	989	0.992	22	0.98155	0.96769	0.95172	0.9349	0.9192
0.4	9	14		12		2	9	2	90	00
0.6	10	0.9 99	9972	0.9865 00		0.96911 3	0.94605 8	0.91862 0	0.8884 55	0.8575 82
0.8	10	0.9964 15		0.9835 29		0.96253 6	0.93416 3	0.89942 6	0.8596 32	0.8163 78
		0.9 34	960	0.9824 23		0.95999 1	0.92911 9	0.89035 0	0.8443 42	0.7919 61
U 8	u	9		U 10		u 1	1	U 12	Objective	
Function	l									
0.906321	0.89671	0.89671 0.898		80	0.9	009671	0.934411	14.0628	60	
0.828391	0.80363	803639 0.786		448	0.7	780311	0.789086	11.1804	60	
0.771553	0.72733	6	0.686	194	0.6	50888	0.62448	11.0997	30	
0.734188	0.67216	6	0.607	190	90 0.540707		0.474318	13.854470		

Table (1.4): $\mu = 40$

Time(t)	Iter	ation Nu	m		u 1		u	2	u	u3 U4		U 5
U 6		U 7										
0.2	10		0.	9989	0.992	22	0.98154		0.9676	0.95170	0.93497	0.9191
0.4	10)	04	1	01		0		86	6	8	83
0.6	10 0.9972 91		9972 I	0.9864 92		0.96910 5		0.9460 50	0.91861 0.88844 2 7		0.8575 74	
0.8	9 0.9964		9964	0.9835		0.96253		0.9341	0.89941	0.85962	0.8163	
	09)	23		0		57	9	6	72	
	0.99		9960	0.9824		0.95998	;	0.9291	0.89033	0.84433	0.7919	
			29)	18		6		14	5	7	56
U 8		u 9)		U 10		u 11			u 12 (Objective	1
Functio	Function											
0.90630	9 0.898689 0.89		0.898′	797	0.9	09663	0	.934455	14.0676	80		
0.82839	3 0.803631 0.780		0.7864	440	0.7	80303	0	.789079	11.1803	00		
0.77154	7	0.72733	0	0.686	188	0.6	50882	0	.624461	11.0996	10	
0.73418	3	0.67216	1	0.607	185	0.5	40703	0	.474313	13.8543	8	

<u>Table (1.5): $\mu = 50$</u>												
Time(t)	Iteration Nu	m	u 1	U 2	I	U 3	U 4	U 5				
U 6	U 7											
0.2	10	0.9988	0.9921	0.98153	0.9676	0.95170	0.93497	0.9191				
0.4	9	90	96	5	8	0	2	77				
0.6	9	9 0.9972		0.96910 0	0.9460 45	0.91860 8	0.88844 2	0.8575 70				
0.8	9	0.9964	0.9835	5 0.96252	0.9341	0.89941	0.85962	0.8163				
		05	19	6	53	6	2	69				
		0.9960	0.9824	0.95998	0.9291	0.89033	0.84433 4	0.7919 53				
		02	10	5	11	5	•	55				
U 8	u	9	U 10	u 1	1	U 12	Objective					
Functio	n											
0.90630	3 0.898641 0.89		791 (0.909658	0.934450	14.0625	70					
0.82837	9 0.803626 0.786		435 (0.780298	0.789074	11.1802	00					
0.77154	3 0.72732	6 0.686	184 (0.650878	0.624455	11.0995	40					
0.73418	0 0.672158 0.60		183 (0.540700	0.474311	13.854330						

<u>Table (1.6): $\mu = 60$ </u>

Time(t)	Itera	ation Num	Time(t) Iteration Num				U 2		U 3	6		U 4	U 5
U 6		U 7											
0.2	10		0.9	9988	0.99	21	0.9815	3	0.9676	0.9516		0.93496	0.91917
0.4	10))		12		1		70	70)	5
0.6	9	9 0.9972 84		0.9864 84		0.96909 7		0.9460 42	0.9186 05		0.88843 9	0.85756 6	
0.8	10		0.9 03	9964	0.9835 17		0.96252 4		0.9341 51	0.8994 13		0.85962 0	0.81636 6
	0.9902 4		9902	0.9824 14		0.95998 1		0.9291 09	0.8903 31		0.84433 2	0.79195 1	
U8		U 9			u 10 u 11					U 12	bjective		
Function	on												
0.90629	99 0.888637 0.8987		0.8987	87	0.90)9654	0.	.934446	14.062	48	0		
0.8283	76 0.803623 0.7864		0.7864	32	0.78	30295	0.	789070	11.18013		0		
0.77154	41	0.727324	L (0.6861	82	0.65	50876	0.	.624455	11.099480		0	
0.73417	178 0.672176 0.6071		80	0.54	10698	0.	0.474309 13.8542		29	0			

From obtained results, it is easily shown that the convergence rate of proposed method improves as the penalty parameter grows without bound. It is observed that the values of the calculated objective function keep on decreasing as the penalty parameter μ grows. Part of future research in this work is to determine the optimal value for μ .

4. Conclusion

It is clear that the conventional function space algorithms for solving minimization of penalized cost functional for optimal control problem, characterized by linear system integral quadratic cost due to Di pillo et al. [1] though falling within the framework of conjugate gradient method algorithm, is difficult to apply computationally. For further work, see [2-5 & 8].

The advantage of this method is that, it can handle continuous quadratic functional which cannot be tacked by conventional conjugate method algorithm. The area of future research is to find a way of circumventing the line search techniques associated with FSA.

References

- Di Pillo, G and Grippo, L. (1972): A Computing Algorithm for the Epsilon Method to Identification and Optimal Control Problems, *Ricerche di Automatica*, **3**, 54-77.
- Ibiejugba, M.A. (1985): *Computational methods in optimization*, Ph.D. Thesis, University of Leeds, Leeds, U.K.
- Omolehin, J. O. (1986): *Experiment with extended conjugate gradient method algorithm*, Unpublished M. Sc. Thesis, University of Ilorin, Ilorin., Nigeria.
- Omolehin, J. O. (1991): *On the control of reaction diffusion equation*, Unpublished Ph.D. Thesis, University of Ilorin, Ilorin, Nigeria.
- Omolehin, J. O. (2005): Eigen value perturbation for gradient method, *Analele stiintifice ale Universitata "Al. I. Cuza"* **1**, 127-132.

Omolehin, J. O., Abdullahi, I. and Rauf, K. (2013): New Computational Results on some Methods with Fortran in Optimization, *International Journal of Mathematics and Computer Science*, **8**(2), 37-53.

Omolehin, J. O., Abdullahi, I., Rauf, K. and Dickmu, P. L. (2014): Fibonacci Scheme On Gradient Method For Some Control Problems, *International Journal of Mathematics and Computer Science*, **9**(1), 1-10.

Russel, D. L. (1970): Optimization theory, W.A. Benjamin, Inc. New York.

APPENDIX

С OPEN 12, "JULU", ATI="AP" С THIS PROGRAME IS USED TO MINIMIZE AN OBJECTIVE FUNCTIONAL THROUGH THE METHOD OF FUNCTION SPACE ALGORITHMDIMENSION X(12),U(12),PAE(12),LAMDA(12),GX(12),GU(12) DIMENSION UPGX(12), UPGU(12),SX(12),SU(12),DOTSX(12) DIMENSION UPDOTSX(12), PSU(12), UPSX(12), DOTX(12), UPDOTX(12) DIMENSION UPX(12), UPU(12), BITA (12) TIME = -0.2ITERA=0 DO 3 I=1, 12 X(I) = 0.0U(I)=0.0 PAE(I)=0.0 LAMDA(I)=0.0G X(I)=0.0 GU(I)=0.0 UPGX(I)=0.0UPGU(I)=0.0BITA (I)=0.0 UPLAMDA (I)=0.0 SX(I) = 0.0SU(I)=0.0 DOT SX(I)=0.0 UPDOTSX(I)=0.0 PSU(I)=0.0 UPX(I)=0.0 UPU(I)=0.0 UPSX(I)=0.0DOTX(I)=0.0UPDOTX(I)=0.0 CONTINUE AM=0.0 70 AM=AM+10.0 WRITE (12, 301)AM 301 FORMAT(70X,"AM=",F15.6/////) IF(AM.GT.(10.0))GOTO 60

TIME=0. TIME=TIME+0.2

IF(TIME.GT.1)GOTO 70 DO 4 I=1, 2 DOTX(I)=1.0X(1)=TIMEBITA(I)=0.0 U(I)=1.0 CONTINUE ITERA=0 BITA(I)=0.0ITERA=ITERA+1 SUMU=0.0 SUMX=0.0 С THE CONSTRUCTION OF THE GRADIENT **FOLLOWS** DO 5 I=1, 2 PAE(I)=(I**2)*(3.142**2) DI=2*AM*(PAE(I)*X(I)-U(I))D2=2*X(I)*TIME-2*X(I)D3=PAE(I)*2*AM*(PAE(I)*X(I)-U(I)*(TIME)-1) GX(I) = D1 - (D2 + D3)GU(I)=2*U(I)-2*AM*(PAE(I)*X(I)-U(I))CONTINUE DO 13 I=1.2 DOTSX(I) = -GX(I) + BITA(I) * SX(I)SX(I)=DOTSX(I)*TIME SU(I) = -GU(I) + BITA(I) * SU(I)CONTINUE RNI = (X(I)*SX(I)) + (X(2)*SX(2)) + (X(3)*SX(3)) + (X(4)*SX(4)) + (X(5)*SX(5)) + (X(6)) + (*SX(6)) RN2 = (X(7) * SX(7)) + (X(8) * SX(8)) + (X(9) * SX(9)) + (X(10) * SX(10)) + (X(11) * SX(11))+(X(12)*SX(12))RN3=(U(1)*SU(1))+(U(2)*SU(2))+(U(3)*SU(3))+(U(4)*SU(4))+(U(5)*SU(5))+(U(4)*SU(4))+(U(5)*SU(5))+(U(4)*SU(4))+(U(5)*SU(5))+(U(4)*SU(4))+(U(5)*SU(5))+(U(4)*SU(4))+(U(5)*SU(5))+(U(4)*SU(5))+(U(5)*SU(5))+(6)*SU(6)) RN4=(U(7)*SU(7))+(U(8)*SU(8))+(U(9)*SU(9))+(U(10)*SU(10))+(U(11)*SU(11))RN5=(SX(1)+(PAE(1)*SX(1))-+(U(12)*SU(12))SU(1))*(DOTX(1)+(PAE(1)*X(1))-U(1)) RN6=(SX(2)+(PAE(2)*SX(2))-SU(2))*(DOTX(2)+(PAE(2)*X(2))-U(2)) RN7=(SX(3)+(PAE(3)*SX(3))-SU(3))*(DOTX(3)+(PAE(3)*X(3))-U(3)) RN8 = (SX(4) + (PAE(4) * SX(4)) -SU(4) (DOTX(4)+(PAE(4)*X(4))-U(4))

RN9=(SX(5)+(PAE(5)*SX(5))-SU(5))*(DOTX(5)+(PAE(5)*X(5))-U(5)) RN10=(SX(6)+(PAE(6)*SX(6))-SU(6))*(DOTX(6)+(PAE(6)*X(6))-U(6)) RN11=(SX(7)+(PAE(7)*SX(7))-SU(7))*(DOTX(7)+(PAE(7)*X(7))-U(7)) RN12=(SX(8)+(PAE(8)*SX(8))-SU(8))*(DOTX(8)+(PAE(8)*X(8))-U(8)) RN13=(SX(9)+(PAE(9)*SX(9))-SU(9))*(DOTX(9)+(PAE(9)*X(9))-U(9)) RN14=(SX(10)+(PAE(10)*SX(10))-SU(10))*(DOTX(10)+(PAE(10)*X(10))-U(10)) RN15=(SX(11)+(PAE(11)*SX(11))-SU(11))*(DOTX(11)+(PAE(11)*X(11))-U(11)) RN16=(SX(12)+(PAE(12)*SX(12))-SU(12))*(DOTX(12)+(PAE(12)*X(12))-U(12)) $RD1 = (SX(1)^{**2}) + (SX(2)^{**2}) +$ $(SX(3)^{**2})+$ $(SX(4)^{**2})+$ $(SX(5)^{**2})+$ (SX(6)**2) $RD2 = (SX(7)^{**2}) + (SX(8)^{**2}) +$ $(SX(9)^{**2})+$ $(SX(10)^{**2}) +$ $(SX(11)^{**2})+$ (SX(12)**2) $RD3 = (SU(1)^{**2}) + (SU(2)^{**2}) +$ $(SU(3)^{**2})+$ $(SU(4)^{**2})+$ $(SU(5)^{**2})+$ (SU(6)**2) $RD4 = (SU(7)^{*}2) + (SU(8)^{*}2) + (SU(9)^{*}2) + (SU(10)^{*}2) + (SU(11)^{*}2) + (SU(11)^{$ (SU(12)**2) RD5 = (SX(1) + (PAE(1)*SX(1)) - (SU(1)**2))+(PAE(2)*SX(2))-(SU RD6=(SX(2)) $(2)^{**2}))$ RD7 = (SX(3))+(PAE(3)*SX(3))-(SU (3)**2)) RD8 = (SX(4) + (PAE(4) * SX(4)) - (SU(4) * 2))RD9=(SX(5) +(PAE(5)*SX(5))-(SU (5)**2)) RD10=(SX(6) + (PAE(6)*SX(6)) - (SU(6)*2))+(PAE(7)*SX(7))-(SU RD11=(SX(7))(7)**2))RD12=(SX(8))+(PAE(8)*SX(8))-(SU (8)**2)) RD13=(SX(9) +(PAE(9)*SX(9))-(SU (9)**2)) RD14=(SX(10) + (PAE(10)*SX(10)) - (SU(10)**2))RD15=(SX(11) +(PAE(11)*SX(11))-(SU (11)**2)) RD16=(SX(12) +(PAE(12)*SX(12))-(SU (12)**2)) RNT=(2*(RD1+RD2+ RD3+ RD4)+2*AM*(RN5+ RN6+ RN7+ RN8+ RN9+ RN10+ RN11+ RN12+ RN13+ RN14+ RN15+ RN16)) RMT = (2*(RD1+RD2+RD3+ RD4)+2*AM*(RD5+ RD6+ RD7+ RD8+ RD9+ RD10+ RD11+ RD12+ RD13+ RD14+ RD15+ RD16)) ROW=RNT/RMT IF (ITERA.GT.50)GOTO 19 C CS MEANS CONSTRAINT SATISFACTION CSAT MEANS THE TOTAL CONSTRAINT SATISFACTION С CSAT=0.0 DO 6 I=1, 12 $CS(I) = (I^{**I})^{*}(3.142^{**2})^{*}(X(I) - U(I))$

CSAT=CSAT+(CS(I)**2)

6 CONTINUE

C WE DECIDED TO LEAVE ALL THE WRITE STATEMENTS OUT SINCE ANY VARIABLE NEEDED CAN EASILY BE CALCULATED DO 9 I=1, 12

BITA=((UPGX(I)**2)+(UPGU(I)**2))/((GX(I)**2)+(GU(I)**2)) UPX(I)=X(I)+ROW*SX(I) UPU(I)=U(I)+ROW*SU(I)

- 9 CONTINUE SNURM1=0.0 SNURM2=0.0 DO 7 I=1, 12 SNURM1=SNURM1+(GX(I)**2) SNURM2=SNURM2+(GU(I)**2)
- 7 CONTINUE SNOM1=SQRT (SNURM1) SNOM2=SQRT (SNURM2) DO 10 I=1, 12 X(I)=UPX(I) U(I)=UPU(I) SUMU=SUMU+(U(I)*U(I)) STOTAL=SUMU+SUMX OB=STOTAL
- 10 CONTINUE WRITE(12,112)OB,SNOMI,SNOM2
- 112 FORMAT(//40X,''OB='',F15.6/40X,''SNOM1='',F15.6/10X,''SNOM2='',F15.6) IF(SNOM1.LE.(0.01).AND. SNOM2.LE.(0.01))GOTO 19
- GOTO 20
- 60 STOP END