
195 

 

 

 

ILJS-14-006 

Numerical Approximation of Fractional Integro-differential 

Equations by an Iterative Decomposition Method 

 

Taiwo1, O. A. and Odetunde2, O. S. 

1Department of Mathematics, University of Ilorin, P.M.B. 1515, Ilorin, Nigeria. 

2Department of Mathematical Sciences, Olabisi Onabanjo University, Ago-Iwoye. P.M.B.2002, 

Ago-Iwoye, Nigeria 

 

Abstract 

In this paper, an attempt is made to approximate the solution of linear and nonlinear fractional integro-differential 

equations, by applying an iterative decomposition method. The approximate solution of each problem is presented as 

a rapidly convergent series of easily computable terms. Results obtained are compared favourably with known 

results to illustrate the accuracy and efficiency of the method. 
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1. Introduction 

In recent years, there has been continuously renewed interest in integro-differential equations. 

Many mathematical models of physical phenomena produce integro-differential equations e.g 

fluid dynamics, biological models and chemical kinetics [3]. Electromagnetism, acoustics, 

viscoelasticity, electrochemistry and material science are also well-described by fractional 

integro-differential equations [2, 5]. 

Owing to the numerous applications of fractional calculus, in diverse fields, the solution 

techniques for fractional differential equations of various forms and classes, continue to attract  
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growing interest from many researchers. Efficient numerical methods are being developed by 

many authors, some of such algorithms have been based on known numerical techniques like 

quadrature and extrapolation, as well as the use of Mittag-Leffler functions and other special 

functions for approximation [3, 4, 11]. 

In the present study, fractional derivatives are understood in the Caputo sense, although, there 

are several approaches to the generalization of fractional derivatives, the Caputo derivative is the 

most suitable for real-life physical problems. Some other approaches are Riemann-Liouville, 

Grunwald-Letnikov, and Weyl derivatives [2, 3, 6, 9]. 

Some well-known approximation techniques which have been successful with integer-order 

integro-differential equations have been modified and applied to fractional integro-differential 

equations. The Adomian Decomposition Method (ADM) was applied to solve fractional integro-

differential equations in [9]. The Differential Transform Method (DTM) was modified for 

fractional indices in [1] and applied for fractional integro-differential equations. The Homotopy 

Perturbation Method (HPM) was applied in [4, 5], while in [10] the solutions by Variational 

Iteration Method (VIM) and the HPM were compared. 

In this paper, we apply an Iterative Decomposition Method (IDM), which had been applied to 

integer- order differential equations [13].The method is modified to appropriate both linear and 

nonlinear fractional integro-differential equations. 

The layout of the paper is as follows: In section 2, we give some very vital definitions which are 

essential for the understanding of the problem. In section 3, we present the Iterative 

Decomposition Method, while in section 4, the method is applied to solve some examples, and 

conclusions are drawn in section 5. 

2. Definitions 

We shall review some basic definitions of fractional calculus, which are essential for the proper 

understanding of the problems of fractional differential equations. 

Definition 2.1. (Caputo Derivative): The Caputo fractional derivative of 𝑓(𝑥) of order α˃0 is 

defined as  
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 𝐷∗
𝛼𝑓(𝑥) =

1

Γ(𝑛−𝛼)
∫

𝑓(𝑛)(𝑡)

(𝑥−𝑡)𝛼+1−𝑛 𝑑𝑡, 𝑛 − 1 < 𝛼 ≤ 𝑛, 𝑛 ∈ ℝ .                                            (1)
𝑥

0
 

Definition 2.2: A function 𝑓(𝑥), 𝑥 > 0 is said to be in the space 𝐶𝜇,𝜇𝜖ℝ if there exists 𝑝 ∈

ℝ, 𝑝 > 𝜇 such that𝑓(𝑥0 =  𝑥𝑝𝑓1(𝑥), where 𝑓1(𝑥) ∈ 𝐶[0, 𝑥].   Clearly, 𝐶𝜇 ⊂ 𝐶𝛽 𝑖𝑓 𝛽 ≤ 𝜇. 

Definition 2.3: A function 𝑓(𝑥), 𝑥 > 0 is said to be in the space 𝐶𝜇
𝑚, 𝑚 ∈ ℕ ∪ {0}𝑖𝑓 𝑓(𝑚)(𝑥) ∈

𝐶𝜇. 

Definition 2.4 The Riemann-Liouville fractional integral operator of order  𝛼 ≥ 0, of a function 

𝑓 ∈ 𝐶𝜇,   ,𝜇 ≥ −1 is defined as 

 𝐽𝛼𝑓(𝑥) =  
1

Γ(𝛼)
∫ (𝑥 − 𝑡)𝛼−1𝑓(𝑡)𝑑𝑡,

𝑥

0
 𝛼 > 0, 𝛼 > 0, 𝑥 > 0   (2) 

Properties of the operator 𝐽𝛼 can be found in [11] and include the following 

 𝐽𝛼𝑓(𝑥) = 𝑓(𝑥) 

 𝐽𝛼𝑥𝛾 =
Γ(𝛾+1)

Γ(𝛼+𝛾+1)
𝑥𝛼+𝛾 

 𝐽𝛼𝐽𝛽𝑓(𝑥) = 𝐽𝛼+𝛽𝑓(𝑥) 

 𝐽𝛼𝐽𝛽𝑓(𝑥) = 𝐽𝛽𝐽𝛼𝑓(𝑥) 

Also, if 𝑚 − 1 < 𝛼 < 𝑚, 𝑚 ∈ ℕ 𝑎𝑛𝑑 𝑓 ∈ 𝐶𝜇
𝑚, 𝜇 ≥ −1, 𝑡ℎ𝑒𝑛  

𝐷𝛼𝐽𝛼𝑓(𝑥) = 𝑓(𝑥)                                                                                                                (3) 

𝐽𝛼𝐷𝛼𝑓(𝑥) = 𝑓(𝑥) − ∑
𝑥𝑛

𝑛!
𝑓(𝑛)(0)𝑚−1

𝑛=0  .                                                                               (4) 

The general fractional integro-differential equation is of the form 

𝐷∗
𝛼𝑦(𝑥) = 𝑎(𝑥)𝑦(𝑥) + 𝑓(𝑥) + ∫ 𝐾(𝑡, 𝑠)𝐹(𝑦(𝑠))𝑑𝑠

𝑥

0
                                                        (5) 

𝑦(0) = 𝛽, 𝛼 < 1, 

where 𝐷∗
𝛼 is the Caputo fractional derivative and 𝛼 is a parameter. 
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3.  Iterative Decomposition Method 

From [13] the Iterative Decomposition Method suggests that by applying the inverse operator 

𝐷−𝛼 = 𝐽𝛼 which is the inverse of 𝐷∗
𝛼 to both sides of (5), we have  

𝑦(𝑥) = ∑
𝑥𝑘

𝑘!
𝑦(𝑘)(0) +𝑚−1

𝑘=0 𝐷−𝛼{𝑎(𝑥)𝑦(𝑥) + 𝑓(𝑥)} + 𝐷−𝛼{∫ 𝐾(𝑡, 𝑠)𝐹(𝑦, 𝑠)𝑑𝑠}.
𝑥

0
              (6) 

The IDM suggests further that the solution is decomposed into the infinite series of convergent 

terms 

 𝑦(𝑥) = ∑ 𝑦𝑛(𝑥)∞
𝑛=0 .                                                                                                 (7) 

Taking  

𝑦0 = ∑
𝑥𝑘

𝑘!
𝑦(𝑘)(0) +𝑚−1

𝑘=0 𝐷−𝛼{𝑎(𝑥)𝑦(𝑥) + 𝑓(𝑥)} .                                                                (8) 

Then, we have  

𝑦𝑛+1 = 𝐷−𝛼{[∑ ∫ 𝐾(𝑡, 𝑠)𝐹 (𝑦𝑗(𝑠)) 𝑑𝑠] − [∑ 𝐾(𝑡, 𝑠)𝐹 (𝑦𝑗(𝑠)) 𝑑𝑠]}𝑛−1
𝑗=0

𝑥

0
𝑛
𝑗=𝑜 .                       (9) 

From (9), we can approximate the solution by 

Φ𝑁(𝑥) = ∑ 𝑦𝑖
𝑁−1
𝑖=0                                                                                                                    (10)  

and lim
𝑁→∞

Φ𝑁(𝑥) = ∑ 𝑦𝑖
𝑁−1
𝑖=0 .                                                                                               (11) 

 

4. Numerical Experiment 

We now apply the method proposed in section 3 to some numerical examples, to establish the 

accuracy and efficiency of the method. 

Example 4.1: Consider the nonlinear fractional integro-differential equation [5, 9] 

𝐷𝛼𝑦(𝑥) = 1 + ∫ 𝑦(𝑡)𝐷𝛼𝑦(𝑡)𝑑𝑡, 0 ≤ 𝑥 < 1,   0 ≤ 𝛼 ≤ 1 
𝑥

0
                                                  (12) 

with initial condition 𝑦(0) = 0. 
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For 𝛼 = 1, the exact solution is 

 𝑦(𝑥) = √2 tan (
√2

3
𝑥).         (13) 

By using the inverse operator 𝐷−𝛼 on both sides of (12), we have 

𝑦(𝑥) = 𝐷−𝛼(1) + 𝐷−𝛼{∫ 𝑦(𝑡)𝐷𝛼𝑦(𝑡)𝑑𝑡}
𝑥

0
.        (14) 

Taking  𝑦0 = 𝐷−𝛼(1), we have 

𝑦0(𝑥) =
1

Γ(𝛼+1)
𝑥𝛼                       (15)     

𝑦1(𝑥) =
1

Γ(𝛼+1)

Γ(𝛼+2)

(𝛼+1)Γ(2𝛼+2)
𝑥2𝛼+1 

 =
Γ(𝛼+2)

(𝛼+1)Γ(𝛼+1)Γ(2𝛼+2)
𝑥2𝛼+1         (16) 

𝑦2(𝑥) = [
1

(Γ(𝛼+1)3 +
Γ(𝛼+2)

(𝛼+1)Γ(2𝛼+2)
] [

Γ(𝛼+2)

Γ(2𝛼+2)
]𝑥3𝛼+2.       (17) 

Then, y(x) can be approximated as  

𝑦(𝑥) =
1

Γ(𝛼+1)
𝑥𝛼 +

Γ(𝛼+2)

(𝛼+1)Γ(𝛼+1)Γ(2𝛼+2)
𝑥2𝛼+1 + {

Γ(2𝛼+2)+[Γ(𝛼+1)][Γ(𝛼+2)

(𝛼+1)[Γ(𝛼+1)]2Γ(2𝛼+2)
] [

2𝛼+2

Γ(3𝛼+3)
] 𝑥3𝛼+2.  (18) 

Setting 𝛼 = 1, we have 

𝑦(𝑥) = 𝑥 +
Γ(3)

2Γ(2)Γ(4)
𝑥3 + (

Γ(4)+Γ(2)Γ(3)

2(Γ(2))
2

Γ(4)
) (

4

Γ(6)
) 𝑥5.       (19) 

Table 1: Error of example 4.1 

X Exact Solution IDM Approx. Error 

0.0 0.0 0.0 0.0 

0.1 0.1001670007 0.1001668889 1.118E-7 

0.2 0.2013440871 0.201340444 3.643E-6 

0.3 0.3045825028 0.30455400 2.850E-5 

0.4 0.411017423 0.410594222 4.232E-4 

0.5 0.5219305155 0.5215277778 4.027E-4 
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0.6 0.6387957043 0.637728000 1.068E-3 

0.7 0.7633858023 0.7609015556 2.484E-3 

0.8 0.8978815375 0.8926151111 5.266E-3 

0.9 1.045043135 1.0342622 1.078E-2 

1.0 1.208460242 1.17777778 3.068E-2 

 

Table 1compares the exact solution for 𝛼 = 1 with the approximate solution of Example 4.1 

obtained by IDM.  

Note that 𝐸𝑟𝑟𝑜𝑟 = |𝐴𝑝𝑝𝑟𝑜𝑥. 𝑠𝑜𝑙𝑛. −𝐸𝑥𝑎𝑐𝑡 𝑠𝑜𝑙𝑛. | 

Table 2 

x y(x) for 𝛼 =

0.5   

y(x) for 𝛼 =

0.75 

y(x) for 𝛼 =

0.9 

0.0 0.0 0.0 0.0 

0.1 0.362262217 o.194437395 0.131192521 

0.2 0.529467729 0.330880936 0.246358346 

0.3 0.683005395 0.456455955 0.358447857 

0.4 0.848270069 0.579673363 0.478522735 

0.5 1.04213390 0.705240779 0.585841026 

0.6 1.27974996 0.836729573 0.705380584 

0.7 1.57619185 0.977344507 0.831400123 

0.8 1.94699791 1.30237881 0.965916811 

0.9 4.40837766 1.29866625 1.11111081 

1.0 2.97729140 1.48608018 1.26937670 

Solutions of Example 4.1 for α=0.5, 0.75 and 0.9. 

Example 4.2: Consider the nonlinear fractional integro-differential equation [9, 12] 

𝐷∗
0.9𝑦(𝑥) = −1 + ∫ 𝑦2(𝑡)𝑑𝑡, 0 ≤ 𝑥 ≤ 1

𝑥

0
               (20)                   
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with initial condition 𝑦(0) = 0. Applying the inverse operator 𝐷−0.9 to both sides of (20), we 

have 

𝑦(𝑥) = 𝐷−0.9(−1) + 𝐷−0.9{∫ 𝑦2(𝑡)𝑑𝑡
𝑥

0
}               (21) 

=
1

Γ(0.9)
∫ (𝑥 − 𝑡)0.1𝑑𝑡 +

𝑥

0
𝐷−0.9{∫ 𝑦2(𝑡)𝑑𝑡

𝑥

0
}      

   = −1.008694635𝑥0.9 + 𝐷−0.9{∫ 𝑦2(𝑡)𝑑𝑡
𝑥

0
}.               (22) 

Then, y(x) can be approximated as  

𝑦(𝑥) = −1.039717197𝑥0.9 + 0.1017155725𝑥3.7 − 0.004345205712𝑥5.5.              (23) 

In table 3 below, we compare our result with the result for the same problem in [5]. 

Table 2: Results obtained by HPM [5] and IDM 

X HPM [5] IDM 

0.0 0.0 0.0 

0.125 -0.15997 -0.15996 

0.25 -0.29790 -0.29798 

0.375 -0.42689 -0.42690 

0.5 -0.54824 -0.54844 

0.625 -0.66086 -0.66193 

0.75 -0.76327 -0.76788 

0.875 -0.85359 -0.85809 

1.0 -0.92988 -0.92935 

  

Example 4.3 : Consider the initial value problem consisting of the multi-fractional order integro-

differential equation [7] 

𝐷∗
0.5𝑦(𝑥) =

6

Γ(5.5)
𝑥2.5 −

Γ(4)

Γ(5.5)
𝑥4.5 + 𝐽1.5𝑦(𝑥), 𝑥𝜖[0, 1]           (24) 

with initial condition 𝑦(0) = 0. The exact solution of the problem is 𝑦(𝑥) = 𝑥3. 
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By applying the IDM to (24) in Example 4.3, we found that y(x) is approximated as  

𝑦(𝑥) = 1.00000445𝑥3 + (8.8623𝐸 − 5)𝑥5 − (2.3809𝐸 − 7)𝑥7.  

Approximate solution obtained after two iterations. 

Table 3: Errors obtained for Example 4.3 

X Exact 

Solution 

IDM Approx. Error 

0.0 0.0 0.000000000000 0,0 

0.1 1.00E-3 1.000003584E-3 3.5637E-9 

0.2 8.00E-3 8.000063956E-3 7.2376E-9 

0.3 2.70E-3 2.700033545E-3 3.3545E-7 

0.4 6.40E-2 0.063999376910    6.2309E-7 

0.5 1.25E-1 0.125003323900 3.3239E-6 

0.6 2.16E-1 0.216007845900 7.8459E-6 

0.7 3.43E-1 0.343016401600 1.6402E-5 

0.8 5.12E-1 0.512031268500 3.1268E-5 

0.9 7.29E-1 0.729055461200 5.5461E-5 

1.0 1.000000 1.000092835000 9.2835E-5 

 

3. Conclusion 

From the examples given, the Iterative Decomposition Method (IDM) proved to be very efficient 

in the solution of fractional integro-differential equations. The solution of Example 4.1 by IDM 

is very close to the exact solution, even for very few terms of the approximating series. Example 

4.2 shows that the method gives solutions that are comparable to known and tested methods, in 

terms of accuracy and efficiency. Furthermore, for cases where the exact solutions are unknown, 

the method is a useful tool for approximating solutions. The strength of the IDM includes the 

fact that we do not require to find some polynomials, unlike in the case of the ADM. Neither do 

we require rigorous or elaborate mathematical details. 
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