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Abstract 

Variational Iteration Method (VIM) is a numerical method for solving a wide class of non-linear problems, first 

envisioned by the Chinese Mathematician He (1998). In this paper, higher order integro differential equations 

are reduced to a system of integral equations. The reduced system is then perturbed by using Chebyshev 

Polynomial and solved by Variational Iteration method. The results obtained for some illustrative examples 

showed that the perturbed variational iteration method is efficient and reliable. Examples are given to illustrate 

the efficiency and implementation of the method. 
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1. Introduction 

Nonlinear phenomena, that appear in many applications in scientific fields, such as Fluid 

Dynamics, Solid State Physics, Mathematical biology and Chemical Kinetics, can be 

modeled by integral equations. Integro-differential equations (IDE) play a prominent role in 

many branches of linear and nonlinear functional analysis and their application. Higher order 

Integro-differential equations arise in Mathematical, applied and Engineering Sciences, 

Astrophysics, Solid state physics, Astronomy, fluid Dynamics, Beam theory and Chemical 

reaction diffusion models (Najafzadeh et al., 2012). Variational Iteration Method (He, 1997, 

1999, 2007) is a powerful device for solving various kinds of equations, linear and nonlinear. 

The method has successfully been applied to many situations. For example, He (2007) used 

the method to solve some integro-differential equations where he chose initial approximate 

solution in the form of exact solution with unknown constants.  
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Abbasbandy and Shivanion (2009) used VIM to solve systems of nonlinear Volterra’s 

Integro-differential equations.  

Najafzadeh et al. (2012) transformed higher order IDEs into a system of integral equations 

and then solved by VIM. Salehpoor et al. (2010) presented a modification of VIM and 

applied it to systems of linear and nonlinear ODEs. Biazar et al. (2010) employed VIM to 

solve linear and nonlinear system of IDEs. In this paper, we considered the reduction of 

higher order integro-differential equation to a system of first order integro-differential 

equations, since every ODE of order n can be written as a system consisting of n ordinary 

differential equations of order one. The basic motivation here is to get a better approximation. 

 2. Variational Iteration Method:  

Variational Iteration Method (VIM) is based on the general Lagranges’s multiplier method 

(Inokuti et al., 1978). The main feature of the method is that the solution of a Mathematical 

problem with linearization assumption is used as initial approximation. Then a more highly 

precise approximation at some special point can be obtained. To illustrate the basic concepts 

of VIM, we consider the following nonlinear differential equation  

 𝐿𝑢 + 𝑁𝑢 = 𝑔(𝑥),        (2.1) 

where 𝐿 is a linear operator, 𝑁 is a nonlinear operator and 𝑔(𝑥) is an inhomogeneous term. 

According to VIM (He 1999, 2000, 2006), we can construct a correction functional as 

follows  

     𝑢𝑛+1(𝑥) = u𝑛(𝑥) + ∫
𝑥

∘
𝜆{𝐿𝑢𝑛(𝑇) + 𝑁�̅�𝑛(𝑇) − 𝑔(𝑇)}𝑑𝑇, 𝑛 ≥ 0,  (2.2) 

 𝜆 is a general langrangian multiplier (Inokuti et al, 1978) which can be identified optimally 

via Variational theory. Subscript 𝑛 denotes the 𝑛𝑡ℎ-order approximation, �̅�𝑛 is considered as 

a restricted variation (He, 1999, 2000) i.e. 𝛿�̅�𝑛 = 0. 

 3. Solution Techniques  

To convey the idea of the technique, we considered the following system of differential 

equations (Najafzadeh, 2012)  

 𝑥′
𝑖(𝑡) = 𝑓𝑖(𝑡, 𝑥𝑖), �̅�𝑛𝑖 = 1, 2, 3, ⋯ , 𝑛,     (3.1) 

subject to the boundary conditions  
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 𝑥𝑖(0) = 𝑐𝑖, �̅�𝑛𝑖 = 1,2,3, ⋯ , 𝑛 .      (3.2) 

Rewriting the system (3.1) in the form  

 𝑥′𝑖(𝑡) = 𝑓𝑖(𝑡) + 𝑔𝑖(𝑡), 𝑖 = 1,2,3, ⋯ , 𝑛     (3.3) 

subject to the boundary conditions  

 𝑥𝑖(0) = 𝑐𝑖, 𝑖 = 1,2,3, ⋯ , 𝑛 

and 𝑔𝑖 is as defined in (2.1). The correction functional for the nonlinear system  

(3.1) is approximated as  

𝑥1
(𝑘+1)

(𝑡) = 𝑥1
(0)

(𝑡) + ∫
𝑡

∘

𝜆1 [𝑥′1
(𝑘)

(𝑇), 𝑓1(�̃�1
(𝑘)

(𝑇), �̃�2
(𝑘)

(𝑇)), ⋯ , �̃�𝑛
(𝑘)

(𝑇) − 𝑔1(𝑇)] 𝑑𝑇 

              ⋮                                                                    (3.4) 

  

𝑥𝑛
(𝑘+1)(𝑡) = 𝑥𝑛

(0)(𝑡) + ∫
𝑡

∘

𝜆𝑛 [𝑥′
𝑛
(𝑘)

(𝑇), 𝑓𝑛 (�̃�1
(𝑘)(𝑇), �̃�2

(𝑘)(𝑇)) , ⋯ , �̃�𝑛
(𝑘)(𝑇) − 𝑔𝑛(𝑇)] 𝑑𝑇, 

 where 𝜆𝑖 = ±1, 𝑖 = 1,2,3, ⋯ , 𝑛 are Langrange multipliers. 

 �̃�1
(𝑘)(𝑇), �̃�2

(𝑘)(𝑇), ⋯ , �̃�𝑛
(𝑘)

 denote the restricted variations. For 𝜆𝑖 = 1, 𝑖 = 1,2,3, ⋯ , 𝑛; we 

have the following iterative schemes:  

 𝑥1
(𝑘+1)

(𝑡) = 𝑥1
(0)

(𝑡) + ∫
𝑡

∘
[𝑥′1

(𝑘)
(𝑇), 𝑓1(�̃�1

(𝑘)
(𝑇), �̃�2

(𝑘)
(𝑇)), ⋯ , �̃�𝑛

(𝑘)
(𝑇) − 𝑔1(𝑇)] 𝑑𝑇 

                 ⋮                                                                 (3.5) 

 𝑥𝑛
(𝑘+1)

(𝑡) = 𝑥𝑛
(0)

(𝑡) + ∫
𝑡

∘
[𝑥′𝑛

(𝑘)
(𝑇), 𝑓𝑛(�̃�1

(𝑘)
(𝑇), �̃�2

(𝑘)
(𝑇)), ⋯ , �̃�𝑛

(𝑘)
(𝑇) − 𝑔𝑛(𝑇)] 𝑑𝑇. 

The approximations is completely determined, if we start with the initial approximation 

𝑥𝑖(0) = 𝑐𝑖, 𝑖 = 1,2, ⋯ , 𝑛. Finally, the solution  

 𝑥𝑖(𝑡) = lim
𝑛→∞

𝑥𝑖
(𝑛)

(𝑡)        (3.6) 

 is approximated by the 𝑛𝑡ℎ term 𝑥𝑖
(𝑛)

(𝑡), 𝑖 = 1,2,3, ⋯ , 𝑛. 
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 4. Tau-Reduction 

We considered the linear boundary value problem for the 𝑛𝑡ℎ order integro differential 

equation of the form:  

 𝑦𝑛(𝑥) = 𝑔(𝑥) + 𝑓(𝑥)𝑦(𝑥) + 𝜆 ∫
𝑥

∘
𝑃(𝑥, 𝑡)𝑦(𝑡)𝑑𝑡,    (4.1) 

with initial conditions  

 𝑦(0) = 𝛼∘, 𝑦′(0) = 𝛼1, ⋯ , 𝑦(𝑛−1)(0) = 𝛼𝑛−1.    (4.2) 

We considered the transformation  

 𝑦(𝑥) = 𝑦1(𝑥),
𝑑𝑦

𝑑𝑥
= 𝑦2(𝑥), ⋯ ,

𝑑(𝑛−1)𝑦

𝑑𝑥(𝑚−1) = 𝑦𝑛(𝑥)    (4.3) 

and rewrite the above higher order boundary value problem as a system of differential 

equations:  

 
𝑑𝑦1

𝑑𝑥
= 𝑦2(𝑥) 

 
𝑑𝑦2

𝑑𝑥
= 𝑦3(𝑥)         (4.4) 

 ⋮ 

 
𝑑𝑦𝑛

𝑑𝑥
= 𝑔(𝑥) + 𝑓(𝑥)𝑦1(𝑥) + 𝜆 ∫

𝑥

∘
𝑃(𝑥, 𝑡)𝑦1(𝑡)𝑑𝑡, 

with initial conditions  

 𝑦1
(0)

(𝑥) = 𝛼∘, 𝑦2
(0)

(𝑥) = 𝛼1, ⋯ , 𝑦𝑛
(0)

(𝑥) = 𝛼𝑛−1. 

The above system of differential equations are then perturbed and written as a system of 

integral equations with langrange multipliers 𝜆𝑖 = 1, 𝑖 = 1,2,3, ⋯ , 𝑛 as follows  

 𝑦1
(𝑝+1)

(𝑥) = 𝑦1
(0)

(𝑥) + ∫
𝑥

∘
𝑦2

(𝑝)
(𝑠)𝑑𝑠 + 𝜏1𝑇1(𝑥) 

 𝑦2
(𝑝+1)

(𝑥) = 𝑦2
(0)

(𝑥) + ∫
𝑥

∘
𝑦3

(𝑝)
(𝑠)𝑑𝑠 + 𝜏2𝑇2(𝑥)     (4.5) 

 ⋮ 
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𝑦𝑛
(𝑝+1)(𝑥) = 𝑦𝑛

(0)(𝑥) + ∫
𝑥

∘

[𝑔(𝑠) + 𝑓(𝑠)𝑦1
(𝑝)(𝑠) + 𝜆 ∫

𝑥

∘

𝑝(𝑠, 𝑡)𝑦1
(𝑝)(𝑡)𝑑𝑡] 𝑑𝑠    + 𝜏𝑛𝑇𝑛(𝑥). 

For example, 

with 𝑝 = 0, we obtain  

 𝑦1
(1)

(𝑥) = 𝑦1
(0)

(𝑥) + ∫
𝑥

∘
𝛼1𝑑𝑠 + 𝜏1𝑇1(𝑥) = 𝛼∘ + 𝛼1𝑥 + 𝜏1𝑇1(𝑥) 

    𝑦2
(1)

(𝑥) = 𝛼1 + ∫
𝑥

∘
𝛼2𝑑𝑠 + 𝜏2𝑇2(𝑥) = 𝛼1 + 𝛼2𝑥 + 𝜏2𝑇2(𝑥)   (4.6) 

                    ⋮ 

𝑦𝑛
(1)

(𝑥) = 𝛼𝑛−1 + ∫
𝑥

∘
[𝑔(𝑠) + 𝑓(𝑠)𝛼∘ + 𝜆 ∫

𝑥

∘
𝑝(𝑠, 𝑡)𝛼∘𝑑𝑡]𝑑𝑠 + 𝜏𝑛𝑇𝑛(𝑥), 

where 𝜏𝑖 , 𝑖 = 1,2, ⋯ , 𝑛 are free tau parameters to be determined and 𝑇𝑛(𝑥) are Chebyshev 

Polynomials of degree 𝑛 of the first kind which is valid in the interval −1 ≤ 𝑥 ≤ 1 and is 

given by  

 𝑇𝑛(𝑥) = cos(𝑛cos−1𝑥)       (4.7) 

 and which satisfy the recurrence relation given by  

 𝑇𝑛+1(𝑥) = 2𝑥𝑇𝑛(𝑥) − 𝑇𝑛−1(𝑥), 𝑛 ≥ 1.     (4.8) 

 

 5. Illustration of the Technique 

Example 1: 

Consider the linear fourth order integro-differential equation (He, 2007) 

 y(𝑖𝑣)(𝑥) = 𝑥(1 + 𝑒𝑥) + 3𝑒𝑥 + 𝑦(𝑥) − ∫
𝑥

∘
𝑦(𝑡)𝑑𝑡    (5.1) 

 𝑦(0) = 1, 𝑦(1) = 1 + 𝑒, 𝑦′(0) = 1, 𝑦′′(1) = 3𝑒. 

The exact solution for this problem is 𝑦(𝑥) = 1 + 𝑥𝑒𝑥. 

Using the transformation 𝑦1 = 𝑦, 𝑦2 = 𝑦′, 𝑦3 = 𝑦′′ and 𝑦4 = 𝑦′′′. We rewrite the above 

problem as a system of differential equations.  
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𝑑𝑦1

𝑑𝑥
= 𝑦2(𝑥) 

 
𝑑𝑦2

𝑑𝑥
= 𝑦3(𝑥) 

 
𝑑𝑦3

𝑑𝑥
= 𝑦4(𝑥)         (5.2) 

 
𝑑𝑦4

𝑑𝑥
= 𝑥(1 + 𝑒𝑥) + 3𝑒𝑥 + 𝑦1(𝑥) − ∫

𝑥

∘
𝑦(𝑡)𝑑𝑡. 

The above system of differential equations are written as integral equations with Lagrange 

multiplier 𝜆𝑖 = 1, 𝑖 = 1,2,3, ⋯ , 𝑛  

 𝑦1
(𝑝+1)

(𝑥) = 𝑦1
(0)

(𝑥) + ∫
𝑥

∘
𝑦2

(𝑝)
(𝑠)𝑑𝑠 + 𝜏1𝑇1(𝑥) 

 𝑦2
(𝑝+1)

(𝑥) = 𝑦2
(0)

(𝑥) + ∫
𝑥

∘
𝑦3

(𝑝)
(𝑠)𝑑𝑠 + 𝜏2𝑇2(𝑥)    (5.3) 

 𝑦3
(𝑝+1)

(𝑥) = 𝑦3
(0)

(𝑥) + ∫
𝑥

∘
𝑦4

(𝑝)
(𝑠)𝑑𝑠 + 𝜏3𝑇3(𝑥) 

 𝑦4
(𝑝+1)(𝑥) = 𝑦4

(0)(𝑥) + ∫
𝑥

∘
[𝑠(1 + 𝑒𝑠) + 3𝑒𝑠 + 𝑦1

(𝑝)(𝑠) − ∫
𝑠

∘
𝑦1

(𝑠)(𝑡)𝑑𝑡] 𝑑𝑠 

+𝜏4𝑇4(𝑥) 

with 𝑦1
(0)

= 1, 𝑦2
(0)

= 1, 𝑦3
(0)

= 𝐴, 𝑦4
(0)

= 𝐵. 

 Consequently, we obtained the following approximations: 

1st iteration (i.e p=0) 

 𝑦1
(1)

= 1 + 𝑥 + 𝜏1(2𝑥 − 1) 

 𝑦2
(1)

= 1 + (𝐴 − 8𝜏2)𝑥 + 8𝜏2𝑥2 + 𝜏2 

 𝑦3
(1)

= 𝐴 + (𝐵 + 18𝜏3)𝑥 − 48𝑥2𝜏3 + 32𝑥3𝜏3 − 𝜏3 

 𝑦4
(1)

= 𝐵 + 𝑥𝑒𝑥 + 2𝑒𝑥 + 𝑥 − 2 + (128𝑥4 − 256𝑥3 + 160𝑥2 − 32𝑥 + 1)𝜏4. 

2nd iteration (i.e p=1) 

 𝑦1
(2)

= 1 + (1 + 𝜏2)𝑥 + (
𝐴

2
− 4𝜏2) 𝑥2 +

8

3
𝜏2𝑥3 
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 𝑦2
(2)

= 1 + (𝐴 − 𝜏3)𝑥 + (𝐵 + 18𝜏3)
𝑥2

2
− 16𝜏3𝑥3 + 8𝜏3𝑥4 

 𝑦3
(2)

= 𝐴 + (𝐵 + 2 + 𝜏4)𝑥 + (
1

2
− 16𝜏4) 𝑥2 +

160

3
𝜏4𝑥3 − 64𝜏4𝑥4 

+
128

5
𝜏4𝑥5 + 𝑥𝑒𝑥 + 2𝑒𝑥 − 1 

 𝑦4
(2)

= 𝐵 + (1 − 𝜏1)𝑥 + (1 + 3𝜏1)
𝑥2

2
− (1 + 2𝜏1)

𝑥3

6
+ 𝑥𝑒𝑥 + 2𝑒𝑥 − 2. 

3rd iteration (i.e p=2) 

 𝑦1
(3)

= 1 + 𝑥 + (𝐴 − 𝜏3)
𝑥2

2
+ (𝐵 + 18𝜏3)

𝑥3

6
− 4𝜏3𝑥4 +

8

5
𝜏3𝑥5 

𝑦2
(3)

= 1 + 𝐴𝑥 + (𝐵 + 2 + 𝜏4)
𝑥2

2
+ (

1

2
− 16𝜏4)

𝑥3

3
+   

40

3
𝜏4𝑥4 −

64

5
𝜏4𝑥5 +

64

15
𝜏4𝑥6 − 𝑥𝑒𝑥

− 𝑥 

𝑦3
(3)

= 𝐴 + 𝐵𝑥 + (1 − 𝜏1)
𝑥2

2
+ (1 + 3𝜏1

𝑥3

6
− (1 − 2𝜏1)

𝑥4

24
+ 𝑥𝑒𝑥 + 𝑒𝑥 − 2𝑥 − 1 

𝑦4
(3)

= 𝐵 + 𝑥𝑒𝑥 + 2𝑒𝑥 + 𝑥 + (1 + 𝜏2)
𝑥2

2
+ (𝐴 − 9𝜏2 − 1)

𝑥3

6
+ (𝜏2 −

𝐴

24
)

𝑥4

12
−

2

15
𝜏2𝑥5

− 2. 

4th iteration (i.e p=3) 

𝑦1
(4)

= 1 + 𝑥 + 𝐴
𝑥2

2
+ (𝐵 − 2 + 𝜏4)

𝑥3

6
+ (

1

2
− 16𝜏4)

𝑥4

12
+

8

3
𝜏4𝑥5 −

32

15
𝜏4𝑥6 +

64

105
𝜏4𝑥7

− 𝑥𝑒𝑥 − 𝑒𝑥 −
𝑥2

2
+ 1 

𝑦2
(4)

= 1 + (𝐴 − 1)𝑥 + (
𝐵

2
− 1) 𝑥2 + (1 − 𝜏1)

𝑥3

6
+ (1 + 3𝜏1)

𝑥4

24
− (1 + 2𝜏1)

𝑥5

120
+ 𝑥𝑒𝑥 

 𝑦3
(4)

= 1 + (𝐵 − 2)𝑥 + 𝑥𝑒𝑥 + 𝑒𝑥 +
𝑥2

2
+ (1 + 𝜏1)

𝑥3

6
+ (𝐴 − 9𝜏1 − 1)

𝑥4

24
+

(𝜏2 −
𝐴

24
)

𝑥5

60
−

1

45
𝜏2𝑥6 − 2𝑥 − 1 

𝑦4
(4)

= 𝐵 + 𝑥𝑒𝑥 + 2𝑒𝑥 + 𝑥 +
𝑥2

2
+ (𝐴 − 𝜏3 − 1)

𝑥3

6
+ (𝐵 − 𝐴 + 19𝜏3)

𝑥4

24
− (𝐵 +

114𝜏3)
𝑥5

120
+

2

5
𝜏3𝑥6 −

4

105
𝜏3𝑥7 − 2. 
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Thus, using the initial boundary conditions, we obtained the values of 𝜏1(𝑖 = 1,2,3,4), A and 

B.  

Example 2: 

Consider the nonlinear fourth-order integro-differential equation (He, 2007) 

 𝑦(𝑖𝑣)(𝑥) = 1 + ∫
𝑥

∘
𝑒−𝑥𝑦2(𝑡)𝑑𝑡, 

with the boundary conditions  

 𝑦(0) = 1, 𝑦′(0) = 1, 𝑦(1) = 𝑒, 𝑦′′(1) = 𝑒. 

The exact solution of the problem is 𝑦(x) = 𝑒𝑥. 

Using the transformation  

 𝑦1 = 𝑦, 𝑦2 = 𝑦′, 𝑦3 = 𝑦′′and   𝑦4 = 𝑦′′′. 

We rewrite the above problem as a system of differential equations.  

 
𝑑𝑦1

𝑑𝑥
= 𝑦2(𝑥) 

 
𝑑𝑦2

𝑑𝑥
= 𝑦3(𝑥) 

 
𝑑𝑦3

𝑑𝑥
= 𝑦4(𝑥) 

 
𝑑𝑦4

𝑑𝑥
= 1 + ∫

𝑥

∘
𝑒−𝑥𝑦1

2(𝑡)𝑑𝑡. 

The above system of differential equations are written as integral equations with Lagrange 

multiplier 𝜆𝑖 = 1, 𝑖 = 1,2,3, ⋯ , 𝑛  

 𝑦1
(𝑝+1)

(𝑥) = 𝑦1
(0)

(𝑥) + ∫
𝑥

∘
𝑦2

(𝑝)
(𝑠)𝑑𝑠 + 𝜏1𝑇1(𝑥) 

 𝑦2
(𝑝+1)

(𝑥) = 𝑦2
(0)

(𝑥) + ∫
𝑥

∘
𝑦3

(𝑝)
(𝑠)𝑑𝑠 + 𝜏2𝑇2(𝑥) 

 𝑦3
(𝑝+1)

(𝑥) = 𝑦3
(0)

(𝑥) + ∫
𝑥

∘
𝑦4

(𝑝)
(𝑠)𝑑𝑠 + 𝜏3𝑇3(𝑥) 

 𝑦4
(𝑝+1)

(𝑥) = 𝑦4
(0)

(𝑥) + ∫
𝑥

∘
[1 + ∫

𝑠

∘
𝑒−𝑠(𝑦1(𝑡))2𝑑𝑡]𝑑𝑠 + 𝜏4𝑇4(𝑥) 
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with 𝑦1
(0)

= 1, 𝑦2
(0)

= 1, 𝑦3
(0)

= 𝐴, 𝑦4
(0)

= 𝐵. 

Consequently, we obtained the following approximations: 

1st iteration (i.e p=0) 

 𝑦1
(1)

= 1 + (1 − 2𝜏1)𝑥 − 𝜏1 

 𝑦2
(1)

= 1 + (𝐴 − 8𝜏2)𝑥 + 8𝜏2𝑥2 + 𝜏2 

 𝑦3
(1)

= 𝐴 + (𝐵 + 18𝜏3)𝑥 − 48𝑥2𝜏3 + 32𝑥3𝜏3 − 𝜏3 

 𝑦4
(1)

= 𝐵 + 𝑥𝑒𝑥 + 2𝑒𝑥 + 𝑥 − 2 + (128𝑥4 − 256𝑥3 + 160𝑥2 − 32𝑥 + 1)𝜏4. 

Continuing in the same manner, we obtain  

3rd iteration (i.e p=2) 

 𝑦1
(3)

= 1 + 𝑥 + (𝐴 − 𝜏3)
𝑥2

2
+ (𝐵 + 18𝜏3)

𝑥3

6
− 4𝜏3𝑥4 +

8

5
𝜏3𝑥5 

 𝑦2
(3)

= 1 + 𝐴𝑥 + (𝐵 − 2 + 𝜏4)
𝑥2

2
+ (

1

2
− 16𝜏4)

𝑥3

3
+

40

3
𝜏4𝑥4 −

64

5
𝜏4𝑥5 +

                                    
64

15
𝜏4𝑥6 − 𝑥𝑒𝑥 − 𝑥 

 𝑦3
(3)

= 𝐴 + (𝐵 + 5 + 8𝜏1 + 5𝜏1
2)𝑥 +

𝑥2

2
+ (11 + 26𝜏1 + 17𝜏1

2)𝑥𝑒−𝑥 + (16 +

                      34𝜏1 + 22𝜏1
2)𝑒−𝑥 + (3 + 9𝜏1 + 6𝜏1

2)𝑥2𝑒−𝑥 +
1

3
(1 + 4𝜏1 +

                                                            4𝜏1
2)𝑥3𝑒−𝑥 − (16 + 34𝜏1 + 22𝜏2) 

 𝑦4
(3)

= 𝐵 + 𝑥 − (6𝐴2 + 230𝐴𝜏2 + 3026𝜏2
2 + 8𝐴 + 86𝜏2 + 5)𝑥𝑒−𝑥 − (6𝐴2 +

                        230𝐴𝜏2 + 3026𝜏2
2 + 8𝐴 + 86𝜏2 + 5)𝑒−𝑥 − (2 − 21𝜏2 + 4𝐴 +        1513𝜏2

2 +

179𝐴𝜏2 + 3𝐴2)𝑥2𝑒−𝑥 + (
1

3
+ 8𝜏2 +

1513

3
 𝜏2

2  +
115

3
𝜏2 + 𝐴2) 𝑥3𝑒−𝑥 

 − (4𝜏2 +
115

12
𝐴𝜏2 + 126𝐴𝜏2

2 +
𝐴

4
+

𝐴2

4
) 𝑥4𝑒−𝑥 − (

𝐴2

20
+

16

15
𝜏2 +

28

15
𝐴𝜏2 +

                    
128

5
𝜏2

2) 𝑥5𝑒−𝑥 − (
4

9
𝐴𝜏2 +

64

18
𝜏2

2) 𝑥6𝑒−𝑥 −
64

63
𝜏2

2𝑥7𝑒−𝑥 + (6𝐴2 +  230𝐴𝜏2 +

3026𝜏2
2 + 8𝐴 + 86𝜏2 + 5). 

Thus, using the boundary conditions, we obtained the values of 𝜏1(𝑖 = 1,2,3,4), A and B. 
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Table 1: The results obtained by perturbed variational iterative method for example 1 

x  Exact  Sol  VIM   PVIM  Error (VIM)  Error(PVIM) 

0.0  1.00000000   1.00000000  1.000000000   0.000000   0.000000 

0.1  1.111051700   1.11105170  1.111052780   0.000000   1.006E-6 

0.2  1.244280550   1.24428054  1.244281660   1.000E-8   1.080E-6 

0.3  1.404957640   1.40495760  1.404960072   4.000E-8   1.110E-6 

0.4  1.596729870   1.59672985  1.596732204   2.000E-8   2.430E-6 

0.5  1.824360630   1.82436060  1.824362957   3.000E-8   2.330E-6 

0.6  2.093271280   2.09327006  2.093273599   1.200E-6   2.327E-6 

0.7  2.409622680   2.40962585  2.409629183   1.040E-6   2.319E-6 

0.8  2.780432740   2.78043070  2.780435450   2.040E-6   2.290E-6 

0.9  3.213642800   3.21364261  3.213645069   1.900E-7   2.269E-6 

1.0  3.718281820   3.71828180  3.718282619   2.000E-8   1.990E-7 

 

 Table 2: The results obtained by perturbed variational iterative method for example 2 

 x  Exact Sol  VIM   PVIM  Error (VIM)  Error(PVIM) 

0.0  1.00000000   1.00000000   1.00000000   0.000000   0.000000 

0.1  1.105170918   1.10515817   1.10515817   1.100E-8   7.000E-9 

0.2  1.221402758   1.22140225   1.22140225   2.000E-8   2.000E-8 

0.3  1.349858800   1.34985778   1.34985778   1.200E-6   1.020E-6 

0.4  1.491824690   1.49182437   1.49182437   3.200E-7   3.200E-7 

0.5  1.648721271   1.64872034   1.64872034   9.300E-7   9.300E-7 
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0.6  1.822118800   1.82211777   1.82211777   1.000E-6   1.030E-6 

0.7  2.013752707   2.01375078   2.01375078   1.900E-6   1.920E-6 

0.8  2.225540920   2.22554083   2.22554083   9.000E-8   9.000E-8 

0.9  2.459603110   2.45960310   2.45960310   1.000E-8   1.000E-8 

1.0  2.718281820   2.71828185   2.71828153   2.900E-7   2.900E-7 

 

 6. Conclusion  

In example 1, the results obtained by Perturbed Variational Iteration Method are closed to the 

results obtained by the Conventional Variational Iteration Method. We also observed from 

example 2 that the results obtained are in close agreement with the Conventional Variational 

Iteration Method. The added advantages of our method are, it is simple, easy and is easily 

programmed.  
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