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Abstract 

In this study,  comparison between the classical ordinary least square (OLS) regression technique and the Bayesian 

conjugate normal linear regression method when the data satisfy all the necessary assumptions of OLS technique is 

presented. The Bayesian normal linear regression model was fitted using Normal-Gamma conjugate prior. Results 

from Monte Carlo study showed that the OLS estimator is as good as the Bayesian estimator in terms of the 

closeness of their estimated parameters to the true values. However, using the criteria of the mean square errors of 

parameters’ estimates and other performance indices, the results showed that Bayesian estimator is more efficient,  

more consistent and relatively more stable than the classical least squares method even when the sample data satisfy 

all the necessary assumptions of the OLS method. The apparent better performance of Bayesian estimator over the 

OLS is justified by the prior information about the data that Bayesian technique employed in its estimation. 

Therefore, it could be concluded that if reliable information about the data under investigation is available, Bayesian 

regression technique(s) that would make use of such information should be preferred for efficient model’s 

estimation and better inference. The R statistical package (www.cran.org) was employed for all the analysis in this 

study.  

Keywords: Bayesian conjugate normal linear regression, ordinary least squares, Normal-Gamma conjugate prior, 

Mean Square Error, Credible interval 

1. Introduction 

A number of real life phenomena often call for the establishment of some form of relationships 

among several measurable quantities to aid meaningful judgement. Such a relationship is simply 

formalized through the concept of (linear and non-linear) regression techniques (Yahya and 

Olaifa, 2014).  Consider a multiple linear regression model that connects a quantitative response 

of interest 𝑦 and a set of metrical and/or categorical covariates 𝑥0,  𝑥1, … , 𝑥𝑘 of the form 

 𝑦 = 𝑥0𝛽0 + 𝑥1𝛽1+  .  .  . + 𝑥𝑘𝛽𝑘  + 𝜀                                                 (1) 

where 𝜷 = (𝛽0,  𝛽1, … , 𝛽𝑘)′ is a vector of regression parameters to be estimated and 𝜀 is the  

random error term of the model with the assumption that 𝜀~𝑁(0, 𝜎2). In order to have an  
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intercept model, the value of 𝑥0 in equation (1) is simply set to 1 across all the samples.  Within 

the frequentist framework, a celebrated method of the ordinary least squares (OLS) (Gujarati, 

2004) is usually an appealing technique to estimate the regression model in (1) when the 

underlying assumptions for its usage are met by the data. Some of these assumptions are that of 

the independent samples, constancy of error variance and normality of model error term among 

others (Greene, 2000; Yahya et al., 2008). The OLS technique simply minimizes the error sum of 

squares of the regression model and has been reported to be the best linear unbiased estimator 

(BLUE) of the regression model in (1) (Gujarati, 2004).  

Under Bayesian reasoning, whenever relevant prior information and belief about the behaviour 

of the situation being modelled are available and known to the investigator, it may be desirable 

to make use of such information in the estimation of the regression model in (1). Making use of 

such information is expected to improve the efficiency of the estimated regression model 

(Barber, 2012).  

If the sample data satisfy all the necessary conditions that underlie the use of the least square 

technique, the OLS estimator becomes more efficient and would produce the best linear unbiased 

estimates of the regression parameters. However, if prior information about, say, the functional 

forms of the model’s parameters exists for example, the use of such information in model’s 

estimation may influence the behaviour of the estimators.  

The present work therefore, is intended to examine the performance of both the frequentist 

(OLS) and Bayesian estimators for modelling linear regression model (1) given that all the 

assumptions that underlying the use of the OLS estimator are met and that prior information on 

the functional forms of the regression parameters is available. While the Bayesian estimator 

would make use of the known prior information to improve its performance, the OLS technique 

is expected to efficiently model the data since all the necessary conditions required for its usage 

are met by the data. Using a Monte Carlo approach, the assessment criteria of the mean square 

error, the 95% confidence and credible intervals of parameters’ estimates shall be employed to 

evaluate the performances of the two forms of estimation at varying sample sizes.   

2. Materials and Methods 

In this section, brief overview of the classical OLS and Bayesian conjugate normal linear 

regression techniques for estimating the regression model (1) are provided.  

Let the matrix representation of the linear regression model (1) be given by  
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                                                               𝑦 = 𝑋𝛽 + 𝜀                                                              (2) 

where 𝑦 is the 𝑛 × 1 vector of responses, 𝑋 is the 𝑛 × 𝑝 matrix of predictor variables, 𝛽 is the 

𝑝 × 1vector of the regression coefficients while 𝜀 is the 𝑛 × 1 vector of random noise of the 

model that is assumed to have independent Gaussian density with zero mean and a constant 

variance 𝜎2, i.e. 𝜀~𝑁(0, 𝜎2). The normality assumption on 𝜀 gave the name normal linear 

regression model often call model (2) (Gujarati, 2004). 

2.1 Brief Overview of the OLS Estimation 

Traditionally, the least square estimator of the linear regression model (2) seeks to minimize the 

residual sum of square 𝑆𝑆𝐸 = ∑ (𝑦𝑖  − 𝑋𝑖�̂�)2𝑛
𝑖=1  in model (2). The estimated vector �̂� that 

minimizes parameter 𝛽 is called the least squares estimate of 𝛽 and is simply computed by  

                                                          �̂�𝑜𝑙𝑠 = (𝑋𝑇𝑋)−1(𝑋𝑇𝑦)                                                   (3)             

The 100(1- 𝛼)% confidence interval on  �̂�𝑜𝑙𝑠 at Type I error rate 𝛼 is obtained as  

                                                     �̂�𝑜𝑙𝑠 ± (𝑡1− 
𝛼

2
,   𝑛−𝑘  ×  𝑆𝐸(�̂�𝑜𝑙𝑠))                                         (4) 

where 𝑆𝐸(�̂�𝑜𝑙𝑠) = √𝜎2̂(𝑋𝑇𝑋)−1 and 𝜎2̂ is computed by 

                                            𝜎2̂ =
1

𝑛−𝑘
𝑆𝑆𝐸 =

1

𝑛−𝑘
∑ (𝑦𝑖  − 𝑋𝑖�̂�)2𝑛

𝑖=1                                        (5) 

2.2 Bayesian Conjugate Linear Regression Model Estimation 

Estimation of the linear regression model (2) using Bayesian techniques can be performed 

through the following three steps (Simon, 2009); 

i.) Determine the likelihood function of the unknown parameters to be estimated given 

the data. 

ii.) Specify the prior for all the unknown parameters. 

iii.) Determine the posterior distribution of the parameters given the data. 

2.2.1 The Likelihood Function 

Suppose 𝑌1, … , 𝑌𝑛 be a set of i.i.d random samples of size 𝑛 from discrete/continuous density 

function 𝑓(𝑦𝑖; 𝜃) with an unknown parameter 𝜃. Then, the likelihood function of 𝜃 is given by 

𝐿(𝜃) =  ∏ 𝑓(𝑦𝑖; 𝜃)𝑛
𝑖=1 .  
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It is noted, from the linear regression model 𝑦 = 𝑋𝛽 + 𝜀 in (2) that 𝜀~𝑁(0, 𝜎2𝐼𝑛 ). This shows 

that 𝑦~𝑁(𝑋�̂�, 𝜎2𝐼𝑛 ) and if we set 𝑣𝑎𝑟(𝜀) = 𝜎2𝐼𝑛  = ℎ−1𝐼𝑛, we have the representation that 

                                                                 𝑦~𝑁(𝑋�̂�, ℎ−1𝐼𝑛)                                                     (6) 

where 𝐼𝑛 is the unit matrix of dimension 𝑛. Thus, 𝜀~𝑁(0, ℎ−1𝐼𝑛) and ℎ = 𝜎−2. The notation that 

𝑣𝑎𝑟(𝜀) = ℎ−1𝐼𝑛 is a compact notation for 𝑣𝑎𝑟(𝜀𝑖) = ℎ−1 and 𝑐𝑜𝑣(𝜀𝑖, 𝜀𝑗) = 0 for 𝑖, 𝑗 = 1, … . 𝑛 

and 𝑖 ≠ 𝑗. 

All elements in predictor matrix 𝑋 of model (2) are either fixed (i.e not random variables) or 

random. If they are random variables, they are independent of all elements of 𝜀 with a probability 

density function 𝑝(𝑋|𝛾) where 𝛾 is a vector of parameters that does not include 𝛽 and 

ℎ(Lindley and Smith, 1972). 

The above statement implies that we can proceed by not conditioning on 𝑋 and treat 𝐿(𝛽, ℎ|𝑦) as 

the likelihood function of parameter vector 𝜔 = (𝛽, ℎ) from the joint density function 

𝑝(𝑦|𝑋, 𝛽, ℎ). We drop 𝑋 from the conditioning set to simplify the notation. From the 

representation in (6) and using the definition of multivariate normal density, we can write the 

likelihood function of 𝑦 as: 

                                   𝐿(𝛽, ℎ|𝑦)  =
ℎ

𝑛
2

(2𝜋)
𝑛
2

{𝑒𝑥𝑝 [
−ℎ

2
(𝑦 − 𝑋𝛽)𝑇(𝑦 − 𝑋𝛽)]}                             (7) 

The product (𝑦 − 𝑋𝛽)𝑇(𝑦 − 𝑋𝛽) in (7) can be expressed in terms of the OLS estimator 𝑏 of 𝛽 

as: 

                     (𝑦 − 𝑋𝛽)𝑇(𝑦 − 𝑋𝛽) = (𝑦 − 𝑋𝛽 + 𝑋𝑏 − 𝑋𝑏)𝑇(𝑦 − 𝑋𝛽 + 𝑋𝑏 − 𝑋𝑏)               (8) 

where 𝑏 = (𝑋𝑇𝑋)−1(𝑋𝑇𝑦). Thus, we have   

                 (𝑦 − 𝑋𝛽)𝑇(𝑦 − 𝑋𝛽) = (𝑦 − 𝑋𝑏)𝑇(𝑦 − 𝑋𝑏) + (𝑏 − 𝛽)𝑇(𝑋𝑇𝑋)(𝑏 − 𝛽)              (9) 

Recall that the estimator 𝑠2 of the variance of the model 𝜎2 is 

                                                              𝑠2 =
(𝑦−𝑋𝑏)𝑇(𝑦−𝑋𝑏)

𝑛−𝑘
                                                   (10) 

Thus, 

                                                (𝑛 − 𝑘)𝑠2 = (𝑦 − 𝑋𝑏)𝑇(𝑦 − 𝑋𝑏)                                         (11) 

Substituting (9) and (11) in (7) to have 
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                   𝐿(𝛽, ℎ|𝑦)  =
ℎ

𝑛
2

(2𝜋)
𝑛
2

{𝑒𝑥𝑝 [
−ℎ

2
((𝑛 − 𝑘)𝑠2 + (𝑏 − 𝛽)𝑇(𝑋𝑇𝑋)(𝑏 − 𝛽))]}              

and setting 𝑣 = 𝑛 − 𝑘, which is interpreted as the degree of freedom in the above to have 

                           𝐿(𝛽, ℎ|𝑦)  =
ℎ

𝑛
2

(2𝜋)
𝑛
2

{𝑒𝑥𝑝 [
−ℎ

2
(𝑣𝑠2 + (𝑏 − 𝛽)𝑇(𝑋𝑇𝑋)(𝑏 − 𝛽))]} .               (12) 

If (12) is partitioned by using  𝑛 = 𝑣 + 𝑘, the likelihood function for 𝜔 = (𝛽, ℎ) becomes  

               𝐿(𝛽, ℎ|𝑦)  =
1

(2𝜋)
𝑛
2

{ℎ
𝑘

2 𝑒𝑥𝑝 [
−ℎ 

2
(𝑏 − 𝛽)𝑇(𝑋𝑇𝑋)(𝑏 − 𝛽)]} {ℎ

𝑣

2 𝑒𝑥𝑝 [
−ℎ𝑣

2𝑠−2
]}.           (13) 

The quantity {ℎ
𝑘

2 𝑒𝑥𝑝 [
−ℎ 

2
(𝑏 − 𝛽)𝑇(𝑋𝑇𝑋)(𝑏 − 𝛽)]} in (13) resembles the kernel of the 

multivariate Gaussian density while {ℎ
𝑣

2 𝑒𝑥𝑝 [
−ℎ𝑣

2𝑠−2]} also looks like the kernel of the gamma 

density. These results simply suggest a normal-gamma prior for the likelihood function (Koop, 

2003). 

2.2.2 Specifications for Priors and Their Distributions 

Priors are meant to reflect any information the researcher has before seeing the data which he 

wishes to incorporate in the analysis of the data. Hence, priors can take any form. However, it is 

common to choose particular classes of priors that are easy to interpret and/or which would make 

computation easier (Gelman, 2006). Natural conjugate priors typically have both such 

advantages.  

A conjugate prior distribution is one which, when combined with the likelihood, yields a 

posterior that falls in the same class of distributions (Raifa and Schlaifer, 1961). A natural 

conjugate prior has the additional property that it has the same functional form as the likelihood 

function. This property means that the prior information can be interpreted in the same way as 

the likelihood function’s information. In other words, the prior can be interpreted as arising from 

a fictitious dataset from the same process that generated the actual data. 

For the linear regression model (2), we must elicit a prior distribution for 𝛽 and h, which we 

denote by 𝑝(𝛽, ℎ). The fact that we are not conditioning on the data means that 𝑝(𝛽, ℎ) is a prior 

density, the posterior density will be denoted by 𝑝(𝛽, ℎ|𝑦). It proves convenient to write 

𝑝(𝛽, ℎ|𝑦) = 𝑝(𝛽|ℎ)𝑝(ℎ) and think in terms of a prior for 𝑝(𝛽|ℎ) and one for h. The form of the 
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likelihood function in (13) suggests that the natural conjugate prior will involve a Gaussian 

distribution for 𝛽|ℎ and a Gamma distribution for h. This is indeed the case. The name given to a 

distribution such like this which is a product of a Gamma and a (conditional) Normal is the 

Normal-Gamma density.  

Therefore, it follows that 

𝛽|ℎ~ 𝑁(𝛽0, ℎ−1∑0) 

and 

ℎ~ 𝐺𝑎𝑚𝑚𝑎 (𝑠0
−2,

2𝑠0
−2

𝑣0 
) . 

Hence, the distribution of the natural conjugate prior of both 𝛽 and ℎ is given as: 

                                            𝛽, ℎ~ 𝑁𝐺(𝛽0, ∑0, 𝑠0
−2 , 𝑣0), 

a normal–gamma density. It then follows that  

                          𝑝(𝛽|ℎ) =
1

2𝜋
𝑘
2|ℎ−𝑘∑0|

1
2

{𝑒𝑥𝑝 [
−1

2
(𝛽 − 𝛽0)𝑇(ℎ−1∑0)−1(𝛽 − 𝛽0)]}.                (14) 

Note that, |ℎ−𝑘∑0| = ℎ−𝑘|∑0| and that (ℎ−1∑0)−1 = ℎ(∑0)−1 where |. | denotes the 

determinant of the argument. 

Hence, (14) becomes 

                            𝑝(𝛽|ℎ) =
ℎ

𝑘
2

2𝜋
𝑘
2|∑0|

1
2

{𝑒𝑥𝑝 [
−ℎ

2
(𝛽 − 𝛽0)𝑇(∑0)−1(𝛽 − 𝛽0)]},                         (15) 

also,  

                                           𝑝(ℎ) =
1

Γ(
𝑣0
2

)(
2𝑠0

−2

𝑣0 
)

𝑣0
2

ℎ
𝑣0
2

−1 𝑒𝑥𝑝 (
−ℎ𝑣0 

2𝑠0
−2

).                                      (16) 

In the density functions (15) and (16), 𝛽0 represents the prior mean for 𝛽, ∑0 is the un-scaled 

variance-covariance matrix for 𝛽, while 𝑠0
−2 and 𝑣0 are the prior mean  and prior degree of 

freedom of the gamma distribution for the  model precision h respectively. 

From Bayes theorem, it is noted that   

                                                       𝑝(𝛽, ℎ) = 𝑝(𝛽|ℎ)𝑝(ℎ)                                                    (17) 
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Therefore, from (15) and (16) the density function of the conjugate prior for 𝛽 and h can be 

written as 

       𝑝(𝛽, ℎ) =
ℎ

𝑘
2

2𝜋
𝑘
2|∑0|

1
2

{𝑒𝑥𝑝 [
−ℎ

2
(𝛽 − 𝛽0)𝑇(∑0)−1(𝛽 − 𝛽0)]} ×

1

Γ(
𝑣0
2

)(
2𝑠0

−2

𝑣0 
)

𝑣0
2

ℎ
𝑣0
2

−1 𝑒𝑥𝑝 {
−ℎ𝑣0 

2𝑠0
−2}    (18) 

 

→            𝑝(𝛽, ℎ) =
ℎ

𝑣0+𝑘
2

−1

2𝜋
𝑘
2|∑0|

1
2𝛤𝑣0 

2
(

2𝑠0
−2

𝑣0 
)

𝑣0
2

{𝑒𝑥𝑝 [
−ℎ

2
(𝛽 − 𝛽0)𝑇(∑0)−1(𝛽 − 𝛽0) +

𝑣0 

𝑠0
−2]}         (19) 

The above results simply imply that the distribution of the prior 𝑝(𝛽, ℎ) for 𝛽 and h is 

multivariate normal-gamma as shown in (20) 

2.2.3 The Posterior Distributions 

The posterior density summarizes all the information from the data and the prior about the 

unknown parameters 𝛽 and h. It is proportional to the likelihood times the prior density. For the 

linear regression model (2), it can be easily shown that the posterior density is also of Normal-

Gamma form, thus, confirming that the prior obtained in the previous section is indeed a natural 

conjugate prior of the parameters 𝛽 and h (Koop, 2003). 

The posterior density can be simply obtained from the relation below; 

                                                       𝑝(𝛽, ℎ|𝑦) =
𝑝(𝛽,ℎ)𝑝(𝑦|𝛽, ℎ)

𝑝(𝑦|𝑋)
                                                (20)  

→                                                𝑝(𝛽, ℎ|𝑦) ∝  𝑝(𝛽, ℎ) × 𝑝(𝑦|𝛽, ℎ)                                       (21) 

The representation (12) simplifies posterior computation since one doesn’t need the marginal 

likelihood 𝑝(𝑦|𝑋) before getting the posterior densities for the regression parameters.  

Formally, we have a posterior of the form (Joyce, 2009) 

𝛽, ℎ|𝑦~ 𝑁𝐺(𝛽∗, ∑∗, 𝑣∗, 𝑠−2∗
) 

where;  

∑∗ = (∑0
−1 + 𝑋𝑇𝑋)−1,   

𝑣∗ = 𝑣0 + 𝑛, and 

𝑠−2∗
=

𝑣∗

𝑣0𝑠0
2 + 𝑣𝑠 + (𝑏 − 𝛽0)𝑇(∑0

−1 + (𝑋𝑇𝑋)−1)−1(𝑏 − 𝛽0)
 

The Bayes estimator of parameter 𝛽 of linear regression model (2) is therefore given by  
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                                          �̂�𝐵𝑎𝑦𝑒𝑠 = ∑∗(∑0
−1𝛽0 + 𝑋𝑇𝑋�̂�𝑜𝑙𝑠)                                               (22) 

The variance and sum of squared of the residual of the model are respectively given by (Joyce, 

2009); 

                       𝜎2̂
𝐵𝑎𝑦𝑒𝑠 =

𝑣0𝑠0
2+𝑣𝑠+(�̂�𝑜𝑙𝑠−𝛽0)𝑇(∑0

−1+(𝑋𝑇𝑋)−1)−1(�̂�𝑜𝑙𝑠−𝛽0)

𝑣∗
                    (23)     

                 𝑆𝑆𝐸𝐵𝑎𝑦𝑒𝑠 = 𝑣0𝑠0
2 + 𝑣𝑠 + (�̂�𝑜𝑙𝑠 − 𝛽0)𝑇(∑0

−1 + (𝑋𝑇𝑋)−1)−1(�̂�𝑜𝑙𝑠 − 𝛽0)         (24) 

 

The 100(1- 𝛼)% credible interval of the Bayesian  estimator (an analogous of the confidence 

interval under the frequentist settings)  is computed by 

                                                �̂�𝐵𝑎𝑦𝑒𝑠 ± (𝑡1− 
𝛼

2
, 𝑣∗  × 𝑆𝐸(�̂�𝐵𝑎𝑦𝑒𝑠))                                        (25)  

where; 𝑆𝐸( �̂�𝐵𝑎𝑦𝑒𝑠) = √𝑣𝑎𝑟(�̂�𝐵𝑎𝑦𝑒𝑠) while 𝑣𝑎𝑟( �̂�𝐵𝑎𝑦𝑒𝑠) =
𝑆𝑆𝐸𝐵𝑎𝑦𝑒𝑠

𝑣∗−2
∑∗ 

2.3 Assessment Criteria 

Two major criteria are employed to assess the performances of the OLS and Bayesian estimators 

of parameters of linear regression model (2). Firstly, the confidence and credible intervals of the 

OLS and Bayesian estimators are used to assess their efficiency. Secondly, the mean square 

error (MSE) of parameter estimates as provided by the two estimators are equally employed to 

assess the closeness of their estimates to the true parameter values.  

The MSE is simply computed by 𝑀𝑆𝐸 =
1

𝑘
∑ (�̂�𝑖 − 𝛽𝑖)

2𝑘
𝑖 , where 𝑘 is the number of parameters 

being estimated in the model.       

3.0 Simulation Study 

Different data sets were generated based on the linear regression model (2) with three predictor 

variables. The schemes used for data simulation were similar to those employed by Yahya et al., 

(2008) and later adapted by Yahya and Olaifa (2014).  

The three predictor variables 𝑥1, 𝑥2 and 𝑥3 in the model were generated from multivariate 

Gaussian density with different means and specified variance-covariance matrix that maintained 

the absence of inter-dependency (collinearity) among the three predictors. Specifically, the 

correlation structure among the predictors as imposed for simulation is of the form 

                                                             𝜌 = [
1 0 0
0 1 0
0 0 1

] 
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The values of the model’s parameters were set at 𝛽0 = 85, 𝛽1 = 100, 𝛽2 = 95 and 𝛽3 = 215. 

Thus, the response variable 𝑦 in the model was simulated based on the relationship  

                                               𝑦 = 85 + 100𝑥1 + 95𝑥2 + 215𝑥3 + 𝜀                                  (26) 

where 𝜀 was simulated from a unit Gaussian density (𝜀~𝑁(0, 1)). All the data sets were 

simulated at varying sample sizes 𝑛 that range between 10 and 200. To ensure stability of results, 

all parameter estimates were performed using 1000 replicates for both the OLS and Bayesian 

techniques. 

 3.1 Priors Specifications 

In this study, we are under the conjugate Bayesian framework in which informative prior is 

conjectured. Hence, the set of values specified for the parameter vector 𝛽 as used for simulation 

shall be the prior for the parameters of the model in (26). Therefore, 𝛽𝑝𝑟𝑖𝑜𝑟 =   𝛽 where 𝛽′ =

[𝛽0 = 25, 𝛽1 = 15, 𝛽2 = 10, 𝛽3 = 35]. 

The priors ∑𝒑𝒓𝒊𝒐𝒓, 𝑠𝑝𝑟𝑖𝑜𝑟
2  and 𝑣𝑝𝑟𝑖𝑜𝑟 for the un-scaled variance-covariance matrix for 𝛽, the prior 

variance of model’s residual  and the prior degree of freedom respectively shall be elicited by 

setting arbitrary values for them in the Monte Carlo study. Therefore, the following settings were 

used for the different priors throughout in this study;  

∑𝑝𝑟𝑖𝑜𝑟1 = [

0.01
0
0
0

  

0
0.02

0
0

  

0
0

0.03
0

  

0
0
0

0.04

], the un-scaled prior variance-covariance matrix of 𝛽. 

𝑠𝑝𝑟𝑖𝑜𝑟
2 = 1, 

𝑣𝑝𝑟𝑖𝑜𝑟 = 4, the prior degree of freedom which is also the prior sample size, was set to be 4, since 

we are estimating four parameters. 

The scaled prior covariance matrix of 𝛽 follows from the properties of Normal-Gamma 

distribution which implies that the prior covariance matrix for 𝛽𝑝𝑟𝑖𝑜𝑟 have the form: 

𝑣𝑎𝑟(𝛽𝑝𝑟𝑖𝑜𝑟) = (
𝑣𝑝𝑟𝑖𝑜𝑟∗𝑠𝑝𝑟𝑖𝑜𝑟

2

𝑣𝑝𝑟𝑖𝑜𝑟−2
) ∗ ∑𝑝𝑟𝑖𝑜𝑟1  

Thus the scaled covariance matrix of 𝛽 is 
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∑𝑝𝑟𝑖𝑜𝑟2= (
4∗1

4−2
) ∗ [

0.01
0
0
0

  

0
0.02

0
0

  

0
0

0.03
0

  

0
0
0

0.04

], the scaled prior covariance matrix of 𝛽. 

Note that all the prior covariances were set to zero. This is commonly done, since it is often hard 

to make reasonable guesses about what they might be. It implies that prior information about 

what plausible values for 𝛽𝑗 might be are uncorrelated with those for 𝛽𝑖 for ≠ 𝑗 . In many cases, 

this is a reasonable assumption. 

4.0      Analysis and Results 

In this section, we present the results of the OLS and Bayesian estimators for the linear 

regression model (26) based on the Monte Carlo study.  

A total of twenty different data sets were simulated at different sample sizes (𝑛) from 𝑛 = 10 to 

𝑛 = 200 according to the simulation scheme presented in Section 3. Both the OLS and Bayesian 

conjugate normal linear regression models were fitted on each data set and parameters estimates 

yielded by each method are reported as shown in Table 1. The MSE of the estimated parameters 

by both the OLS and Bayesian estimators for each data set are equally reported in Table 1. The 

true values of the regression parameters that were used for data simulation are also reported in 

parentheses in that table under each estimation technique.   

Results from Table 1 showed that both the frequentist (OLS) and Bayesian estimators provided 

good estimates of the parameters of linear regression model (26). In all cases, the average 

deviation from the true parameter values, as measured by the MSE, is not up to a unit, except in 

two cases (at low sample sizes 10 and 20) where OLS estimator reported MSE of about one unit. 

Not only this, visual examination of all the results in Table 1 revealed a good agreement between 

the parameter estimates yielded by both estimators and the true parameter values. 

However, in terms of precision, a closer look at the MSEs reported in Table 1 showed that the 

Bayesian estimator is more precise than the OLS estimators at all the sample sizes considered. In 

all cases, the Bayesian MSEs are relatively smaller than those of the OLS. These results are 

clearly presented by the plots of the MSEs of both the OLS (in green dotted lines) and Bayes (in 

red dotted lines) estimators against the various sample sizes as shown in Fig 1. It can be easily 

observed from Fig 1 that Bayes estimator is relatively more efficient (for providing lower MSE 

values) and more stable than the OLS estimator at various sample sizes.  
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Table 1: Table of various OLS and Bayesian parameters estimates for the linear regression model (26) at different 

sample sizes. The true values of the regression parameters are given in parentheses. The MSE of the two estimators 

are also reported. At all the sample sizes considered, the MSE of Bayesian estimator is relatively smaller than that of 

the OLS estimator.  

 

Sample 

Size (n) 

OLS ESTIMATES BAYESIAN ESTIMATES 
OLS 

MSE 

BAYES

MSE 
𝛽�̂� 

(85) 

𝛽1̂ 

(100) 

𝛽2̂ 

(95) 

𝛽3̂ 

(215) 

𝛽�̂� 

(85) 

𝛽1̂ 

(100) 

𝛽2̂ 

(95) 

𝛽3̂ 

(215) 

10 87.2328 99.9926 95.004 214.995 85.000 99.9975 95.0075 214.997 1.24631 1.70E-05 

20 82.8681 100.038 94.9987 215.006 84.999 99.9995 94.9948 215.004 1.13623 1.22E-05 

30 85.0440 99.9984 95.0032 214.999 85.000 99.9985 95.0031 214.999 0.00048 3.04E-06 

40 86.5237 99.9964 94.9957 215.000 85.002 99.9995 94.9987 215.001 0.58042 1.16E-06 

50 83.9370 100.061 94.9997 214.997 84.999 100.009 94.9977 214.996 0.28250 7.87E-06 

60 86.1784 99.994 95.0054 214.997 85.000 99.9965 95.0075 214.999 0.34716 1.74E-05 

70 85.8127 99.9976 95.0009 214.998 85.000 99.9992 95.0024 214.999 0.16514 1.81E-06 

80 84.6734 100.003 94.9988 215.002 84.999 99.9997 94.9982 215.001 0.02668 1.65E-06 

90 84.0099 100.022 95.0016 215.000 84.997 100.003 94.9997 214.999 0.24506 7.38E-08 

100 85.6569 99.9978 94.9993 215.002 85.002 99.9991 95.0005 215.009 0.10892 4.64E-07 

110 84.9857 99.9971 95.0033 215.012 85.000 99.9971 95.0033 215.012 5.6E-05 5.12E-06 

120 84.5849 99.9992 95.0023 215.013 84.999 99.9984 95.0015 215.009 0.04088 1.44E-06 

130 85.7567 99.997 95.0002 214.999 85.004 99.9986 95.0017 215.006 0.14137 1.34E-06 

140 85.8400 99.9983 94.9967 215.006 85.004 100.000 94.9983 215.014 0.17385 1.24E-06 

150 85.2281 100.006 94.9976 214.999 85.001 100.001 94.9981 215.001 0.01004 1.18E-06 

160 84.9027 99.9987 94.9993 215.002 84.999 99.9985 94.9991 215.027 0.00372 2.61E-06 

170 84.8304 100.007 94.9989 215.000 84.999 100.003 94.9985 215.006 0.00189 6.57E-07 

180 85.1916 99.9988 94.9991 215.001 85.001 99.9992 94.9995 215.014 0.09175 7.19E-07 

190 85.6334 100.006 94.9979 214.997 85.005 100.019 94.9992 214.982 0.10302 1.95E-06 

200 85.0212 100.006 94.9966 215.001 85.005 100.007 94.9967 215.016 0.00116 3.47E-06 

 

 

 

 

 

 

 

 

 

Fig 1: Line graphs of the mean square errors of regression model (26) provided by the OLS (in green dotted line) 

and Bayes (in red dotted line) estimators. The plots showed that the MSEs of Bayes estimator are relatively smaller 

and more stable than those of the OLS estimator. 
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To further measure the stability of the two estimation techniques, the 95% confidence and 

credible intervals of OLS and Bayesian estimators are respectively computed as reported in 

Table 2. The two results showed that Bayes estimator with relatively narrower credible interval 

of parameter estimates, especially on the intercept parameter, is more stable than the OLS 

estimators. This result is clearly evident by the plots of parameters estimates by OLS and 

Bayesian techniques at various sample sizes as shown as shown in Fig 2 for all the four 

parameters of the models 𝛽𝑜 (written as BETA-0), 𝛽1 (written as BETA-1), 𝛽2 (written as 

BETA-2) and 𝛽3 (written as BETA-3). The graphs showed that Bayes estimator is more stable 

than the OLS estimator as clearly depicted for 𝛽𝑜. Nevertheless, the results of the OLS estimators 

as shown in Table 2 are not worst off either.  

  

a: Plot of �̂�𝑜 at various sample sizes                                       b: Plot of �̂�1 at various sample sizes 

 

c: Plot of �̂�2 at various sample sizes                                     d: Plot of �̂�3 at various sample sizes 

Fig 2: Line graphs showing the plots of the estimated parameters (a: �̂�𝑜, b: �̂�1, c: �̂�2, d: �̂�3) against the various 

sample sizes. The graphs showed that Bayes estimator that produces parameters estimates (with red lines) that are 

more closer to the true values (with blue lines), more noticeable for the intercept parameter �̂�𝑜,  is more efficient and 

more stable than the OLS estimators. 
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Table 2: Table of the estimated 95% confidence and credible intervals by OLS and Bayesian estimators for  the 

parameters of the linear regression model in (26).  Bayesian estimator, with narrower 95% credible interval seems 

more stable than the OLS estimator with relatively wide 95% confidence interval especially on the intercept 

parameter. 

Parameters 
OLS 

95% Confidence Interval 

BAYES 

95% Credible Interval 

𝛽𝑜 (85) (73.85, 98.05) (84.69, 85.29) 

𝛽1 (100) (99.94, 100) (99.95, 100) 

𝛽2 (95) (94.98, 95.07) (94.99, 95.06) 

𝛽3 (215) (214.97, 215.02) (214.98, 215.02) 

 

Table 3: Table of estimated variance of the residual in the data by OLS and Bayes estimators. The results showed a 

reasonable agreement with the true value of the residual variance of 1 (𝜎2=1).  

Sample size (n) OLS Residual Variance Bayes Residual Variance 

10 0.9867 0.7853 

20 0.9589 0.8523 

30 0.9533 0.8728 

40 1.0171 0.9489 

50 0.9975 0.9406 

60 0.9708 0.9267 

70 1.0042 0.9599 

80 1.0120 0.9764 

90 0.9681 0.9386 

100 0.9997 0.9702 

110 1.0243 0.9979 

120 1.0104 0.9863 

130 1.0122 0.9884 

140 1.0074 0.9871 

150 1.0083 0.9882 

160 1.0124 0.9933 

170 1.0121 0.9933 

180 0.9934 0.9772 

190 0.9897 0.9751 

200 1.0131 0.9985 

 

As a further step to examine the behaviour of the two regression estimators at retrieving the 

value of the residual variance, 𝜎2 imposed for data simulation, the OLS and Bayes residual 

variance at each sample size were computed. For all the simulated data, the residual variance 𝜎2 
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was fixed at one unit. That is, 𝜎2 = 1 for all cases. Results of the estimated variance of the 

residuals �̂�2 provided by the two methods as presented in Table 3 showed a good agreement of 

the estimated values by the two methods to the true (target) value of 1. However, a plot of these 

estimated variances of regression residuals against the various sample sizes revealed that Bayes 

estimator slightly under-estimated the true value than the OLS estimator as shown in Fig 3 while 

OLS slightly over-estimated the true value in a number of cases.     

 

 

 

 

 

 

 

 

 

 

 

 

Fig 3: The plot of OLS and Bayes estimated residual variances against the sample sizes. The plots reveal that OLS 

technique (green dotted line) over-estimated the true variance (blued dotted line) while Bayes method (red dotted 

line) under-estimated the true residual variance while both of them strikes convergence as the sample size becomes 

larger. 

 

Finally, the predictive strength of both the OLS and Bayes estimators of the linear regression 

model (26) was examined. This is achieved by comparing their mean square errors of prediction 

(MSEP) of the response targets 𝑦. Results showed that the two modelling techniques have 

similar prediction strength for the model as shown in Table 4. Table 4 presents the MSEP of the 

OLS and Bayes estimators for selected four sample sizes of 50, 100, 150 and 200. In all the 

cases, the MSEP provided by the two modelling techniques are quite close to each other.  

Table 4: Table of mean square error of prediction (MSEP) provided by OLS and Bayes estimators at selected sample 

sizes. In all the cases, the MSEP reported by the two methods are similar.  

Sample size (n) OLS MSEP BAYES MSEP 

50 0.6245 0.6077 

100 0.7776 0.7807 

150 1.4101 1.4102 

200 1.1066 1.1110 
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5.0 Discussions and Conclusion 

The place of the Bayesian method for estimating linear regression model using informative 

conjugate prior vis-à-vis the classical frequentist OLS technique has been largely demonstrated 

in this work. Different twenty data sets were simulated through a well-structured Monte Carlo 

process. For easy comparison of the performances of the two modelling techniques, all the data 

sets were made to satisfy all the necessary conditions required for the use of the classical least 

square regression technique. This is intended in order to ensure that whatever results provided by 

the OLS technique (against which the results from Bayesian technique would be compared) is 

the best it could provide for such a data set. 

Various results from this study showed that the two methods of estimation are quite efficient for 

modelling linear regression model, even when the sample data satisfy all the necessary 

requirements for the use of the classical least square technique. However, it is observed that the 

use of relevant prior information about the data in the estimation of regression model, as often 

the case in Bayesian methodology, would further improve the efficiency and reliability of the 

regression results as well as the inferences drawn from such results.  

While the OLS technique was able to efficiently model the linear regression equation in (26) as 

expected given that the working data sets met all the necessary conditions for its usage as shown 

by the results in Table 1, the Bayesian conjugate normal linear regression technique was able to 

further improve on this level of performance (see Table 1) as a results of its ability to make use 

of the relevant prior information about the data.  

It can be generally inferred from the various results obtained in this work that Bayesian 

conjugate normal linear regression technique performed creditably well like the classical 

frequentist technique of the OLS for modelling the regression model type in (2). In many 

instances, the Bayesian method outperforms its frequentist counterpart based on some of the 

assessment criteria. Therefore it will be of a good practice in the present of sufficient prior 

information, that Bayesian methodology be employed in order to guarantee a more efficient 

result.  
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