

245

A

ILJS-14-028

A Review of Algorithms for Fingerprint Image Acquisition, Preprocessing and

Minutiae Extraction

Adewole, K. S., Jimoh, R. G.* and Abikoye, O. C.

Department of Computer Science, University of Ilorin, Ilorin, Nigeria

Abstract

Biometric recognition distinguishes between individuals using physical, chemical or behavioral attributes of the

person. These attributes are called biometric identifiers or traits, and include fingerprint, palmprint, iris, face,

voice, signature, gaint, and DNA among others. Fingerprint recognition is one of the oldest and most reliable

biometric used for personal identification. Fingerprint has come a long way from tedious manual fingerprint

matching. The ancient procedure of matching fingerprints manually was extremely cumbersome and time-

consuming and required skilled personnel. In this paper, a review of algorithms for the various stages involved

in fingerprint recognition such as fingerprint image acquisition, segmentation, normalization, ridge orientation

estimation, ridge frequency, Gabor filtering, binarization, thinning, minutiae extraction, template generation,

and template matching is presented. It was established that minutiae features of a person fingerprint truly make

fingerprint of individual to be unique.

Keywords: Biometric, Fingerprint, Algorithm, Filtering, Minutiae

1. Introduction

Fingerprint recognition is one of the most popular biometric techniques used in automatic

personal verification and identification (Naser, 2011). Most fingerprint verifications systems

use minutiae point matching. The minutiae points are the points present in fingerprint images

where the fingerprint ridges either end or splits up into two new ridges. There are two main

approaches to minutia detection in fingerprint images: binary detection and direct grayscale

detection (Erikson, 2001). This paper considers the first approach to minutiae detection and

present extensive studies in this area. There are several stages involved in extracting minutiae

points from binarized fingerprint image. These stages include fingerprint image acquisition,

segmentation, normalization,

*Corresponding Author: Jimoh, R. G.

Email: jimoh_rasheed@yahoo.com

Ilorin Journal of Science

Volume 1, Number 2, 2014, pp. 245 – 263 (Printed in Nigeria)

ISSN: 2408 – 4840 © 2014 Faculty of Physical Sciences, University of Ilorin

https://doi.org/10.54908/iljs.2014.01.02.002

JOURNAL OF SCEINCE

ILORIN

mailto:abikoye.o@unilorin.edu.ng

Adewole et al. ILORIN JOURNAL OF SCIENCE

246

ridge orientation estimation, ridge frequency, Gabor filtering, binarization, thinning, minutiae

extraction, template generation, and template matching. The minutiae are defined as the

pattern created and the uniqueness of how ridges end, split and join, or appear as a simple

dot. The minutiae consists of bifurcations, ridge dots, ridge endings and enclosures, to ensure

further uniqueness, the minutiae are further broken down into sub minutiae such as pores,

crossovers, deltas. The pores are tiny depressions within the ridge on a fingerprint; the

crossover creates an X pattern within the ridge of a fingerprint and deltas create a triangle

shaped pattern within the ridge of a fingerprint. Identification in a fingerprint technology

exists when an individual fingerprint is compared against a known source called the

fingerprint template (Chirillo & Scott, 2007).

Crossing Number (CN) approach is the most commonly used method of minutiae feature

extraction from binarized fingerprint image (Roli et al., 2011; Raymond, 2003; Anil et al.,

2008). This method extracts the ridge endings and bifurcations from the skeleton image. The

minutiae features are extracted by scanning the local neighborhood of each ridge pixel in the

image using a 3 x 3 window (Sunny, 2012). The CN value is then computed, which is defined

as half the sum of the differences between metric pairs of adjacent pixels as shown in

equation 1.1:

,

where Pi is the pixel value in the neighborhood of P. The neighborhood of a pixel P are

scanned in anti-clockwise direction as shown in Table 1.1

(1.1)

Adewole et al. ILORIN JOURNAL OF SCIENCE

247

Table 1.1: Ridge pixel local neighborhood

Using the properties of the CN in Table 1.2, the ridge pixel can be classified as a ridge ending

if it has only 1 neighboring ridge pixel in the widow or as bifurcation if it has three

neighboring ridge pixels or non-minutiae point.

Table 1.2: Properties of Crossing Number

CN Property

0 Isolated point

1 Ridge ending point

2 Continuing ridge point

3 Bifurcation point

4 Crossing point

Each of the extracted minutiae points has x and y coordinates, orientation of the associated

ridge segment (θ), and the type of minutiae.

2. Materials and Methods

Fig. 1 shows the conceptual diagram presented in this paper to guide the review process. In

this section, the various components in the framework are discussed and their algorithms

presented.

Adewole et al. ILORIN JOURNAL OF SCIENCE

248

Fig. 1: Conceptual diagram of the system

Fingerprint Sensors

Fingerprint sensor is an electronic device used to capture a digital image of the fingerprint

pattern (Cappelli et al., 2006). The captured image is called a live scan. This live scan is

digitally processed to create a biometric template (a collection of extracted minutiae points)

which is stored and used for matching. Different types of fingerprint scanners include

capacitive sensor, optical sensor, thermal sensor, pressure sensor, and RF sensor among

others (Sharat, 2005; http://360biometrics.com/faq/fingerprint_scanners.php). Figure 2 shows

a SecuGen fingerprint optical sensor.

Fig 2: Secugen fingerprint sensor

Match

?

Enrolment

Sensor

Fingerprint

Image

Acquisition

Fingerprint

Image

Enhancement

Fingerprint

Minutiae

Feature

Extraction

Fingerprint

Template

Generation

Database

Allow

access

Y

N

Adewole et al. ILORIN JOURNAL OF SCIENCE

249

Fingerprint Image Acquisition

A fingerprint is a unique pattern of ridges and valleys on the surface of a finger of an

individual. This fingerprint is captured using any of the fingerprint sensors mentioned in the

previous section. A ridge on the fingerprint is defined as a single curved segment, and a

valley is the region between two adjacent ridges. Minutiae points are the local ridge

discontinuities, which are of two major types: ridge endings and bifurcations. Previous

research has shown that a good quality fingerprint image has around 40 to 100 minutiae

(Roli, Priti & Punam, 2011). In the fingerprint image acquisition module, fingerprint scanner

is used to capture the fingerprint image of the user. The algorithm for this module is as

follows:

FingerPrintImageAqc()

{

Step 1: Connect fingerprint optical scanner through the USB port

Step 2: Place fingerprint on the scanner

Step 3: Scan the fingerprint image (I) at 500 dots per inch (dpi)

Step 4: Save the fingerprint image (I) on the computer system

Step 5: Stop

}

Fingerprint Image Enhancement

This module contains several sub-modules in order to enhance the quality of the scanned

fingerprint image in FingerPrintImageAqc() module discussed above. The sub-modules as

well as their algorithms are described in this section:

Adewole et al. ILORIN JOURNAL OF SCIENCE

250

Segmentation() module: This module is used to separate the foreground of the fingerprint

image from its background. The foreground regions correspond to the clear fingerprint area

containing the ridges and valleys corresponding to the area of interest. The background

corresponds to the regions outside the borders of the fingerprint area and these regions do not

contain any valid fingerprint information (Raymond, 2003).

Normalization() module: The normalization module is used to standardize the intensity

values in an image by adjusting the range of grey-level values so that it lies within a desired

range of values.

RidgeOrientation() module: Ridge orientation field of a fingerprint image is the local

orientation of the ridges contained in the fingerprint. Calculating the estimate of this

orientation is a very important step as the subsequent Gabor filtering stage relies on the local

orientation in order to effectively improve the fingerprint image.

RidgeFrequency() module: This module is used to extract another important parameter that

is used by Gabor filter. This parameter represents the local frequency of the ridges in a

fingerprint image.

GaborFiltering() module: The computed ridge orientation and ridge frequency parameters

are used by this module for Gabor filter. Gabor filter has frequency-selective and orientation-

selective properties. The Gabor filter is applied to the fingerprint image by spatially

convolving the image with the filter (Raymond, 2003).

Binarization() module: Binarization is the process of converting a gray-scale image to

binary image. In a gray-scale fingerprint image, a pixel can take on 256 different intensity

levels. The threshold value is used to convert grayscale image to binary. According to

Ghazali (2005), the various techniques that can be used to convert gray-scale image to binary

image are Global thresholding, Regional average thresholding, Histogram based thresholding,

and Niblack binarization. However, Regional Average Thresholding (RAT) method was

Adewole et al. ILORIN JOURNAL OF SCIENCE

251

described in this paper because, it preserves useful information in the fingerprint image

unlike global thresholding technique that can corrupt the fingerprint image.

Thinning() module: Thinning is a morphological operation that successively erodes away

the foreground pixels until they are one pixel wide (Raymond, 2003; Sozan, 2011). The

application of the thinning algorithm to a fingerprint image preserves the connectivity of the

ridge structures while forming a skeletonized version of the binary image. This skeleton

image is then used in the subsequent extraction of minutiae. The algorithms for these

modules are as follows:

Segmentation(fingerprint_image I)

{

Step 1: Set a global threshold (T) for the segmentation operation

Step 2: Divide the fingerprint image (I) into blocks of size W x W

Step 3: Compute the mean grey-level value M(k) for each block k in the image (I) i.e

 For k = 0 to N where N is the number of blocks

 For i = 0 to W-1

 For j = 0 to W-1

 Sum = Sum + I(i, j) where I(i, j) is the grey-level value at pixel (i, j)

 End j

 End i

 M(k) = Sum/W where M(k) is the mean grey-value for block k

 End k

Step 4: Obtain the grey-scale variance V(k) for each block k i.e

 For i = 0 to W-1

 For j = 0 to W-1

Adewole et al. ILORIN JOURNAL OF SCIENCE

252

 V(k) = V(k) + (1/W2 * (I(i, j) - M(k))2) where I(i, j) is the grey-level

value at pixel (i, j)

 end j

 end i

 If(V(k) < T) then

 Assign block k in image (I) as a background

 k = k +1

 goto Step 4 until no more block to check

 else

 Assign block k in image (I) as a foreground

 k = k + 1

 goto Step 4 until no more block to check

 endif

Step 5: Stop

}

Normalization(segmented_image I)

{

Step 1: Obtain the mean value (M) of the image (I) i.e

 For i = 0 to H-1 where H is the number of rows in the fingerprint image (I)

 For j = 0 to W-1 where W is the number of columns in the fingerprint image (I)

 Sum = Sum + I(i, j) where I(i, j) is the grey-level value at pixel (i, j)

 End j

 End i

 M = Sum/Total where Total is the size of the segmented fingerprint image

Adewole et al. ILORIN JOURNAL OF SCIENCE

253

Step 2: Obtain the variance (V) of the image (I) i.e

 For i = 0 to H-1

 For j = 0 to W-1

 D = D + (I(i ,j) - M)2 where D is the deviation value

 End j

 End i

 V = sqrt(D/Total)

Step 3: Compute the desired mean value M0 and variance V0 respectively

Step 4: Obtain the normalized grey-level value N(i,j) at pixel (i,j) in the segmented fingerprint

image (I) such that:

 For i = 0 to H-1

 For j = 0 to W-1 where W is the width of the entire fingerprint image (I)

 If(I(i, j) > M) then

 N(i, j) = M0 + sqrt(V0 * (I(i,j) - M)2)

 Else

 N(i, j) = M0 - sqrt(V0 * (I(i,j) - M)2)

 Endif

 End j

 End i

Step 5: Stop

}

RidgeOrientation(Normalized_image N)

{

Step 1: Divide the normalized fingerprint image (N) into a block of size W x W

Adewole et al. ILORIN JOURNAL OF SCIENCE

254

Step 2: For each pixel in the block k, compute the gradients 𝜕𝑥(𝑖, 𝑗) and 𝜕𝑦(𝑖, 𝑗) which are

the gradient magnitudes in the x and y directions, respectively. The horizontal Sobel operator

is used to compute 𝜕𝑥(𝑖, 𝑗) and the vertical Sobel operator is used to compute 𝜕𝑦(𝑖, 𝑗).

Step 3: Obtain the local orientation of the block centered at pixel (i, j) as follows:

 
+

−=

+

−=

=
)2/(

)2/(

)2/(

)2/(

),(),(2),(
wi

wiu

wj

wjv

vuyvuxjiVx (2.1)

),(),(),(2
)2/(

)2/(

)2/(

)2/(

2 vuyvuxjiVy
wi

wiu

wj

wjv

=  
+

−=

+

−=
 (2.2)

),(

),(
tan

2

1
),(1

jiVx

jiVy
ji −= (2.3)

Where 𝜃(𝑖, 𝑗) is the least square estimate of the local orientation at the block centered at pixel

(i, j).

Step 4: The orientation field is then smooth in a local neighborhood using a Gaussian filter.

The orientation is firstly converted into a continuous vector field, which is defined as:

)),(2cos(),(jijix = (2.4)

)),(2sin(),(jijiy = (2.5)

Where x and y are the x and y components of the vector field, respectively. Gaussian

smoothing is then performed after the vector field is computed. This can be obtained as

follows:

 



−
=



−
=

−−=
2

2

2

2

),(),(),(

w

w
u

w

w
v

vwjuwixvuGjix (2.6)

Adewole et al. ILORIN JOURNAL OF SCIENCE

255

 



−
=



−
=

−−=
2

2

2

2

),(),(),(

w

w
u

w

w
v

vwjuwiyvuGjiy (2.7)

Where G is a Gaussian low-pass filter of size w x w .

Step 5: The final step is to obtain the smooth orientation field O at pixel (i, j). This can be

obtained as follows:

),(

),(
tan

2

1
),(1

jix

jiy
jiO




= −

 (2.8)

Step 6: Stop

}

RidgeFrequency(Normalized_image N)

{

Step 1: Divide the normalized fingerprint image (N) into a block of size W x W

Step 2: Project the grey-level values of all the pixels (i, j) located inside each block along a

direction orthogonal to the local ridge orientation

Step 3: Count the median number of pixels between consecutive minima points in the

projection to obtain the ridge spacing S(i, j)

Step 4: Obtain the ridge frequency F(i, j) for a block centered at pixel (i, j) such that:

 F(i, j) = 1/S(i, j) (2.9)

Step 5: Stop

}

GaborFiltering(image O, image F, image N)

{

Step 1: Obtain the enhanced image E using Gabor filter as follows

Adewole et al. ILORIN JOURNAL OF SCIENCE

256

 
−= −=

−−=
2/

2/

2/

2/

),()),(),,(;,(),(
wx

wxu

wy

wyv

vjuiNjiFjiOvuGjiE (2.10)

where O is the orientation image, F is the ridge frequency image, N is the normalized

fingerprint image, and wx and wy are the width and height of the Gabor filter mask,

respectively

Step 2: Stop

}

Binarization(Enhanced_image E)

{

Step 1: Divide the enhanced image (E) into a block of size W x W e.g 8 x 8 and set k to one

i.e k = 1

Step 2: Calculate the average grey-level value for the block k i.e 8 x 8 such that

 for i = 0 to N-1 where N is the size of the block k

 for j = 0 to N-1

 sum = sum + E(i, j) where E(i, j) is the gray-scale level value at pixel (i, j)

 end j

 end i

 Tk = 1/N2 * sum where Tk is the average grey-level value for block k

Step 3: Threshold the left-most part of block k by comparing Tk with each pixel (i, j) in E(i, j)

such that:

 If(E(i, j) < Tk) then

 - Set the pixel to zero (i.e black) where black is ridges

 Else

 - Set the pixel to one (i.e white) where white is valleys or furrows

Adewole et al. ILORIN JOURNAL OF SCIENCE

257

 Endif

Step 4: Threshold the right-most part of block k by comparing Tk with each pixel (i, j) in E(i,

j) for that part using the same method in Step 3

Step 5: Increase k by 1 and repeat Step 2 to 4 until all the blocks have been threshold

Step 6: Output the fingerprint image as a binarized fingerprint image (B)

Step 7: Stop

}

Thinning(binarized_image B)

{

Step 1: Compute the block directional image such that:

 For i = 0 to N-1 where N is the number of rows in the image

 For j = 0 to M-1 where M is the number of columns in the image

 - Find any black pixel in the image and assign this pixel as Ridge

 Meeting Point (RMP) which might be a point on the ridge

 While (RMP = true)

 - Find Ridge Continuity Points (RCP) on the ridge, the

 thinned points of the ridge.

 - Check ridge spacing at each step, if ridge spacing changes

 rapidly, look for a bifurcation point.

 - During this operation, remove the black pixels from

 original image,which is already processed by the algorithm.

 if all pixels are processed on the ridge then

 Assign RMP = false

 else

 Assign RMP = true

Adewole et al. ILORIN JOURNAL OF SCIENCE

258

 Endif

 endwhile

 end j

 end i

Step 2: Output the thinned image

Step 3: Stop

}

Fingerprint Minutiae Feature Extraction

After the fingerprint image enhancement, the next stage is to extract the minutiae features of

the enhanced fingerprint image. The algorithm for this extraction using Crossing Number

method is described below:

MinutiaeExtraction(thinned_image T)

{

 Step 1: Divide the thinned image T into windows of size 3 x 3 and set k = 1

 Step 2: Center the kth 3 x 3 window at point P

 Step 3: Compute the crossing number CNk for the window k such that

 CNk = 0.5 ∑ |𝑃𝑖 − 𝑃𝑖 + 1|, 𝑃9 = 𝑃18
𝑖=1 (2.2)

 If (CNk = 1) then

 - Assign the center point P in the window k as ridge ending

 Elseif (CNk = 3) then

 - Assign the center point P in the window k as ridge bifurcation

 Endif

 Step 4: Increase k by 1 and repeat Step 2 to 3 until all the 3 x 3 windows have been scanned

Step 5: Output the new image

Adewole et al. ILORIN JOURNAL OF SCIENCE

259

 Step 6: Stop

}

Fingerprint Template Generation

This stage extracts the minutiae features of the fingerprint image and generates a template

from these features. The algorithm for this is described below:

FingerprintTemplate(thinned_image T)

{

 Step 1: Scan the thinned fingerprint image T and generate template Tp from the image such

that

 for i = 0 to N-1 where N is the number of rows,

 for j = 0 to M-1 where M is the number of columns

 - Start scanning the thinned fingerprint image T from the

 origin point line by line and find any black pixel in the thinned image

 - A window of size of 3 x 3 is centered at the point

 - Count the number of black pixels within the 3 x 3 window as N

 if (N = 2) assign this point as ridge endings

 if (N = 3) assign this point as ridge continuity

 if (N > 3) assign this point as bifurcations

 end j

 end i

 Step 2: Output the Template Tp

 Step 3: Stop

}

Enrollment

Adewole et al. ILORIN JOURNAL OF SCIENCE

260

This is the stage where the template of the user fingerprint will be saved into the database

along with other user's details for subsequent authentication. The algorithm is shown below:

Enrollment(Template Tp, array biodata[], array otherinfo[])

{

 Step 1: Connect to the database

 Step 2: Create a new user record in a user table and save both the array element biodata[]

and the user fingerprint template Tp

 Step 3: Save the user's other info if any into the database

 Step 4: Close the database connection

 Step 5: Stop

}

Fingerprint Matching

At this stage, the user's fingerprint is captured and compare with the stored templates in the

database. If the fingerprint corresponds to any of the enrolled fingerprint templates, access to

the protected data or information will be granted, otherwise, the user will be denied access.

The algorithm is described below:

FingerprintMatching(Template T1, Template Tp)

{

Step 1: Set N = 1, Scount = 0

Step 2: Obtain the minutiae sets S1 and S2 for each fingerprint template T1 and TpN

respectively where T1 is the test template and TpN is the enrolled template at position N in the

database.

Step 3: For each of the sets S1 and S2, obtain the minutiae type e1 and e2, coordinates c1 and

c2 corresponding to the coordinate of the minutiae type, and the orientation angles o1 and o2

of the minutiae points for sets S1 and S2 T1 and TpN respectively.

Adewole et al. ILORIN JOURNAL OF SCIENCE

261

Step 4: Compare if S1 and S2 are paired such that:

 If (TYPE (e1) = TYPE (e2)) and (DIST (c1, c2) DT) and (ANGLE (o1, o2) AT)

then

 Increase Scount by 1

 Goto Step 3 until no more sets to pair

 Else

 Goto Step 3 until no more sets to pair

 Endif

Here, DT and AT are the maximum tolerance for translation and rotation respectively.

Step 5: Obtain the total number of sets in T1 and call it N1

Step 6: Obtain the total number of sets in TpN and call it N2

Step 7: Compute the similarity measure M between T1 and TpN such that:

 𝑀 = √𝑆𝑐𝑜𝑢𝑛𝑡 ∗ 𝑆𝑐𝑜𝑢𝑛𝑡/(𝑁1 ∗ 𝑁2) (2.3)

Step 8: Compare the source of the two fingerprint images such that:

 If (M >= T) then (where T is a threshold)

 - The two fingerprint images T1 and TpN are from the same source

 - Set Match = True

 - Goto Label

 Else

 - The two fingerprint images are not from the same source

 - Set Match = false

 - Increase N by 1

 - Goto Step 2 //this is necessary since identification method

 will be used

 Endif

Adewole et al. ILORIN JOURNAL OF SCIENCE

262

 Exit

 Label: Return Match

Step 9: Stop

}

4. Conclusion

This paper presents a review of the various stages involved in fingerprint identification using

binarized fingerprint image. Algorithms for the different stages are presented. Experience has

shown that there are several problems attributed to the use of identity cards, paper sheets, and

knowledge based techniques in uniquely identifying individuals. Employing biometric for

individual identification provides us with a batter approach for securing important data and

information.

The naturalness in the use of fingerprint as a biometric trait makes it a reliable access control

technique. The fact that individual no longer needs to memorize password, carry identity

cards, and other documents for identification explain the ease of use of biometric system.

Acknowledgement

The authors acknowledge the comments of the reviewers for their suggestions and comments in improving the

quality of the manuscripts.

References

Anil, K. J., Arun, A. R. & Patrick, F. (2008): Handbook of Biometrics. USA: Springer, 1–

564.

Cappelli, R., Maio, D., Maltoni, D., Wayman, J. L., & Jain, A. K. (2006): Performance

 evaluation of fingerprint verification systems. Pattern Analysis and Machine

 Intelligence, IEEE Transactions on, 28(1), 3-18.

Chirillo, J. & Scott, B. (2007): Implementing Biometric Security. Indianapolis: John

 Wiley Publishing Inc., 1–432.

Erikson, M. (2001): Biometrics Fingerprint based identity verification. M.Sc. Thesis,

 Department of Computing Science, UMEA University.

Ghazali, B. S. (2005): Design and Development of an Automated Fingerprint Verification

 System. Retrieved February 3rd, 2013 from http://www.eprints.utm.my/4348/1/74021.pdf

http://www.eprints.utm.my/4348/1/74021.pdf

Adewole et al. ILORIN JOURNAL OF SCIENCE

263

Naser, Z. (2011): Minutiae-based Fingerprint Extraction and Recognition. Kuwait: Arab

 Open University. Croatia: InTech., Chapter 3, 55-79.

Raymond, T. (2003): Fingerprint Image Enhancement and Minutiae Extraction. M.Sc.

Thesis, School of Computer Science and Software Engineering, University of

Western Australia, 1 - 63.

Roli, B., Priti, S. and Punam, B. (2011): Minutiae Extraction from Fingerprint Images- a

 Review. International Journal of Computer Science Issues, 8(5), 74-85.

Sharat, S. C. (2005): Online Fingerprint Verification System. M.Sc. Thesis, Department of

 Electrical Engineering, State University of New York, Buffalo.

Sozan, A. M. (2011): Fingerprint Identification Based on Skeleton Minutiae Extraction.

 ICGST AIML, 161-165. Retrieved 9th October, 2013 from http://www.icgst.com

Sunny, A. S. and Rudi, T. Y. (2012): Adaptable Fingerprint Minutiae Extraction Algorithm

 Based on Crossing Number Method for Hardware Implementation Using

 FPGADevice. International Journal of Computer Science, Engineering and

 Information Technology, 2(3), 1-30.

SecuGen (2013): A state-of-the-art fingerprint identification solution that allows you to

instantly identify employee, customers and partners. Retrieved 20th April, 2013 from

http://360biometrics.com/faq/fingerprint_scanners.php.

