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Abstract 

The problem of unsteady Magnetohydrodynamic (MHD) radiating fluid flow through a porous medium bounded 

by an oscillating porous plate with slip flow condition with heat generation was investigated. Boundary layer 

equations were derived and the resulting approximate non-linear ordinary differential equations were solved 

analytically using perturbation technique.  The numerical results reveal that the radiation induces a rise in 

velocity with a decrease in temperature. Also the heat generation increases at the points – 0.13, 0.5 and 0.13  and 

decreases at the point  -0.1 and 0.1 together with an increase in temperature. Some of the physical parameters 

like Grashof number, radiation, Prandlt number and chemical reaction has an influence on velocity, temperature 

and Concentration  
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1. Introduction 

The effect of thermal radiation is significant in some industrial application such as glass 

production, furnace design and in space technology application such as cosmical flight 

aerodynamics, rocket, propulsion system, plasma physics which operate at high temperature. 

Consequently, Chamkha (2003) studied the MHD flow of uniformly stretched vertical 

permeable surface in the presence of heat generation/ absorption and a chemical reaction 

numerically. Chamkha, et al. (2001) studied the radiation effect on the free convection flow 

past a semi-infinite vertical plate with mass transfer.   

 

Hady et al. (2006) researched on the problem of free convection flow along a vertical wavy 

surface embedded in electrically conducting fluid saturated porous media in the presence of 

internal heat generation or absorption effect. Gnaneshwara and Bhaskar (2009) investigated 

the radiation and mass transfer effects on an unsteady MHD free convection flow past a  
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heated vertical porous plate with viscous dissipation. 

 

Kim and Fedorov (2004) studied Transient mixed radiative convection flow of a micro-polar 

fluid past a moving semi-infinite vertical porous plate while Vajravelu and Hadjinicolaou 

(1993) studied the heat transfer characteristics in the laminar boundary layer of a viscous 

fluid over a stretching sheet with viscous dissipation or frictional heating and internal heat 

generation. The study of heat generation or absorption effects in moving fluids is important in 

view of several physical problems such as fluids undergoing exothermic, endothermic or 

transfer chemical reactions.   

 

Hossain et al. (2004) investigated the problem of natural convection flowing along a vertical 

wavy surface with uniform surface temperature in the presence of heat generation/ 

absorption. In this direction, Alam et al. (2006) studied the problem of free convection heat 

and mass transfer flow past an inclined semi-infinite heated surface of an electrically 

conducting and steady viscous incompressible fluid in the presence of a magnetic field and 

heat generation. Abdus and Mohammed (2006) considered the thermal radiation interaction 

with unsteady MHD flow past a vertical porous plate immersed in a porous medium. The 

importance of radiation in the fluid led Muthucumaraswamy and Chandrakala (2006) to study 

radiative heat and mass transfer effect on moving isothermal vertical plate in the presence of 

chemical reaction. Muthucumaraswamy and Senthih (2004) considered a Heat and Mass 

transfer effect on moving vertical plate in the presence of thermal radiation. 

        

In many chemical engineering processes, the chemical reaction do occur between a mass and 

fluid in which plate is moving. These processes take place in numerous industrial applications 

such as polymer production, manufacturing of ceramics or glassware and food processing. In 

the light of the fact that, the combination of heat and mass transfer problems with chemical 

reaction are of importance in many processes, and have, therefore, received a considerable 

amount of attention in recent years. In processes such as drying, evaporation at the surface of 

a water body, energy transfer in a wet cooling tower and the flow in a desert cooler, heat and 

mass transfer occur simultaneously.  

 

Possible applications of this type of flow can be found in many industries. For example, in 

the power industry, among the methods of generating electricity is one in which electrical 

energy is extracted directly from a moving conducting fluid. Kumar and Gupta (2008) 
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investigated the effect of variable permeability on unsteady two-dimensional free convective 

flow through a porous bounded by a vertical porous surface.  Sharma et al. (2011) have 

studied the Influence of chemical reaction on unsteady MHD free convective flow and mass 

transfer through viscous incompressible fluid past a heated vertical plate immersed in porous 

medium in the presence of heat source. Muthucumaraswamy and Ganesan (2001) studied the 

effect of the chemical reaction and injection on flow characteristics in an unsteady upward 

motion of an isothermal plate.  Mohammed (2009) studied double-diffusive convection-

radiation interaction on unsteady MHD flow over a vertical moving porous plate with heat 

generation and soret effects.  

 

Soundalgakar (1972) have studied the viscous dissipative effects on unsteady free convective 

flow past a vertical porous plate with constant suction. Soundalgakar et al. (1979) considered 

the effect of mass transfer and free convection effect on MHD stokes problem for a vertical 

plate. Jimoh (2012) studied heat and mass transfer of magneto hydrodynamic (MHD) and 

dissipative fluid flow pass a moving vertical porous plate with variable suction. 

 

Despite all these studies, the unsteady MHD for a heat generating fluid with thermal radiation 

and chemical reaction has little attention. Hence, the main objective of the present 

investigation is to study the effect of a second-order homogeneous chemical reaction, thermal 

radiation, heat source and dissipation on the unsteady MHD fluid flow past a vertical porous 

plate with variable suction. It is assumed that the plate is embedded in a uniform porous 

medium and moves with a constant velocity in the flow direction in the presence of a 

transverse magnetic field with oscillating free stream.    

 

2. Materials and Methods 

Mathematical Analysis 

Consider unsteady two-dimensional hydromagnetic laminar, incompressible, viscous, 

electrically conducting and heat source  past a semi-infinite  vertical moving heated porous 

plate embedded in a porous medium and subjected to a uniform transverse magnetic field in 

the presence of thermal diffusion, chemical reaction and thermal radiation effects. According 

to the coordinate system, the x-axis is taken along the plate in upward direction and y-axis is 

normal to the plate. The fluid is assumed to be in a gray, absorbing-emitting but non-

scattering medium. The radiative heat flux in the x-direction is considered negligible in 

comparison with that in the y-direction (Chakha, et al., 2001). It is assumed that there is 
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absence of an electric field. The transversely applied magnetic field and magnetic Reynolds 

number are very small and hence the induced magnetic field is negligible. Viscous and Darcy 

resistance terms are taken into account the constant permeability porous medium is also 

involved. 

 

The MHD term is derived from an order-of-magnitude analysis of the full Navier-stokes 

equation. It is assumed here that the whole size of the porous plate is significantly larger than 

a characteristic microscopic length scale of the porous medium. The chemical reactions are 

taking place in the flow and all thermo physical properties are assumed to be constant of the 

linear momentum equation which is an approximation. The fluid properties are assumed to be 

constants except that the influence of density variation with temperature and concentration 

has been considered in the body-force. Since the plate is semi-infinite in length, therefore all 

physical quantities are functions of y and t only. Hence, by the usual boundary layer 

approximations, the governing equations for unsteady flow of a viscous incompressible fluid 

through a porous medium are: 

 Continuity equation  

   
𝜕𝑣∗

𝜕𝑦∗=0 .                                         (2.1) 

Momentum equation 

𝜕𝑢∗

𝜕𝑡∗+𝑣∗ 
𝜕𝑢∗

𝜕𝑦∗ = - 
𝜕𝑝∗

𝜕𝑥∗ +𝑣 
𝜕2𝑢∗

𝜕𝑦∗2 +𝑔 𝛽 (𝑇∗-𝑇∞
∗  ) + 𝑔 𝛽∗ (𝐶∗-𝐶∞

∗  ) +
𝜎𝛽0

2

𝜌
 (𝑈∗- 𝑢∗ ) + 

𝑣

𝐾∗(𝑡∗)
 (𝑈∗- 𝑢∗ ).        

         (2.2) 

Energy equation 

𝜕𝑇∗

𝜕𝑡∗+𝑣∗ 
𝜕𝑇∗

𝜕𝑦∗ =𝛼
𝜕2𝑇∗

𝜕𝑦∗2 +
𝑣

𝐶𝑃
 (

𝜕𝑢∗

𝜕𝑦∗)
2

- 
1

𝑝𝐶𝑝
 
𝜕𝑞𝑟

𝜕𝑦∗ - 
𝑄0

𝑝𝐶𝑝
 (𝑇∗-𝑇∞

∗  ).              (2.3) 

Diffusion equation 

𝜕𝐶∗

𝜕𝑡∗
 +𝑣∗ 

𝜕𝐶∗

𝜕𝑦∗
 =D

𝜕2𝐶∗

𝜕𝑦∗2
 - 𝑘𝑟

∗2
 (𝐶∗-𝐶∞

∗  ).                           (2.4) 

The boundary conditions for the velocity, temperature and concentration fields are: 

 

𝑢∗ = 𝑈𝑜𝑒−𝜔𝑖𝑡 + 𝐿1
𝜕𝑢∗

𝜕𝑦∗ , 𝑇
∗ = 𝑇∞

∗  , 𝐶∗ = 𝐶∞
∗   at 𝑦 =o,   

𝑢∗ →o , 𝑇∗  → 𝑇∞
∗  , 𝐶∗  → 𝐶∞

∗      as 𝑦∗ → ∞        ,                                                            (2.5) 

 

where 𝐿1 =(2 - 𝑚1)(L/ 𝑚1), L = 𝜇 (𝜋 /2PP)1/2  is the mean free path, and 𝑚1is Maxwell's 

reflection coefficient. 
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Where 𝑥  and 𝑦  are dimensions coordinates, 𝑢∗  and 𝑣∗ are dimensionless velocities, 𝑡∗  is 

dimensionless time, 𝑇∗  is the dimensional temperature, 𝐶∗  is dimensional concentration, 𝑔 

the acceleration due to gravity, 𝛽 the volumetric coefficient of thermal expansion,  𝛽 ∗is the 

volumetric coefficient of thermal expansion with concentration, 𝜌 the density of the fluid,  

𝐶𝑝 is the specific heat at constant pressure,  D is the species diffusion coefficient, 𝑘∗ is the 

permeability  of the porous medium,  𝑞𝑟  is the radiation heat flux, 𝑄0  is the heat 

generation/absorption constant, 𝑘𝑟
2  is the chemical reaction parameter, 𝐵𝑂   magnetic 

induction,  𝑣  the kinematic viscosity, 𝛼  is the thermal diffusivity, 𝑈𝑜  is the scale of free 

stream velocity, 𝑇𝑤
∗  and 𝐶𝑤

∗  are wall dimensional temperature and concentration respectively, 

𝑇∞
∗ the free stream temperature far away from the plate, 𝐶∞

∗   the free stream concentration in 

fluid far away from the plate, 𝑛∗ the constant. 

 

From the continuity equation (2.1), it is clear that the suction velocity normal to the plate is a 

function of time only and we shall take it in the form: 

𝑉∗   (𝑡)′= - 𝑉𝑜
′ (1 + 𝜖 A𝑒−𝜔𝑖𝑡).                                   (2.6) 

Let the medium between the plate be filled with a porous material of permeability: 

𝐾′   (𝑡)′= - 𝐾𝑜
′  (1 + 𝜖 A𝑒−𝜔𝑖𝑡),                                              (2.7) 

where A and B are real positive constant, 𝜖 and 𝜖 A are small less than unity, and 𝑉𝑜 is a scale 

of suction velocity which has non- zero positive constant. Outside the boundary layer, 

equation (2) gives: 

𝜌 
𝑑𝑈∞

∗

𝑑𝑡∗  = 
𝜕𝑝∗

𝜕𝑥∗ - 𝜌∞𝑔 -
𝜇

𝐾(𝑡)′ 𝑈∞
∗  - 

𝜎

𝜌
 𝛽𝑜

2𝑈∗ .                                                        (2.8) 

Eliminating 
𝜕𝑝∗

𝜕𝑥∗
  between equations (2.2) and (2.8), we have 

𝜌 (
𝜕𝑢∗

𝜕𝑡∗
 + 𝑣∗ 

𝜕𝑢∗

𝜕𝑦∗
 ) = ( 𝜌∞ - 𝜌) 𝑔 + 𝜌 

𝑑𝑈∞
∗

𝑑𝑡∗
 + 𝜇 

𝜕2𝑢∗

𝜕𝑦∗2
 + 𝜎 𝛽𝑜

2 ( 𝑈∞ - 𝑢) + 
𝜇

𝐾(𝑡)′
 (𝑈∞

∗ - 𝑢∗)      (2.9) 

by making use of  the equation of state 

𝜌∞ - 𝜌 =𝜌 𝛽 (𝑇∗ - 𝑇∞
∗  )                  (2.10) 

and substituting equation (2.10) into equation (2.9), we obtain 

𝜕𝑢∗

𝜕𝑡∗  + 𝑣∗ 
𝜕𝑢∗

𝜕𝑦∗ =  
𝑑𝑈∞

∗

𝑑𝑡∗  +  𝑣
𝜕2𝑢∗

𝜕𝑦∗2 + 𝑔 𝛽 (𝑇∗ - 𝑇∞
∗  ) + 𝑔 𝛽 (𝐶∗ - 𝐶∞

∗  )+ 𝜎 𝛽𝑜
2 (𝑈∞

∗ - 𝑢∗) + 
𝑣

𝐾(𝑡)′ (𝑈∞
∗ - 

𝑢∗),                      (2.11) 

where  𝑣 = 
𝜇

𝜌
  is the coefficient of the kinematic viscosity. The third term on the RHS of 

equation (2.11) denotes the body force due to non uniform temperature, the fourth is the bulk 

matrix linear resistance, i.e. Darcy term, and the fifth is the MHD term. 
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 The radiative heat flux term by using the Roseland approximation is given by  

 

𝑞𝜔
∗  =−

𝜕𝜎∗

3𝑘𝑟
∗ (

𝜕𝑇∗4

𝜕𝑦∗  )
𝑦=𝑜

,                         (2.12) 

where  𝜎∗ is the Stefan-Boltzmann constant and 𝑘𝑟
∗  the mean absorption coefficient. It should 

be noted that by using the Roseland approximation the present analysis is limited to optically 

thick fluids. If temperature differences within the flow are sufficient small, then Equation 

(2.12) can be linearized by expanding 𝑇∗4   in the Taylor series about 𝑇∞
∗  , which after 

neglecting higher order terms takes the form 

𝑇∗4 ≅ 4𝑇∞
∗3 - 3𝑇∗4                                                                                                              (2.13) 

𝑞𝜔
∗  = - (

16𝜎𝑇∞
∗

3𝑘𝑟
∗  ).                                                                 (2.14) 

Substituting equation (2.14) into equation (2.3) gives  

𝜕𝑇∗

𝜕𝑡∗+𝑣∗ 
𝜕𝑇∗

𝜕𝑦∗ =𝛼
𝜕2𝑇∗

𝜕𝑦∗2 + 
1

𝑝𝐶𝑝
 
16𝜎𝑠

3𝑘𝑒
  𝑇∞

∗3 
𝜕2𝑇∗

𝜕𝑦∗2+ 
𝑣

𝐶𝑃
 (

𝜕𝑢∗

𝜕𝑦∗)
2

+ 𝑄0 (𝑇∗-𝑇 ).                                   (2.15) 

 

3.    METHOD OF SOLUTION 

Introducing the following non-dimensional quantities 

𝑢 =
𝑢∗

𝑈𝑜
 , 𝑦 =

𝑉𝑜𝑦∗

𝑣
 , 𝑡 =

𝑉𝑜
2𝑡∗

𝑣
 ,  𝑛 =

𝑣𝑛∗

𝑉𝑜
 , 𝑈∞ =

𝑈∞
∗

𝑈𝑜
 , 𝜃 =

𝑇∗−𝑇∞
∗

𝑇𝑤
∗ −𝑇∞

∗   ,𝐶 =
𝐶∗−𝐶∞

𝐶𝑤−𝐶∞
 , 𝑃𝑟 =

𝑣𝜌𝐶𝑝

𝑘
 = 

𝑣

𝛼
 ,   

𝑆𝑐 =
𝑣

𝐷
 , Gr= 

(𝑇𝑤−𝑇∞)

𝑈𝑜𝑉𝑜
2  , Gm= 𝑔𝛽∗𝑣

(𝐶𝑤−𝐶∞)

𝑈𝑜𝑉𝑜
2  , Ec = 

𝑉𝑜
2

𝐶𝑝(𝑇𝑤−𝑇∞)
 , 𝑘𝑟

2 =
𝑘∗2𝑟𝑣

𝑉𝑜
2  , R = 

4𝜎𝑠𝑇∞
′3

𝑘𝑒𝑘
 , 

𝑀 =
𝜎𝐵𝑜 

2 𝑢𝑣

𝜌𝑉𝑜
2 ,   𝜂 =

𝑣𝑄𝑜

𝑉𝑜
2𝜌𝐶𝑝

                                                        (2.16) 

into the equations (2.4), (2.11) and (2.15) with equation (2.1) identically satisfied, we 

obtained the following set of differential equations: 

𝜕𝑢

𝜕𝑡
 -( 1+ 𝜖𝐴𝑒−𝜔𝑖𝑡) 

𝜕𝑢

𝜕𝑦
 =  

𝑑𝑈∞

𝑑𝑡
 + 

𝜕2𝑢

𝜕𝑦2 +Gr𝜃 +GmC – (M + 
1

𝑘𝑝(1+𝜖𝐵𝑒−𝜔𝑖𝑡)
 ) ( 𝑈∞ - 𝑢),        (2.17) 

𝜕𝜃 

𝜕𝑡
 - ( 1+ 𝜖𝐴𝑒−𝜔𝑖𝑡) 

𝜕𝜃 

𝜕𝑦
 = 

1

𝑃𝑟
 (1 +  

4𝑅

3
)  

𝜕2𝜃

𝜕𝑦2  + Ec (
𝜕𝑢

𝜕𝑦
)

2

 + 𝜂𝜃,                                 (2.18) 

𝜕𝐶 

𝜕𝑡
 - ( 1+ 𝜖𝐴𝑒−𝜔𝑖𝑡) 

𝜕𝐶

𝜕𝑦
 = 

1

𝑆𝑐
  

𝜕2𝐶

𝜕𝑦2 - 𝑘𝑟
2C,                                          (2.19) 

where 𝑢  and 𝑣  are dimensionless velocities, t is dimensionless time, 𝜔  is dimensionless 

frequency, 𝜔∗ is frequency, 𝑇𝑤
∗  and 𝐶𝑤

∗   are wall dimensional temperature and concentration 

respectively, 𝑇∞
∗  the free stream temperature far away from the plate, 𝐶∞

∗   the free stream 

concentration in fluid far away from the plate, 𝑛∗  the constant, 𝜃   is dimensionless 

temperature  function, C is dimensionless concentration function, 𝑈𝑜  is the scale of free 
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stream velocity, 𝑈∞ the potential flow velocity, 𝛽 the coefficient of thermal expansion, 𝑅𝑒 is 

the Reynolds number, R is the radiation parameter, Pr is Prandtl number, U  is velocity, Sc  is 

Schimdt  number, n  is the frequency,  M  is the Hartmann number, K is the permeability 

parameter,  Gr is thermal Grashof number  and  Gm is  species  Grashof  number, 𝜂  the heat 

source parameter,  𝑘𝑟
2 is the chemical reaction parameter and  Ec  is  Eckert number, A is a 

real positive constant of suction velocity parameter , B is porosity parameter < 𝜖, and  𝜖 A < 1 

are small less than unity,  i.e 𝜖 A <<1, 𝑉𝑜  is a scale of suction velocity normal to the plate. 

 

The boundary conditions (2.5) are given by the following dimensionless form. 

𝑦=0:   u=𝑒−𝜔𝑖𝑡 + R 
𝜕𝑢

𝜕𝑦
 , 𝜃=1, C=1;  𝑦 → ∞: u→0, 𝜃 → 0 , C →  0 .                                 (2.20) 

In order to reduce the above system of partial differential equations to a system of ordinary 

differential equations in dimensionless form, the velocities, momentum, temperature, free 

stream velocity and mass are represented as [12]: 

 𝑢(𝑦, 𝑡) = 𝑢𝑜(𝑦) + 𝜖 𝑒−𝜔𝑖𝑡 𝑢1(𝑦)+ 0( 𝜖2 ) + …,                (2.21)                                                           

 𝜃(𝑦, 𝑡) =𝜃𝑜(𝑦) + 𝜖𝑒−𝜔𝑖𝑡  𝜃1(𝑦)  + 0( 𝜖2 ) + …,                                                                 (2.22) 

𝐶(𝑦, 𝑡) =𝐶𝑜(𝑦) + 𝜖𝑒−𝜔𝑖𝑡  𝐶1(𝑦)  + 0( 𝜖2 ) + …                                                                   (2.23) 

and the free stream velocity is expressed as 

U(t) = 1 + 𝜖𝑒−𝜔𝑖𝑡  .                                       (2.24) 

Substituting equations (2.21) - (2.24) into equations (2.17) - (2.19) and neglecting the 

coefficient of like powers of 𝜖, we get the following set of differential equations. 

𝑢𝑜
′′(𝑦) + 𝑢𝑜

′ (𝑦) - (M + 
1

𝑘𝑝
) 𝑢𝑜(𝑦) = (M +  

1

𝑘𝑝
) -  Gr𝜃𝑜(𝑦) – Gm𝐶𝑜(𝑦),                          (2.25) 

𝑢1
′′(𝑦) + 𝑢1

′ (𝑦) - (M +  
1

𝑘𝑝
− 𝜔𝑖) 𝑢1(𝑦) = - (M +  

1

𝑘𝑝
− 𝜔𝑖 −  

𝐵

𝑘𝑝
)  - A𝑢𝑜

′ (𝑦)  

                                                                            -  Gr𝜃1(𝑦) – Gm 𝐶1(𝑦)+ 
𝐵

𝑘𝑝
  𝑢𝑜,             (2.26) 

(3 + 4R) 𝜃𝑜
′′(𝑦)  + 3Pr𝜃𝑜

′ (𝑦) - 3 Pr𝜂𝜃0(𝑦) = - 3 Pr Ec (𝑢0
′ )2(𝑦),                                      (2.27) 

(3 + 4R) 𝜃1
′′(𝑦) +3Pr𝜃1

′ (𝑦) - 3 Pr𝜂𝜃1(𝑦) - 3 Pr𝑛𝜃1(𝑦)= - 3Pr𝐴𝜃𝑜
′ (𝑦) - 6PrEc(u′_0(y) −

u′_1(y)),                        (2.28)   

  C𝑜
′′(𝑦) + Sc  C𝑜

′ (𝑦) - Sc𝑘𝑟
2  𝐶0(𝑦)  = 0,                                                                             (2.29)  

 C1
′′(𝑦) + Sc C1

′ (𝑦) - Sc(𝜔𝑖 + 𝑘𝑟
2) 𝐶1(𝑦)  = - AScC0

′ (𝑦)                                                    (2.30)  

and the corresponding boundary conditions reduces to: 

    𝑦=0:   𝑢𝑜 =𝑒−𝜔𝑖𝑡 + R 
𝜕𝑢𝑜 

𝜕𝑦
  , 𝑢1=0 , 𝜃𝑜=1 ,   𝜃1=1 , 𝐶𝑜=1, 𝐶𝑜=1     

as 𝑦 → ∞: 𝑢𝑜  →0, 𝑢1  →0  , 𝜃0  →0 ,  𝜃1  →0   ,  𝐶0  →0  ,  𝐶1  →0.                                 (2.31) 
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In order to obtain the solutions of above coupled differential equations from (2.25) to (2.30), 

we expand 𝑢𝑜 , 𝑢1 , 𝜃𝑜 , 𝜃1 , 𝐶𝑜, 𝐶1  in powers of Ecket number (Ec); assuming that it is very 

small. 

𝑢𝑜(𝑦) = 𝑢𝑜𝑜(𝑦) +Ec 𝑢𝑜1(𝑦) + 0( 𝜖2 ), 

𝑢1(𝑦) = 𝑢1𝑜(𝑦) +Ec 𝑢11(𝑦) + 0( 𝜖2 ), 

𝜃𝑜(𝑦) = 𝜃𝑜𝑜(𝑦) +Ec 𝜃𝑜1(𝑦) + 0( 𝜖2 ), 

𝜃1(𝑦) = 𝜃1𝑜(𝑦) +Ec 𝜃11(𝑦) + 0( 𝜖2 ), 

𝐶𝑜(𝑦) = 𝐶𝑜𝑜(𝑦) +Ec 𝐶𝑜1(𝑦) + 0( 𝜖2 ), 

𝐶1(𝑦) = 𝐶1𝑜(𝑦) +Ec 𝐶11(𝑦) + 0( 𝜖2 ).                                                                                (2.32) 

 

Substituting equation (2.32) into equations (2.25) to (2.30) and equating the coefficients of 

like powers of Ec and neglecting the higher order terms of Ec, we obtain: 

 

𝑢𝑜𝑜
′′ (𝑦) + 𝑢𝑜𝑜

′ (𝑦) - (M +  
1

𝑘𝑝
) 𝑢𝑜𝑜(𝑦) = (M + 

1

𝑘𝑝
) -  Gr𝜃𝑜𝑜(𝑦) – Gm 𝐶𝑜𝑜(𝑦),                  (2.33) 

𝑢𝑜1
′′ (𝑦) + 𝑢𝑜1

′ (𝑦) - (M +  
1

𝑘𝑝
) 𝑢𝑜1(𝑦) =  -  Gr𝜃𝑜1 – Gm 𝐶𝑜1,                                             (2.34) 

 

𝑢10
′′ (𝑦) + 𝑢10

′ (𝑦) - (M +  
1

𝑘𝑝
− 𝜔𝑖) 𝑢10(𝑦) = - (M +  

1

𝑘𝑝
− 𝜔𝑖 −  

𝐵

𝑘𝑝
)  - A𝑢𝑜𝑜

′ (𝑦)  

                                                                                    -  
𝐵

𝑘𝑝
  𝑢𝑜𝑜-  Gr𝜃10(𝑦) – Gm 𝐶10(𝑦),           (2.35)                                                 

𝑢11
′′ (𝑦) + 𝑢11

′ (𝑦) - (M +  
1

𝑘𝑝
− 𝜔𝑖) 𝑢11(𝑦) =   - A𝑢𝑜1

′ (𝑦)  -  
𝐵

𝑘𝑝
  𝑢𝑜1-  Gr𝜃11(𝑦) – Gm 𝐶11(𝑦),              

        (2.36) 

 

(3 + 4R) 𝜃𝑜𝑜
′′ (𝑦) + 3Pr𝜃𝑜𝑜

′ (𝑦) - 3 Pr𝜂𝜃00(𝑦) = 0,                             (2.37) 

(3 + 4R) 𝜃𝑜1
′′ (𝑦)  + 3Pr𝜃𝑜1

′ (𝑦) - 3 Pr𝜂𝜃01(𝑦) = - 3 Pr(𝑢00
′ )2 ,                                 (2.38) 

(3 + 4R) 𝜃10
′′ (𝑦)  + 3Pr𝜃10

′ (𝑦) - 3 Pr𝜂𝜃10(𝑦) -3 Pr𝑛𝜃10(𝑦)= - 3Pr𝐴𝜃𝑜𝑜
′ (𝑦) ,                    (2.39) 

(3 + 4R) 𝜃11
′′ (𝑦) +3Pr𝜃11

′ (𝑦) - 3 Pr(𝜂+𝑛)𝜃11(𝑦) -3 Pr𝑛𝜃11(𝑦)= - 3Pr𝐴𝜃𝑜1
′ (𝑦) - 6Pr(𝑢𝑜𝑜

′ (𝑦)  

𝑢10
′ (𝑦)),                     (2.40)                                                                                                                                              

C𝑜𝑜
′′ (𝑦) + Sc  C𝑜𝑜

′ (𝑦) - Sc𝑘𝑟
2  𝐶00(𝑦)  = 0 ,                                    (2.41) 

C𝑜1
′′ (𝑦) + Sc  C𝑜1

′ (𝑦) - Sc𝑘𝑟
2  𝐶01(𝑦)  = 0,                                                                           (2.42) 

C10
′′ (𝑦)+ Sc C10

′ (𝑦) - Sc(𝜔𝑖 + 𝑘𝑟
2) 𝐶10(𝑦)  = - AScC00

′ (𝑦),                                               (2.43) 

C11
′′ (𝑦) + Sc C11

′ (𝑦) - Sc(𝜔𝑖 + 𝑘𝑟
2) 𝐶11(𝑦)  = - AScC01

′ (𝑦)                                               (2.44) 
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and with the corresponding boundary conditions: 

𝑦=0:   𝑢𝑜𝑜 = R 
𝜕𝑢𝑜0 

𝜕𝑦
  , 𝑢𝑜𝑜 =1 + R 

𝜕𝑢𝑜0 

𝜕𝑦
 ,  𝑢10=0 ,  𝑢11=0  𝜃𝑜𝑜=1 , 𝜃01=0 ,  𝜃10=1 , 𝜃11=0 , 

𝐶𝑜𝑜=1, 𝐶𝑜1=0 ,   𝐶1𝑜=0 , 𝐶11=0,                                                                                          (2.45) 

 𝑦 → ∞: 𝑢𝑜𝑜  →0, 𝑢01  →0  , 𝑢10  →1 , 𝑢11  →0 ,  𝜃00  →0 ,  𝜃01  →0   , 𝜃10  →0, 𝜃11  →0  

𝐶00  →0  ,  𝐶01  →0  , 𝐶10  →0 , 𝐶11  →0 .                                                                           (2.46) 

 

The solutions of equations (2.33) - (2.44) subject to the boundary conditions (2.45) and (2.46) 

are respectively: 

𝑈00= 𝑄1 𝑒−𝑏8𝑦 + 1+ 𝐿1 𝑒−𝑏2𝑦 + 𝐿2  𝑒−𝑏4𝑦,                                                   (2.47) 

𝑈01= 𝑄2 𝑒−𝑏10𝑦 +  𝐿6 𝑒−𝑏12𝑦 + 𝐿7  𝑒−2𝑏8𝑦 +𝐿8  𝑒−2𝑏2𝑦 + 𝐿9 𝑒−2𝑏4𝑦,                               (2.48) 

𝑈10=  𝑒−𝑏18𝑦 (- 𝐶2 - 𝐿12 - 𝐿13 - 𝐿14 - 𝐿15 - 𝐿16 ) +  𝐶2  +  𝐿12 𝑒−𝑏8𝑦   +  𝐿13 𝑒−𝑏2𝑦   + 𝐿14 

𝑒−𝑏4𝑦  +  𝐿15 𝑒−𝑏14𝑦   + 𝐿16 𝑒−𝑏16𝑦,                                                                                   (2.49) 

𝑢11 = 𝑒−𝑏24𝑦 (- 𝐿33 - 𝐿34 - 𝐿35 - 𝐿36 - 𝐿37 - 𝐿38  - 𝐿39 - 𝐿40 - 𝐿41 - 𝐿42 - 𝐿43 - 𝐿44 - 𝐿45 - 𝐿46 - 

𝐿47 - 𝐿48 - 𝐿49 - 𝐿50 ) +𝐿33  𝑒−𝑏10𝑦 + 𝐿34 𝑒−𝑏12𝑦   +𝐿35  𝑒−2𝑏8𝑦 + 𝐿36 𝑒−2𝑏2𝑦 + 𝐿37  𝑒−2𝑏4𝑦 + 

𝐿38 𝑒−𝑏20𝑦   +   𝐿39  𝑒−(𝑏8𝑦+𝑏18𝑦)  +   𝐿40  𝑒−(𝑏8𝑦+𝑏2𝑦)  +   𝐿41  𝑒−(𝑏8𝑦+𝑏4𝑦)  +   𝐿42  

𝑒−(𝑏8𝑦+𝑏14𝑦)  +   𝐿43 𝑒−(𝑏8𝑦+𝑏16𝑦) +   𝐿44  𝑒−(𝑏2𝑦+𝑏18𝑦) +   𝐿45  𝑒−(𝑏2𝑦+𝑏4𝑦) +   𝐿46  

𝑒−(𝑏2𝑦+𝑏14𝑦) +   𝐿47  𝑒−(𝑏2𝑦+𝑏16𝑦) +   𝐿48  𝑒−(𝑏4𝑦+𝑏18𝑦)  +   𝐿49  𝑒−(𝑏4𝑦+𝑏14𝑦) +   𝐿50  

𝑒−(𝑏4𝑦+𝑏16𝑦),                                                                                                                       (2.50) 

𝜃00  =  𝑒−𝑏8𝑦,                                                                                                                      (2.51) 

𝜃01 = 𝑒−𝑏18𝑦  (- 𝐿3 - 𝐿4 - 𝐿5) + 𝐿3  𝑒−2𝑏8𝑦 +𝐿4  𝑒−2𝑏2𝑦 + 𝐿5 𝑒−2𝑏4𝑦,                               (2.52) 

𝜃10 =   - 𝐿10 (𝑒−𝑏14𝑦 -  𝑒−𝑏2𝑦  ),                                                                                         (2.53) 

𝜃11  =  𝑒−𝑏20𝑦 (- 𝐿17 - 𝐿18 - 𝐿19 - 𝐿20 - 𝐿21 - 𝐿22  - 𝐿23 - 𝐿24 - 𝐿25 - 𝐿26 - 𝐿27 - 𝐿28 - 𝐿29 - 𝐿30 

- 𝐿31- 𝐿32 ) +𝐿17  𝑒−(𝑏12𝑦) + 𝐿18  𝑒−(2𝑏8𝑦) + 𝐿19  𝑒−(2𝑏2𝑦) + 𝐿20  𝑒−(2𝑏4𝑦) + 𝐿21  𝑒−(𝑏8𝑦+𝑏18𝑦) 

+ 𝐿22  𝑒−(𝑏8𝑦+𝑏2𝑦) + 𝐿23  𝑒−(𝑏8𝑦+𝑏4𝑦)  + 𝐿24  𝑒−(𝑏8𝑦+𝑏14𝑦)  + 𝐿25  𝑒−(𝑏8𝑦+𝑏16𝑦)  + 

 𝐿26  𝑒−(𝑏2𝑦+𝑏18𝑦)  + 𝐿27  𝑒−(𝑏2𝑦+𝑏4𝑦)  + 𝐿28  𝑒−(𝑏2𝑦+𝑏14𝑦)  + 𝐿29  𝑒−(𝑏2𝑦+𝑏16𝑦)  +  

𝐿30  𝑒−(𝑏4𝑦+𝑏18𝑦)  + 𝐿31  𝑒−(𝑏4𝑦+𝑏14𝑦)   + 𝐿32  𝑒−(𝑏4𝑦+𝑏16𝑦),                                            (2.54) 

𝐶00 = 𝑒−𝑏4𝑦,                                                                                                                        (2.55) 

𝐶01 = 0,                                                                                                                               (2.56) 

𝐶10 = - 𝐿11 (𝑒−𝑏16𝑦  - 𝑒−𝑏4𝑦),                                                                                             (2.57) 

𝐶11 = 0,                                                                                                                              (2.58) 

𝑤ℎ𝑒𝑟𝑒   
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𝑏1 = 
3𝑃𝑟

2(3+4𝑅)
 (−1 + √

3 Pr −4𝜂(3+4𝑅) 

3𝑃𝑟
)    ,      𝑏2 = 

3𝑃𝑟

2(3+4𝑅)
 (1 + √

3 Pr −4𝜂(3+4𝑅) 

3𝑃𝑟
) , 

𝑏3 = 
1

2
(− 𝑆𝑐 − √𝑆𝑐2  −  4Sc𝑘𝑟

2)  , 𝑏4 = 
1

2
( 𝑆𝑐 + √𝑆𝑐2  −  4Sc𝑘𝑟

2)  , 

𝑏5 = 
1

2
(− 𝑆𝑐 + √𝑆𝑐2  −  4Sc𝑘𝑟

2)  , 𝑏6 = 
1

2
( 𝑆𝑐 + √𝑆𝑐2  −  4Sc𝑘𝑟

2)  , 

 

𝑏7 = 
1

2
 (−1 + √1 + 4 (𝑀 + 

1

𝑘𝑝
))  , 𝑏8 = 

1

2
 (1 + √1 + 4 (𝑀 +  

1

𝑘𝑝
)) , 

𝑏9 = 
1

2
 (−1 + √1 + 4 (𝑀 +  

1

𝑘𝑝
)) ,  𝑏10 = 

1

2
 (1 + √1 + 4 (𝑀 +  

1

𝑘𝑝
)) , 

𝑏11 = 
3𝑃𝑟

2(3+4𝑅)
 (−1 + √

3 Pr −4𝜂(3+4𝑅) 

3𝑃𝑟
)  , 𝑏12 = 

3𝑃𝑟

2(3+4𝑅)
 (1 + √

3 Pr −4𝜂(3+4𝑅) 

3𝑃𝑟
)  , 

𝑏13 = 
3𝑃𝑟

2(3+4𝑅)
 (−1 + √

3 Pr −4(𝜂−𝜔𝑖)(3+4𝑅) 

3𝑃𝑟
)  , 𝑏14 = 

3𝑃𝑟

2(3+4𝑅)
 (1 + √

3 Pr −4(𝜂−𝜔𝑖)(3+4𝑅) 

3𝑃𝑟
)  , 

𝑏15 = 
1

2
(− 𝑆𝑐 + √𝑆𝑐2  −  4Sc ( 𝜔𝑖 +  𝑘𝑟

2)  , 𝑏16 = 
1

2
(𝑆𝑐 + √𝑆𝑐2  −  4Sc ( 𝜔𝑖 +  𝑘𝑟

2)  , 

 

𝑏17 = 
1

2
 (−1 + √1 + 4 (𝑀 +  

1

𝑘𝑝
− 𝜔𝑖)) , 𝑏18 = 

1

2
 (1 + √1 + 4 (𝑀 +  

1

𝑘𝑝
− 𝜔𝑖)) , 

 

𝑏19 = 
3𝑃𝑟

2(3+4𝑅)
 (−1 + √

3 Pr +4(𝜂+𝜔𝑖)(3+4𝑅) 

3𝑃𝑟
)  , 𝑏20 = 

3𝑃𝑟

2(3+4𝑅)
 (1 + √

3 Pr +4(𝜂+𝜔𝑖)(3+4𝑅) 

3𝑃𝑟
)  , 

𝑏21 = 
1

2
(− 𝑆𝑐 + √𝑆𝑐2 +  4Sc ( 𝜔𝑖 +  𝑘𝑟

2)  , 𝑏22 = 
1

2
(𝑆𝑐 + √𝑆𝑐2 +  4Sc ( 𝜔𝑖 +  𝑘𝑟

2)  , 

 

𝑏23 = 
1

2
 (−1 + √1 + 4 (𝑀 + 

1

𝑘𝑝
+ 𝜔𝑖)) , 𝑏24 = 

1

2
 (1 + √1 + 4 (𝑀 +  

1

𝑘𝑝
+ 𝜔𝑖)) , 

𝐿1 = 
−𝐺𝑟

𝑏2
2−𝑏2−(M + 

1

𝑘𝑝
)
   ,  𝐿2 = 

−𝐺𝑐

𝑏4
2−𝑏4−(M + 

1

𝑘𝑝
)
   , 𝐿3 = 

3𝑃𝑟𝑄1𝑏8
2

4(3+4𝑅)𝑏8
2−6𝑃𝑟𝑏8−3𝑃𝑟𝜂

   ,  

 𝐿4 = 
3𝑃𝑟𝑏2

2𝐿1
2

4(3+4𝑅)𝑏2
2−6𝑃𝑟𝑏2−3𝑃𝑟𝜂

   , 𝐿5 = 
3𝑃𝑟𝑏4

2𝐿2
2

4(3+4𝑅)𝑏4
2−6𝑃𝑟𝑏4−3𝑃𝑟𝜂

   , 𝐿6 = 
−𝐺𝑟(−𝐿3−𝐿4−𝐿5)

𝑏12
2 −𝑏12−(M + 

1

𝑘𝑝
)
   , 

 𝐿7 = 
−𝐺𝑟𝐿3

4𝑏8
2−2𝑏8−(M + 

1

𝑘𝑝
)
   , 𝐿8 = 

−𝐺𝑟𝐿4

4𝑏2
2−2𝑏2−(M + 

1

𝑘𝑝
)
   , 𝐿9 = 

−𝐺𝑟𝐿5

4𝑏4
2−2𝑏4−(M + 

1

𝑘𝑝
)
   ,  

 𝐿10 = 
3𝑃𝑟𝐴𝑏2

(3+4𝑅)𝑏2
2−3𝑃𝑟𝑏2−3Pr (𝜂+𝜔𝑖)

   , 𝐿11 = 
𝐴𝑆𝑐𝑏4

𝑏2
2−𝑆𝑐𝑏4−Sc ( 𝜔𝑖+ 𝑘𝑟

2)
 , 𝐿12 = 

𝑄1(𝐴𝑏8+ 
1

𝑘𝑝
)

𝑏8
2−𝑏8−(𝑀+ 

1

𝑘𝑝
+𝜔𝑖)

 , 
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𝐿13 = 
−𝐴𝑏2𝐿1−

𝐵

𝑘𝑝
𝐿1−𝐺𝑟𝐿10

𝑏2
2−𝑏2−(𝑀+ 

1

𝑘𝑝
+𝜔𝑖)

 , 𝐿14 = 
−𝐴𝑏4𝐿2−

𝐵

𝑘𝑝
𝐿2−𝐺𝑐𝐿11

𝑏4
2−𝑏4−(𝑀+ 

1

𝑘𝑝
+𝜔𝑖)

 ,  𝐿15 = 
−𝐺𝑟(−1+𝐿10)

𝑏14
2 −𝑏14−(𝑀+ 

1

𝑘𝑝
+𝜔𝑖)

 ,  

 𝐿16 = 
−𝐺𝑐𝐿11

𝑏16
2 −𝑏16−(𝑀+ 

1

𝑘𝑝
+𝜔𝑖)

 , 𝐿17 = 
3𝐴𝑃𝑟𝑏12(−𝐿3−𝐿4−𝐿5)

(3+4𝑅)𝑏12
2 −3𝑃𝑟𝑏12−3Pr (𝜂+𝜔𝑖)

   , 𝐿18 = 

6𝑃𝑟𝑏8(𝐴𝐿3−𝑏8𝑄1𝐿12)

(3+4𝑅)4𝑏8
2−6𝑃𝑟𝑏8−3Pr (𝜂+𝜔𝑖)

  ,  

𝐿19 = 
6𝑃𝑟𝑏2(𝐴𝐿4−𝑏2𝐿1𝐿13)

(3+4𝑅)4𝑏2
2−6𝑃𝑟𝑏2−3Pr (𝜂+𝜔𝑖)

   , 𝐿20 = 
6𝑃𝑟𝑏4(𝐴𝐿5−𝑏4𝐿2𝐿14)

(3+4𝑅)4𝑏4
2−6𝑃𝑟𝑏4−3Pr (𝜂+𝜔𝑖)

   , 

𝐿21 = 
−6𝑃𝑟𝑏8𝑏18𝑄1(−𝐶2−𝐿12−𝐿13−𝐿14−𝐿15−𝐿16)

(3+4𝑅)(𝑏8+𝑏18)2−3𝑃𝑟(𝑏8+𝑏18)−3Pr (𝜂+𝜔𝑖)
   , 𝐿22 = 

−6𝑃𝑟𝑏8𝑏2𝑄1𝐿13+ 𝑏2𝑏8 𝐿1𝐿12

(3+4𝑅)(𝑏8+𝑏2)2−3𝑃𝑟(𝑏8+𝑏2)−3Pr (𝜂+𝜔𝑖)
   , 

 

𝐿23 = 
−6𝑃𝑟𝑏8𝑏4(𝑄1𝐿14+ 𝐿2𝐿12)

(3+4𝑅)(𝑏4+𝑏8)2−3𝑃𝑟(𝑏4+𝑏8)−3Pr (𝜂+𝜔𝑖)
   , 𝐿24 = 

−6𝑃𝑟𝑏8𝑏14𝑄1𝐿15

(3+4𝑅)(𝑏4+𝑏14)2−3𝑃𝑟(𝑏4+𝑏14)−3Pr (𝜂+𝜔𝑖)
   , 

 

𝐿25 = 
−6𝑃𝑟𝑏8𝑏16𝑄1𝐿16

(3+4𝑅)(𝑏8+𝑏16)2−3𝑃𝑟(𝑏8+𝑏16)−3Pr (𝜂+𝜔𝑖)
   , 𝐿26 = 

−6𝑃𝑟𝑏2𝑏18𝐿1(−𝐶2−𝐿12−𝐿13−𝐿14−𝐿15−𝐿16)

(3+4𝑅)(𝑏2+𝑏18)2−3𝑃𝑟(𝑏2+𝑏18)−3Pr (𝜂+𝜔𝑖)
   , 

 

𝐿27 = 
−6𝑃𝑟𝑏2𝑏4(𝐿1𝐿14+𝐿2𝐿13)

(3+4𝑅)(𝑏4+𝑏2)2−3𝑃𝑟(𝑏4+𝑏2)−3Pr (𝜂+𝜔𝑖)
    , 𝐿28 = 

−6𝑃𝑟𝑏2𝑏14𝐿1𝐿15

(3+4𝑅)(𝑏2+𝑏14)2−3𝑃𝑟(𝑏2+𝑏14)−3Pr (𝜂+𝜔𝑖)
   , 

 

𝐿29 = 
−6𝑃𝑟𝑏2𝑏16𝐿1𝐿16

(3+4𝑅)(𝑏2+𝑏16)2−3𝑃𝑟(𝑏2+𝑏16)−3Pr (𝜂+𝜔𝑖)
   , 𝐿30 = 

−6𝑃𝑟𝑏4𝑏18𝐿2(−𝐶2−𝐿12−𝐿13−𝐿14−𝐿15−𝐿16)

(3+4𝑅)(𝑏4+𝑏18)2−3𝑃𝑟(𝑏4+𝑏18)−3Pr (𝜂+𝜔𝑖)
   , 

 𝐿31 = 
−6𝑃𝑟𝑏4𝑏14𝐿2𝐿15

(3+4𝑅)(𝑏4+𝑏14)2−3𝑃𝑟(𝑏4+𝑏14)−3Pr (𝜂+𝜔𝑖)
   , 𝐿32 = 

−6𝑃𝑟𝑏4𝑏16𝐿2𝐿16

(3+4𝑅)(𝑏4+𝑏16)2−3𝑃𝑟(𝑏4+𝑏16)−3Pr (𝜂+𝜔𝑖)
   , 

 

               𝐿33 = 
𝐴𝑏10𝑄2− 

𝐵

𝑘𝑝

𝑏10
2 −𝑏10−(𝑀+ 

1

𝑘𝑝
+𝜔𝑖)

 , 𝐿34 = 
𝐴𝑏12𝐿6− 

𝐵

𝑘𝑝
𝐿6−𝐺𝑟𝐿17

𝑏12
2 −𝑏12−(𝑀+ 

1

𝑘𝑝
+𝜔𝑖)

 ,  𝐿35 = 
2𝐴𝑏8𝐿7− 

𝐵

𝑘𝑝
𝐿7−𝐺𝑟𝐿18

4𝑏8
2−2𝑏8−(𝑀+ 

1

𝑘𝑝
+𝜔𝑖)

  , 

𝐿36 = 
2𝐴𝑏2𝐿8− 

𝐵

𝑘𝑝
 −𝐺𝑟𝐿19

4𝑏2
2−2𝑏2−(𝑀+ 

1

𝑘𝑝
+𝜔𝑖)

 ,           𝐿37 = 
2𝐴𝑏4𝐿9− 

𝐵

𝑘𝑝
 −𝐺𝑟𝐿20

4𝑏4
2−2𝑏4−(𝑀+ 

1

𝑘𝑝
+𝜔𝑖)

 , 

 𝐿38 = 
𝐺𝑟( 𝐿17+𝐿18+𝐿19+𝐿20+𝐿21+𝐿22+𝐿23+𝐿24+𝐿25+𝐿26+𝐿27+𝐿28+𝐿29+𝐿30+𝐿31+𝐿32)

𝑏20
2 −𝑏20−(𝑀+ 

1

𝑘𝑝
+𝜔𝑖)

  , 

 𝐿39 = 
−𝐺𝑟𝐿21

(𝑏8+𝑏18)2−(𝑏8+𝑏18)−(𝑀+ 
1

𝑘𝑝
+𝜔𝑖)

 ,       𝐿40 = 
−𝐺𝑟𝐿22

(𝑏8+𝑏2)2−(𝑏8𝑦+𝑏2)−(𝑀+ 
1

𝑘𝑝
+𝜔𝑖)

 , 

 𝐿41 = 
−𝐺𝑟𝐿23

(𝑏8+𝑏4)2−(𝑏8+𝑏4)−(𝑀+ 
1

𝑘𝑝
+𝜔𝑖)

 ,      𝐿42 = 
−𝐺𝑟𝐿24

(𝑏8+𝑏14)2−(𝑏8+𝑏14)−(𝑀+ 
1

𝑘𝑝
+𝜔𝑖)

  ,    

𝐿43 = 
−𝐺𝑟𝐿25

(𝑏8+𝑏16)2−(𝑏8+𝑏16)−(𝑀+ 
1

𝑘𝑝
+𝜔𝑖)

 ,    𝐿44 = 
−𝐺𝑟𝐿26

(𝑏2+𝑏18)2−(𝑏2+𝑏18)−(𝑀+ 
1

𝑘𝑝
+𝜔𝑖)

 ,   

𝐿45 = 
−𝐺𝑟𝐿27

(𝑏2+𝑏4)2−(𝑏2+𝑏4)−(𝑀+ 
1

𝑘𝑝
+𝜔𝑖)

 ,       𝐿46 = 
−𝐺𝑟𝐿28

(𝑏2+𝑏14)2−(𝑏2+𝑏14)−(𝑀+ 
1

𝑘𝑝
+𝜔𝑖)

 ,  
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𝐿47 = 
−𝐺𝑟𝐿29

(𝑏2+𝑏16)2−(𝑏2+𝑏16)−(𝑀+ 
1

𝑘𝑝
+𝜔𝑖)

 ,    𝐿48 = 
−𝐺𝑟𝐿30

(𝑏4+𝑏18)2−(𝑏4+𝑏18)−(𝑀+ 
1

𝑘𝑝
+𝜔𝑖)

 ,  

𝐿49 = 
−𝐺𝑟𝐿31

(𝑏4+𝑏14)2−(𝑏4+𝑏14)−(𝑀+ 
1

𝑘𝑝
+𝜔𝑖)

 ,    𝐿50 = 
−𝐺𝑟𝐿32

(𝑏4+𝑏16)2−(𝑏4+𝑏16)−(𝑀+ 
1

𝑘𝑝
+𝜔𝑖)

 . 

 

In view of the above solutions, the velocity, temperature and concentration distribution in the 

boundary layer become: 

U(𝑦, 𝑡) =  𝑒−𝑏8𝑦𝑄1 + 1 +𝐿1 𝑒−𝑏2𝑦 + 𝐿2 𝑒−𝑏4𝑦 + Ec(𝑒−𝑏10𝑦 𝑄2  +𝐿6 𝑒−𝑏12𝑦 + 𝐿7  𝑒−2𝑏8𝑦   +  

𝐿8  𝑒−2𝑏2𝑦   +   𝐿9  𝑒−2𝑏4𝑦)  + 𝜖𝑒𝑖𝜔𝑡(𝑒−𝑏18𝑦 (−𝐶2 − 𝐿12 − 𝐿13 − 𝐿14 − 𝐿15 − 𝐿16) + 𝐶2 + 𝐿12 

 𝑒−𝑏8𝑦   + 𝐿13  𝑒−𝑏2𝑦 + 𝐿14  𝑒−𝑏4𝑦 + 𝐿15  𝑒−𝑏14𝑦 + 𝐿16  𝑒−𝑏16𝑦   + Ec(𝐿12  𝑒−𝑏24𝑦( - 𝐿33 -𝐿34 -

𝐿35  -𝐿36 - 𝐿37 -𝐿38 -𝐿39  -𝐿40 - 𝐿41 -𝐿42 -𝐿43  -𝐿44 - 𝐿45 -𝐿46 -𝐿47  -𝐿48  - 𝐿49 -𝐿50 ) + 

𝐿33 𝑒−𝑏10𝑦  +   𝐿34 𝑒−𝑏12𝑦  +  𝐿35 𝑒−2𝑏8𝑦  +  𝐿36 𝑒−2𝑏2𝑦 +  𝐿37 𝑒−2𝑏4𝑦 + 𝐿38 𝑒−𝑏20𝑦  + 

𝐿39 𝑒−(𝑏8𝑦+𝑏18𝑦)  +   𝐿40 𝑒−(𝑏2𝑦+𝑏8𝑦)  +   𝐿41 𝑒−(𝑏4𝑦+𝑏8𝑦) +   𝐿42 𝑒−(𝑏8𝑦+𝑏14𝑦) +   

𝐿43 𝑒−(𝑏8𝑦+𝑏16𝑦) +  𝐿44 𝑒−(𝑏2𝑦+𝑏18𝑦)  +  𝐿45 𝑒−(𝑏2𝑦+𝑏4𝑦) +  𝐿46 𝑒−(𝑏2𝑦+𝑏14𝑦)  +  

𝐿47 𝑒−(𝑏2𝑦+𝑏16𝑦)  +   𝐿48 𝑒−(𝑏4𝑦+𝑏18𝑦)  +   𝐿49 𝑒−(𝑏4𝑦+𝑏14𝑦) +   𝐿50 𝑒−(𝑏4𝑦+𝑏16𝑦)) ,       (2.59) 

 

𝜃(𝑦, 𝑡) = 𝑒−𝑏2𝑦 + Ec(𝑒−𝑏12𝑦 (−𝐿3 − 𝐿4 − 𝐿5) +  𝐿3  𝑒−2𝑏8𝑦 + 𝐿4  𝑒−2𝑏2𝑦 + 𝐿5  𝑒−2𝑏4𝑦) +  

𝜖𝑒𝑖𝜔𝑡 {𝐿10(-𝑒−𝑏14𝑦 +  𝑒−𝑏2𝑦) +  𝑒−𝑏14𝑦 + Ec(𝑒−𝑏20𝑦(  - 𝐿17 -𝐿18 -𝐿19 - 𝐿20 - 𝐿21 - 𝐿22 - 𝐿23 - 

𝐿24 - 𝐿25 - 𝐿26 - 𝐿27 - 𝐿28 - 𝐿29 - 𝐿30 - 𝐿31 - 𝐿32) +  𝐿17  𝑒−𝑏12𝑦 +  𝐿18  𝑒−2𝑏8𝑦 +  𝐿19  𝑒−2𝑏2𝑦  

+   𝐿20  𝑒−2𝑏4𝑦 

 𝐿21  𝑒−(𝑏8𝑦+𝑏18𝑦) +  𝐿22  𝑒−(𝑏2𝑦+𝑏8𝑦) +  𝐿23  𝑒−(𝑏4𝑦+𝑏8𝑦) + 𝐿24  𝑒−(𝑏8𝑦+𝑏14𝑦) + 𝐿25 

 𝑒−(𝑏8𝑦+𝑏16𝑦)  + 𝐿26  𝑒−(𝑏2𝑦+𝑏18𝑦)  +  𝐿27  𝑒−(𝑏2𝑦+𝑏4𝑦) +  𝐿28  𝑒−(𝑏2𝑦+𝑏14𝑦)  + 𝐿29 

 𝑒−(𝑏2𝑦+𝑏16𝑦) + 

 𝐿30  𝑒−(𝑏4𝑦+𝑏18𝑦) + 𝐿31  𝑒−(𝑏4𝑦+𝑏14𝑦) + 𝐿32  𝑒−(𝑏4𝑦+𝑏16𝑦) )} .                                          (2.60) 

 

𝐶(𝑦, 𝑡) = 𝑒−𝑏4𝑦 + 𝜖𝑒𝑖𝜔𝑡 [𝐿11 (−𝑒−𝑏16𝑦 +  𝑒−𝑏4𝑦) ].                                                           (2.61) 

 

Skin-friction coefficient is expressed as follows: 

𝐶𝑓 = [
𝜏𝜔

𝜌𝑈0𝑉0
] = (

𝜕𝑢

𝜕𝑦
)

𝑦=0
 = (

𝜕𝑢0(𝑦)

𝜕𝑦
+ 𝜖𝑒𝑖𝜔𝑡 𝜕𝑢1(𝑦)

𝜕𝑦
)

𝑦=0
 

= -  𝑏8 𝑄1 - 𝑏2 𝐿1 -𝑏4 𝐿2 + Ec (𝑏10 𝑄2 -2𝑏12 𝐿6 - 2𝑏8 𝐿7 -2𝑏2 𝐿8 -2𝑏4 𝐿9) + 𝜖𝑒𝑖𝜔𝑡 [𝑏18 (𝐶2 + 

𝐿12 + 𝐿13 + 𝐿14 + 𝐿15 + 𝐿16) + 𝐶2 - 𝑏8𝐿12 - 𝑏2𝐿13 - 𝑏4𝐿14 - 𝑏14 𝐿15 - 𝑏16 𝐿16 + Ec(𝑏24(𝐿33 + 

𝐿34 + 𝐿35 + 𝐿36 + 𝐿37+ 𝐿38 + 𝐿39  + 𝐿40 + 𝐿41 +𝐿42 + 𝐿43 +  𝐿44 + 𝐿45 + 𝐿46 + 𝐿47 + 𝐿48  + 
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𝐿49+ 𝐿50) -  𝐿33 𝑏10 -𝐿34 𝑏12-  2𝑏8𝐿35 - 2𝑏2 𝐿36 - 2𝑏4 𝐿37 - 𝑏20 𝐿38 -  ( 𝑏8+ 𝑏18) 𝐿39  - ( 𝑏2+ 

𝑏8) 𝐿40 - ( 𝑏4+ 𝑏8) 𝐿41 - ( 𝑏8+ 𝑏14) 𝐿42 -  ( 𝑏8+ 𝑏16) 𝐿43  - ( 𝑏2+ 𝑏18)𝐿44 - ( 𝑏2+ 𝑏4) 𝐿45 - ( 

𝑏2+ 𝑏14)𝐿46 -(𝑏2+ 𝑏16)𝐿47 -(𝑏4+𝑏18)𝐿48 -(𝑏4+𝑏14)𝐿49 -(𝑏4+𝑏16)𝐿50  .                             (2.62)   

 

The heat transfer coefficient in term of Nusselt number is as follows: 

knowing the temperature field, it is interesting to study the effect of the free convection and 

radiation on the rate of heat transfer 𝑞𝜔
∗ . This is given by:    

    𝑞𝜔
∗   = - K   (

𝜕𝑇∗

𝜕𝑦∗)
𝑦=0

 -  
4𝜎∗

3𝑘𝑟
′   (

𝜕𝑇∗4

𝜕𝑦∗ )
𝑦=0

  .                                                                         (2.63)   

Using equation (2.13) we can write equation (2.63) as follow 

 

               𝑞𝜔
∗  = -(𝐾 +  

16𝜎∗𝑇∞
∗3

3𝑘𝑟
∗ )   (

𝜕𝑇∗

𝜕𝑦∗)
𝑦=0

 ,                                                                        (2.64)  

which is written in non-dimensional form as : 

                                                                                                                                                                           

𝑞𝜔
∗  = -(1 +

4𝑅

3
) (

𝜕𝜃

𝜕𝑦
)

𝑦=0
 .                       (2.65)     

                                                                                                                      

The non-dimensional Nusselt number is obtained as 

NuR𝑒𝑥
−1=-(1 +

4𝑅

3
)  (

𝜕𝜃0(𝑦)

𝜕𝑦
+ 𝜖𝑒𝑖𝜔𝑡 𝜕𝜃1(𝑦)

𝜕𝑦
)

𝑦=0
 = - 𝑏2 – Ec(𝑏12 (𝐿3 + 𝐿4 + 𝐿5) -  2𝑏8 𝐿3  -2 𝑏2 

𝐿4 +   2𝑏4𝐿5) - 𝜖𝑒𝑖𝜔𝑡[𝐿10 (𝑏14 -  𝑏2) - 𝑏14 + Ec(𝑏20 ( 𝐿17 +  𝐿18 +  𝐿19 +  𝐿20 +  𝐿21 +  𝐿22 +  

𝐿23 +  𝐿24 +  𝐿25 +  𝐿26 +  𝐿27 +  𝐿28 +  𝐿29 +  𝐿30  +  𝐿31  + 𝐿32) -𝑏12  𝐿17 -  2𝑏8  𝐿18 -2𝑏2 

𝐿19 - 2𝑏4 𝐿20 - ( 𝑏8+ 𝑏18) 𝐿21 – ( 𝑏2+ 𝑏8) 𝐿22 - ( 𝑏4+ 𝑏8) 𝐿23 - ( 𝑏8+ 𝑏14) 𝐿24 - ( 𝑏8+ 𝑏16) 𝐿25 

- ( 𝑏2+ 𝑏18)  𝐿26 - ( 𝑏2+ 𝑏4)  𝐿27 - ( 𝑏2+ 𝑏14) 𝐿28 -  ( 𝑏2+ 𝑏16) 𝐿29 - ( 𝑏4+ 𝑏18)  𝐿30 - ( 𝑏4+ 

𝑏14)  𝐿31 - ( 𝑏4+ 𝑏16)  𝐿32 ,                                                                                                 (2.66) 

where Re𝑥 = 
𝑉0𝑥

𝑣
  is the Reynolds number. 

Local Sherwood Number (Sh𝑤) can be define as  

Sh = 
𝐾𝑥

𝐷
  ,                                                                                                                             (2.67) 

with the help of these equations, one can write 

ShR𝑒𝑥
−1 = -  (

𝜕𝐶0(𝑦)

𝜕𝑦
+ 𝜖𝑒𝑖𝜔𝑡 𝜕𝐶1(𝑦)

𝜕𝑦
)

𝑦=0
 =- 𝑏4 + 𝜖𝑒𝑖𝜔𝑡𝐿11(𝑏16 - 𝑏4 )                                 (2.68) 

 

3. Results and Discussion 
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The effects of thermal radiation, heat source and chemical reaction on heat and mass transfer 

of MHD incompressible, viscous fluid along vertical  porous moving plate in a porous 

medium has been investigated. The numerical calculation for the distribution of the velocity, 

temperature and concentration  across the boundary layer for various values of the parameters 

are obtained in this study using the following A=0.5, t=1.0, n=0.1 and  𝜖 =0.10, while R , 𝑘𝑟
2, 

Sc, Gr, Gc, M, Pr, 𝜂, and K are varried in order to account for their effects. The boundary 

conditions for 𝑦  is replaced with  𝑦𝑚𝑎𝑥  that is when 𝑦  sufficiently large and the velocity 

profile u approaches to the relevant free stream velocity. 

 

The velocity profiles for different values of Grashof number Gr are described in the Fig.1 and 

Fig. 2. It is observed that an increasing in Gr leads to a rise in the values of velocity and the 

curves show that the peak values of the velocity increases rapidly near the wall of the porous 

plate as Grashof number increases, and then decays to the relevant free stream velocity. Here 

the Grashof number represents the effect of the free convection currents. Physically, Gr > 0 

means heating of fluid of cooling of the boundary surface, Gr<0 means cooling of the fluid of 

heating of the boundary surface and Gr=0 corresponds to the absence of free convection 

current. In addition, the curves show that the peak value of velocity increases rapidly near the 

wall of the porous plate as Grshof number increases, and then decays to the relevant free 

stream velocity. 

 

The velocity profiles across the boundary layer for different values of prandtl number Pr are 

plotted in Fig. 3. The results shows that the effect of increasing values of Pr results in a 

decreasing the velocity. 

 

Fig. 4 shows the effect of radiation R on velocity. It is observed that as the value of R 

increases, the velocity increases with an increasing in the flow boundary   layer thickness. 

Thus, thermal radiation enhances the flow. 

 

The influence of chemical reaction parameter 𝑘𝑟
2 on the velocity profiles across the boundary 

layer are presented in Fig. 5 it is seen that the velocity distribution across the boundary layer 

decreases with increasing in  𝑘𝑟
2. 
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The effect of heat generation 𝜂 on the velocity profiles is shown in Fig.6. From this figure it 

is observed that the heat is generated the buoyancy force increase which influence the flow 

rate to increase giving rise to the increase in the velocity profiles. 

 

Fig.7. represents the velocity profile with various Schmidt number Sc. The effect of 

increasing values of Sc results in a decreasing velocity distribution across the boundary layer. 

 

Fig.8. shows that the effect of increasing values of M parameter results in decreasing velocity 

distribution across the boundary layer because of the application of transfer magnetic field 

will result a restrictive type force(Lorenz force) similar to drag force which tends to resist the 

fluid and this reducing its velocity. 

 

It is observed from Fig.9. That as velocity profiles for different values of the permeability K. 

Clearly, as K increases the peak value of velocity tends to increase. These results could be 

very useful in deciding the applicability of enhanced oil recovery in reservoir engineering. 

 

Fig.10. show the effect of Schmidt number Sc on temperature, as Schmidt number Sc 

increases the temperature distribution across the boundary layer increases but however 

decreases.          

 

The effect of heat generation 𝜂 on temperature is shown in Fig.11. From this figure it is 

observed that the heat is generated the buoyancy force increase which influence the flow rate 

to increase giving rise to the increase in the temperature profiles.      

 

It is observed from Fig.12 that an increase in prandtl number results in a decreasing the 

thermal boundary layer thickness and more uniform temperature distribution across the 

boundary layer. The reason is that smaller values of Pr are equivalent to increase in the 

thermal conductivity of the fluid and therefore heat is able to diffuse away from the heated 

surface more rapidly for higher values of Pr. Hence for smaller Pr, the rate of heat transfer is 

reduced. 

 

 For different values of Schmidt number Sc, the concentration profiles are plotted in Fig. 13. 

It is obvious that the influence of increasing values of Sc, the concentration distribution 

across the boundary layer decreases. 
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The influence of chemical reaction parameter  𝑘𝑟
2  on concentration profiles are plotted in Fig. 

14. It is obvious that the influence of increasing values of  𝑘𝑟
2 , the concentration distribution 

across the boundary layer decreases but later increases. 
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Table 1.: Effect of R on velocity, n=𝜖 =0.1, t= A=Gc=M=1, Pr=0.71, 𝑘𝑟
2=0.0, 𝜂=-0.13, Gr=2, Sc=0.22, K=0.5, Ec=0.01. 

 

  R 𝐶𝑓 

0.2 3.2622 

0.4 3.2947 

0.6 3.3071 

0.8 3.3144 

1.0 3.3199 

 

Table 2.: Effect of Ec on velocity, n=𝜖 =0.1, t= A=Gc=M=1, Pr=0.71,R=𝑘𝑟
2=0.0, 𝜂=-0.13, Gr=2, Sc=0.22, K=0.5 

  Ec 𝐶𝑓 

0.02 3.0246 

0.04 2.8878 
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0.06 2.7509 

0.08 2.6140 

0.10 2.4772 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3.: Effect of 𝑘𝑟
2  on velocity   ,n=𝜖 =0.1, t= A=Gc=M=1, Pr=0.71,R=0.0, 𝜂=-0.13, Gr=2, Sc=0.22, K=0.5,Ec=0.01.  

𝑘𝑟
2 𝐶𝑓 

0.2 3.1367 

0.5 3.0930 

1 3.0394 

2 2.9611 

3 2.9065 

 

Table 4.: Effect of Gr on velocity, n=𝜖 =0.1, t= A=Gc=M=1,Pr=0.71, R=𝑘𝑟
2=0.0, 𝜂=-0.13, Sc=0.22, K=0.5,Ec=0.01. 

Gr 𝐶𝑓 

4 2.1354 

6 -

1.7737 

8 -

10.130

4 

10 -

24.430

8 

12 -

46.171

1 

 

Table 5.: Effect of Gc on velocity, n= 𝜖  =0.1, t= A=M=1, Pr=0.71,R= 𝑘𝑟
2 =0.0, 𝜂 =-0.13, Gr=2, Sc=0.22, 

K=0.5,Ec=0.01.         
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Gc 𝐶𝑓 

2 3.5930 

3 4.0983 

4 4.6089 

5 5.1249 

6 5.6462 

 

Table 6.: Effect of M on velocity, n= 𝜖  =0.1, t= A=Gc=1, Pr=0.71,R= 𝑘𝑟
2 =0.0, 𝜂 =-0.13, Gr=2, Sc=0.22, 

K=0.5,Ec=0.01. 

M 𝐶𝑓 

2 3.3656 

4 3.4926 

6 3.6230 

8 3.7495 

10 3.8682 

                   

Table 7.: Effect of Sc on velocity, n= 𝜖  =0.1, t= A=Gc=M=1, Pr=0.71,R= 𝑘𝑟
2 =0.0, 𝜂 =-0.13, Gr=2, 

K=0.5,Ec=0.01. 

Sc 𝐶𝑓 

0.30 3.160

0 

0.66 3.082

7 

0.78 3.064

1 

1.00 3.036

1 

2.00 2.969

6 

     

Table 8.: Effect of Pr on velocity, n= 𝜖  =0.1, t= A=Gc=M=1,R= 𝑘𝑟
2 =0.0, 𝜂 =-0.13, Gr=2, Sc=0.22, 

K=0.5,Ec=0.01. 

 

Pr 𝐶𝑓 
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0.71 3.0930 

1 3.2071 

5 5.1072 

7 3.0884 

10 2.8915 

 

Table 9.: Effect of 𝜂  on velocity, n= 𝜖  =0.1, t= A=Gc=M=1, Pr=0.71,R= 𝑘𝑟
2 =0.0, Gr=2, Sc=0.22, 

K=0.5,Ec=0.01. 

𝜂 𝐶𝑓 

-0.13 3.0930 

-0.1 1.8865 

0.5 3.1869 

 0.1 3.2515 

0.13 3.2290 

 

Table 10.: Effect of Sc on velocity, n= 𝜖  =0.1, t= A=Gc=M=1,Pr=0.71, R= 𝑘𝑟
2 =0.0, 𝜂 =-0.13, 

Gr=2,K=0.5,Ec=0.01. 

Sc 𝐶𝑓 

1 3.3760 

1.5 3.4103 

2.0 3.4320 

2.5 3.4473 

3.0 3.4586 

 

Table 11.: Effect of Pr on temperature, n= 𝜖  =0.1, t= A=Gc=M=1,R= 𝑘𝑟
2 =0.0, 𝜂 =-0.13, Gr=2, Sc=0.22, 

K=0.5,Ec=0.01. 

Pr 𝑁𝑢/𝑅𝑒 

0.71 - 0.6666 

1.0 -1.1192 

5 - 

15.4602 

7 - 

14.8602 

10 - 
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21.3426 

 

Table 12.: Effect of R on temperature, n=𝜖 =0.1, t= A=Gc=M=1, Pr=0.71,𝑘𝑟
2=0.0, 𝜂=-0.13, Gr=2, Sc=0.22, 

K=0.5,Ec=0.01. 

R 𝑁𝑢/𝑅𝑒 

0.2 -0.5284 

0.4 -0.3924 

0.6 -0.2567 

0.8 -0.1210 

1.0 -0.0149 

 

Table 13.: Effect of Ec on temperature, n=𝜖 =0.1, t= A=Gc=M=1,Pr=0.71, R=𝑘𝑟
2=0.0, 𝜂=-0.13, Gr=2, Sc=0.22, 

K=0.5. 

Ec 𝑁𝑢/𝑅𝑒 

0.02 -0.6673 

0.04 -0.6687 

0.06 -0.6701 

0.08 -0.6715 

0.10 -0.6729 

 

Table 14.: Effect of 𝜂  on temperature, n= 𝜖  =0.1, t= A=Gc=M=1,Pr=0.71, R= 𝑘𝑟
2 =0.0,  Gr=2, Sc=0.22, 

K=0.5,Ec=0.01. 

𝜂 𝑁𝑢/𝑅𝑒 

-0.13 -0.6666 

-0.1 -0.6732 

  0.5 -0.4128 

  0.1 -0.8798 

0.13 -0.9729 

 

Table 15.: Effect of K on temperature, n=𝜖 =0.1, t= A=Gc=M=1,Pr=0.71,R=𝑘𝑟
2=0.0, 𝜂=-0.13, Gr=2, Sc=0.22, 

Ec=0.01. 

K 𝑁𝑢/𝑅𝑒 

1 -0.6690 

1.5 -0.6720 

2.0 -0.6747 

2.5 -0.6770 
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3.0 -0.6789 

 

Table 16.: Effect of M on temperature, n=𝜖 =0.1, t= A=Gc=1, Pr=0.71, R=𝑘𝑟
2=0.0, 𝜂=-0.13, Gr=2, Sc=0.22, 

K=0.5,Ec=0.01. 

M 𝑁𝑢/𝑅𝑒 

2 -0.6667 

4 -0.6678 

6 -0.6690 

8 -0.6700 

10 -0.6708 

 

Table 17.: Effect of Sc on concentration, n= 𝜖  =0.1, t= A=Gc=M=1,Pr=0.71,R= 𝑘𝑟
2 =0.0, 𝜂 =-0.13, Gr=2, 

K=0.5,Ec=0.01. 

Sc 𝑆ℎ/𝑅𝑒 

0.30 -0.3000 

0.66 -0.6600 

0.78 -0.7800 

1 -1.0 

2 -2.0 

 

 Table 18.: Effect of 𝑘𝑟
2   on concentration, n=𝜖  =0.1, t= A=Gc=M=1,Pr=0.71,R=0.0, 𝜂=-

0.13, Gr=2, Sc=0.22, K=0.5,Ec=0.01. 

𝑘𝑟
2 𝑆ℎ/𝑅𝑒 

0.2 -0.3000 

0.5 -0.3000 

1.0 -o.3000 

2.0 -0.3000 

3.0 -0.3000 

 

Tables 1- 10 show the effects of the radiation parameter, chemical reaction, Eckert number, 

Grashof numbers, Schmidt number , and Prandtl number on the skin- friction coefficient. It is 

observed from this table that as radiation parameter, Grashof number for mass transfer, and 

Permeability K increases, the skin-friction coefficients increases, while as others increases 

skin-friction coefficient decreases. Also decreases in the heat generation Parameter effect, the 

skin-friction coefficient to increase. 
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Table 11 - 16 presents the radiation parameter increases the Nusselt number also increases, 

increase in chemical reaction, magnetic field, heat generation, Prandtl number, Eckert 

number,  the Nusselt  number  decreases.  

 

Table 17 - 18 reflects that the Sherwood number at the plate decreases with the increase of 

Schmidt number. As chemical reaction increases, Sherwood remains unchanged. 

 

 

 

4.  Conclusion 

Heat and mass transfer of MHD and dissipative fluid flow past a moving vertical porous plate 

with variable suction in the presence of chemical reaction, heat source, transfer magnetic 

field and oscillating free stream are carried out and the following conclusions were made: 

i.  a rise in the Grashof number causes an increase in the heavy flow of fluid velocity owing 

to the increase in quality of buoyancy force. The highest point of the velocity goes up quickly 

near the porous plate as buoyancy force for heat movement rises and rots the free stream 

velocity; 

ii.  the size of fluid velocity reaches a very high value with the rise of buoyancy force for a 

large amount of movement in the drops appropriately to reach a free stream velocity; 

iii.  the size of fluid velocity drops with the rise of molecular diffusivity of the magnetic field, 

while it rises with the increase of heat source; 

iv.  a rise in the chemical reaction parameter leads to reduction of the velocity as well as the 

species concentration. The hydrodynamic and the concentration boundary surface get thick as 

the reaction parameter goes up. 

v.  the size of fluid concentration reduces with the rise in chemical reaction parameter; 

vi. a rise in the radiation heat transfer leads to a fall in the size of fluid velocity and the height 

of fluid temperature inside the boundary surface and also a fall in the thickness of the velocity 

as well as thermal boundary layer; 

vii.  a rise in Prandtl number generates a fall in the thermal boundary layer and in totality less 

average temperature inside the boundary area being the lesser values of PR are same to the 

rise in the thermal conductivity of the fluid. Hence, heat is able to pass away from the heated 

surface quickly for higher values of PR. Due to this, for smaller Pr, the rate of heat movement 

are reduced; and 
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viii.  the level of fluid temperature falls with the rise of chemical reaction parameter, viscous 

dissipation effect and molecular diffusivity; while it rises alongside an increase of level of 

magnetic field and heat source. 
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