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Abstract 

In this paper, we consider a three-queue polling system with probabilistic routing. The choice of the queue to be 

visited next may depend on the current state of the system through the polling probability. Using the embedded 

Markov chain technique, we derived expressions for the steady-state joint and marginal queue length 

distribution at the switch points, as well as the waiting time distribution at each queue. The relation between the 

queue length and waiting time distributions becomes inherent in the model, providing a platform for easily 

computing waiting time moments. 
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1. Introduction 

Probabilistic routing is a very important router discipline that allows different types of traffic 

to receive the appropriate quality-of-service requirements they need individually. The 

probabilistic routing scheme dynamically allocates the available server resource to each 

traffic class based on the class's polling probability. This discipline plays a vital role in 

several applications in telecommunications, traffic management and logistics. Consider a 

server who polls the three queues of a queueing network in a cyclic order, but with a 

tendency to skip queue 2 in a non-empty situation, with probability p<1. This might be the 

case for an inherent priority system. Examples are systems with a greedy-type routing 

mechanism, where the server chooses a queue with a certain proportion of units (or 

customers) waiting at the start. With each of the queues, there is associated an infinite buffer 

(or waiting room) fed by a homogeneous Poisson arrival stream with intensity, 𝜆𝑖, i = 1,2,3. 

The overall intensity, or total arrival rate is 
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𝜆 = 𝜆1 + 𝜆2 + 𝜆3 

A typical polling system is shown in figure 1. 

 

Figure 1: A cyclic polling system (Levy and Sidi, 1990) 

The server employs the exhaustive service policy at each queue. The services are independent 

of the arrival stream and each served unit departs from the system. The service times at queue 

i are independent and identically distributed random variables Bi with finite kth moments 𝑏𝑖
(𝑘)

, 

k=1,2,.... When the server has finished the batch of services at queue i or if he found the 

queue empty, then he switches to the next queue without incurring a switchover time. The 

choice may depend on the current state of the system through the polling probability, p. 

The probability p can be independent of the state of the system or p depends on the state. The 

case p=0 can be viewed as a polite system, in which case the server movement is cyclic. On 

the other hand, the case p=1 implies an aggressive system where the server must switch to 

queue 3, after exhausting queue 1. 

A necessary and sufficient condition for stability is that the overall system load 𝜌, is less than 

1. We also assume that the ergodicity conditions are fulfilled and we restrict ourselves to 

results for the system in equilibrium. All references to queue indices greater than 3 or less 

than 1 are implicitly assumed to be modulo 3. 

A unique property of the present model is that the server's routing rule depends on the actual 

configuration of units in the system.  
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The model is a generalization of a three-queue polling model with exhaustive service at each 

queue. It reduces to the conventional three-queue model when p=0, and corresponds to a two-

queue model when p=1.  

A few examples where the model is appropriate will suffice: 

i. A 3-station robotic system where heavier traffic is experienced in a particular stream 

of arrivals thus tending to clog the waiting space available to other arrivals. 

ii. A traffic controller at a three-way junction where traffic build-up is very high on a 

particular lane. We may desire to investigate the optimum value of p that minimizes 

the average waiting time of an arbitrary customer. 

iii. A central processing unit which has to attend to three sets of jobs but one of the sets 

has more arrivals. 

iv. A brewery producing three different brands of drinks with greater demand for one of 

them than the others. 

v. A dynamically controlled traffic light at an intersection. 

We mention a few relevant researches on polling systems. Eisenberg (1972) analyzed a 

polling system where the polling order was periodic, with exhaustive discipline at each 

queue. The analysis involved the study of the embedded process at four points namely: 

service beginning, service completion, visit beginning and visit completion.  A similar work 

by Boxma and Down (1997) obtained closed and exact expressions for some key 

performance measures of the system in a two-queue model. Schassberger (1993) worked on a 

polling system with probabilistic order of service, called Bernoulli scheduling. The Bernoulli 

scheduling system has been solved only approximately. Another probabilistic case mentioned 

by Schassberger is one in which, after the completion of service at any queue, the next polled 

queue is queue j with probability 𝑝𝑗, where ∑ 𝑝𝑗
𝑁
𝑗=1 = 1, called random polling system. 

Obilade (1983) derived a processor-sharing approximation to the strictly alternating switch 

(SAS) polling model. The SAS is basically an endogenous priority queueing model in which 

the next unit for service is selected not only based on what priority class it belongs but also 

on what priority class was last served. It represents a particular extreme case of switching 

from one queue to the other after a specified k≥1 number of units have been served in a two-

queue system. The two queues are M/M/1-type and a feedback model was integrated into the 

system, in which either unit may require further service with some probability.  
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Coffman and Gilbert (1987) provided an analysis of a polling system with a greedy server on 

a circle and a line as well as insights about the stability condition. Schassberger (1993) solved 

the stability problem for polling systems with state-dependent routing, where the ergodicity 

of a symmetric ring-like network with a limited service policy has been proved. These results 

were generalized in Foss and Last (1995) which dealt with polling systems with a special 

greedy routing mechanism on a graph but with rather general service policies for each station. 

There are many other papers establishing comparison and stability results for polling systems 

with state-independent routing. 

Brill and Hlynka (2000) studied an M/M/c queueing system in which there is a single special 

customer. This special customer is viewed as competing for service with the regular 

customers in the system. They obtained the waiting time distribution of this special customer 

under various modes of probability p, of the customer starting service at some regular service 

completion epoch. 

In Wierman et. al (2007), a mean value analysis framework for analyzing the effect of 

scheduling within queues in classical asymmetric polling systems with gated or exhaustive 

service was presented. Their framework illustrated that a large class of scheduling policies 

behave similarly in the exhaustive polling model and the standard M/G/1 model, whereas 

scheduling policies in the gated polling model behave differently than in an M/G/1. They 

showed that the impact on mean response time from scheduling within a queue of a polling 

system can be dramatic.  

Two symmetric M/G/1 type polling systems were investigated by Cooper et. al (1999) to 

pinpoint the effect on the efficiency of the system when the server configuration is such that 

it incurs switchover times even when the station is empty. In these models, the server spends 

time not only in inter-queue switchovers but also on warming up, that is, getting ready for 

queue service. The mean waiting times were determined and compared for different 

parameters of the times of switchover between the queues and warming-up times in order to 

verify whether they are constants or random variables. 

In section two, we develop the steady-state system equations at the switch points, while the 

moments of the queue length distribution and the waiting times are presented in sections 3 

and 4, respectively. Finally, our conclusions are expressed in section 5. 
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2 Steady-state system equations at the switch points 

We shall use the embedded Markov chain technique to obtain the steady state system 

equations. This technique is applicable to systems with Poisson inputs. We are concerned at 

any instant t, with a group of random variables N(t), the number of customers in the system at 

time t, and X(t) the service time already received by the customer in service, if any. {N(t), 

t≥0} is non-Markovian, but  {N(t),X(t), t≥0} is a Markov process. 

Now, by observing the number in the system at switch points - the instant the server exhausts 

a particular queue and is about to switch to the next, rather than at all points in time t, it is 

possible to simplify matters to a great extent.  

Using the principles developed by Takagi and Kleinrock (1984), we proceed to obtain the 

system equations at steady state. 

Let 𝜏1, 𝜏2, … , 𝜏𝑁 be the time instants at the switch points. At each of these time instants 𝜏𝑖, 

X(𝜏𝑖)=0, since the last customer just completed service, thus effectively reducing the 

dimension of the embedded Markov Chain to  {N(𝜏𝑖),0, 𝜏𝑖 ≥ 0}. 

Define 𝑃𝑖(𝑞𝑖−1, 0, 𝑞𝑖+1) = Pr{𝑁𝑖−1(𝜏) = 𝑞𝑖−1, 𝑁𝑖(𝜏) = 𝑞𝑖+1} as the joint probability that at 

an arbitrary switch point, the server has just completed a visit to queue i and 𝑞𝑗 units are 

waiting in queue j, (j=i-1,i+1), i=1,2,3. 𝑃𝑖(𝑞𝑖−1, 0, 𝑞𝑖+1) is the probability that at the instant 

when the server switches from queue i, the number of units waiting at queue i-1 and queue 

i+1 are 𝑞𝑖−1 and 𝑞𝑖+1, respectively. 

This state (i: 𝑞𝑖−1, 0, 𝑞𝑖+1) can occur through the following exhaustive and mutually exclusive 

events: 

1. The server leaves queue i-1 and finds 𝑘𝑖 ≥ 1 units in queue i, where it spends 𝑘𝑖 busy 

periods. 

2. The server leaves queue i-1 and finds 𝑘𝑖=0 units waiting for service in queue i but at 

least one unit waiting for service elsewhere in the system, so that the server then 

passes through queue i in zero time. 

3. The server leaves some queue and finds the system empty. With probability 𝜆𝑖/𝜆, the 

next arrival (which reinitiates the process) occurs at queue i, where the server spends 

a single busy period. 
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The possible server cycles according to the model are: 

1) 1-2-3 (Cycle 1, C1), Pr(C1)=1-p; or 

2) 1-3 (Cycle 2, C2), Pr(C2)=p. 

The probability state equations for i=1,2 are obtained using the information from the possible 

system states as specified above. 

𝑃𝑖(𝑞𝑖−1, 0, 𝑞𝑖+1)

= ∑ ∑ 𝑃𝑖(0, 𝑘𝑖 , 𝑘𝑖+1) ∫
(𝜆𝑖+1𝑡)𝑞𝑖+1−𝑘𝑖+1

(𝑞𝑖+1 − 𝑘𝑖+1)!

∞

0

𝑞𝑖+1

𝑘𝑖+1=0

∞

𝑘𝑖=1

𝑒−𝜆𝑖+1𝑡
(𝜆𝑖−1𝑡)𝑞𝑖−1

(𝑞𝑖−1)!
𝑒−𝜆𝑖−1𝑡𝑑𝜃𝑖

(𝑘𝑖)
(𝑡)

+ 𝑃𝑖(0,0, 𝑞𝑖+1)(1 − 𝛿(𝑞𝑖+1))𝛿(𝑞𝑖−1)

+
𝜆𝑖

𝜆
𝑃(0) ∫

(𝜆𝑖+1𝑡)𝑞𝑖+1

(𝑞𝑖+1)!

∞

0

𝑒−𝜆𝑖+1𝑡
(𝜆𝑖−1𝑡)𝑞𝑖−1

(𝑞𝑖−1)!
𝑒−𝜆𝑖−1𝑡𝑑𝜃𝑖(𝑡)                                           (2.1) 

where      𝑃(0) = ∑ 𝑃𝑖(0,0,0)3
𝑖=1  

𝛿(𝑥) = {
1, 𝑖𝑓 𝑥 = 0
0, 𝑖𝑓 𝑥 ≠ 0

 

and 𝜃𝑖(𝑡) is the busy period distribution function while 𝜃𝑖
(𝑘𝑖)

(t) is its 𝑘𝑖-fold convolution. 

The normalization condition is given by  

∑ ∑ ∑ 𝑃𝑖(𝑞𝑖−1, 0, 𝑞𝑖+1) = 1

∞

𝑞𝑖+1=0

∞

𝑞𝑖−1=0

3

𝑖=1

 

In order to compute 𝑃3(𝑞1, 𝑞2, 0), we have to condition it on the server cycle so as to 

correctly specify the system at a 3-switch point. The conditional probabilities 

𝑃3(𝑞1, 𝑞2, 0|𝐶1) and 𝑃3(𝑞1, 𝑞2, 0|𝐶2) are first derived: 

𝑃3(𝑞1, 𝑞2, 0|𝐶1)

= ∑ ∑ 𝑃2(𝑘1, 0, 𝑘3) ∫
(𝜆1𝑡)𝑞1−𝑘1

(𝑞1 − 𝑘1)!

∞

0

𝑞1

𝑘1=0

∞

𝑘3=1

𝑒−𝜆1𝑡
(𝜆2𝑡)𝑞2

(𝑞2)!
𝑒−𝜆2𝑡𝑑𝜃3

(𝑘3)
(𝑡)

+ 𝑃3(0,0, 𝑞1)(1 − 𝛿(𝑞1))𝛿(𝑞2)

+
𝜆3

𝜆
𝑃(0) ∫

(𝜆1𝑡)𝑞1

(𝑞1)!

∞

0

𝑒−𝜆1𝑡
(𝜆2𝑡)𝑞2

(𝑞2)!
𝑒−𝜆2𝑡𝑑𝜃3(𝑡)                                           (2.2) 
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and  

𝑃3(𝑞1, 𝑞2, 0|𝐶2)

= ∑ ∑ 𝑃1(0, 𝑘2, 𝑘3) ∫
(𝜆1𝑡)𝑞1

(𝑞1)!

∞

0

∞

𝑘2=0

∞

𝑘3=1

𝑒−𝜆1𝑡
(𝜆2𝑡)𝑞2−𝑘2

(𝑞2 − 𝑘2)!
𝑒−𝜆2𝑡𝑑𝜃3

(𝑘3)
(𝑡)

+ 𝑃1(0, 𝑞2, 0)(1 − 𝛿(𝑞2))𝛿(𝑞1)

+
𝜆3

𝜆
𝑃(0) ∫

(𝜆1𝑡)𝑞1

(𝑞1)!

∞

0

𝑒−𝜆1𝑡
(𝜆2𝑡)𝑞2

(𝑞2)!
𝑒−𝜆2𝑡𝑑𝜃3(𝑡)                                    (2.3) 

The probability, 𝑃3(𝑞1, 𝑞2, 0) is the weighted average of both 𝑃3(𝑞1, 𝑞2, 0|𝐶1) and 

𝑃3(𝑞1, 𝑞2, 0|𝐶2). That is 

𝑃3(𝑞1, 𝑞2, 0) = 𝑃3(𝑞1, 𝑞2, 0|𝐶1) Pr(𝐶1)

+ 𝑃3(𝑞1, 𝑞2, 0|𝐶2) Pr(𝐶2)                                        (2.4) 

Equation (2.4), which is a combination of equations (2.2) and (2.3), reflects the impact of the 

polling probability p on the routing of the server when switching from queue 3. The equation 

reduces to equations (2.2)  and (2.3) respectively, when p=0 and p=1, respectively.  

The embedded Markov chain probability state equations derived above are very important in 

describing the system. The usefulness of these state equations is enhanced when they are 

transformed through their probability generating functions so that the moments could be 

easily obtained, which are of major interest in queueing theory. 

We now define the joint probability generating function 

𝐺𝑖(𝑧𝑖−1, 0, 𝑧𝑖+1) = ∑ ∑ 𝑃𝑖(𝑞𝑖−1, 0, 𝑞𝑖+1) ∏(𝑧𝑗)
𝑞𝑗

3

𝑗=1
𝑗≠𝑖

∞

𝑞𝑖+1=0

∞

𝑞𝑖−1=0

 

The joint probability generating function for i=1,2 is 

𝐺𝑖(𝑧𝑖−1, 0, 𝑧𝑖+1) = 𝐺𝑖−1(0, 𝜃𝑖
∗[∑ 𝜆𝑗(1 − 𝑧𝑗)𝑗≠𝑖 ], 𝑧𝑖+1) − 𝑃𝑖−1(0,0,0)

𝜆𝑖

𝜆
𝑃(0)𝜃𝑖

∗[∑ 𝜆𝑗(1 −𝑗≠𝑖

𝑧𝑗)]           (2.5) 

where 𝜃𝑖
∗(𝑠) is the Laplace-Stieltjes transform (LST) of the type-i busy period distribution 

function, and is given by 
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                                                        𝜃𝑖
∗(𝑠) = 𝐵𝑖

∗[𝑠 + 𝜆𝑖 − 𝜆𝑖𝜃𝑖
∗(𝑠)]                                                 (2.6) 

We note that 𝐺𝑖(0,1,1) is the probability that an arbitrary switch point is associated with 

queue i. 

The joint probability generating function for i=3 is given by 

𝐺3(𝑧1, 𝑧2, 0) = (1 − 𝑝)𝐺2 (𝑧1, 0, 𝜃3
∗ [∑ 𝜆𝑗(1 − 𝑧𝑗)

𝑗≠3

]) + 𝑝𝐺1 (0, 𝑧2, 𝜃3
∗ [∑ 𝜆𝑗(1 − 𝑧𝑗)

𝑗≠3

])

− 𝑝𝑃1(0,0,0) − (1 − 𝑝)𝑃2(0,0,0)

+
𝜆3

𝜆
𝑃(0)𝜃3

∗ [∑ 𝜆𝑗(1 − 𝑧𝑗)

𝑗≠3

]                  (2.7) 

Equation (2.7) gives the joint probability generating function of the state of the system at the 

3-switch point. This result reflects the contribution of 𝐺1(. ) and 𝐺2(. ) to the joint probability 

generating function of the distribution of the system size at a 3-switch point. It also contains 

the probabilities of an idle system at both the 1- and 2-switch points, as well as the LST of the 

busy period distribution at queue 3. 

3 Moments of number of units at the switch points 

The essence of the joint probability generating functions of the system size at the switch 

points, which were derived in section 2, is to enable us obtain the moments of the underlying 

distribution. They also serve as useful tools in obtaining the distribution of waiting times. 

We now define for 𝑖 ≠ 𝑗 and 𝑗 = 𝑖 − 1, 𝑖 + 1, the moments of the steady state system size at 

the switch points. 

𝑔𝑖(𝑗) =
𝜕

𝜕𝑧𝑗
𝐺𝑖(𝑧𝑖−1, 0, 𝑧𝑖+1)|𝑧𝑖−1=𝑧𝑖+1=1 

and 

𝑔𝑖(𝑗, 𝑘) =
𝜆(1 − 𝜌)

𝑃(0)

𝜕2

𝜕𝑧𝑗𝜕𝑧𝑘
𝐺𝑖(𝑧𝑗 , 0, 𝑧𝑘)|𝑧𝑗=𝑧𝑘=1 

The marginal queue length, obtained as the solution to the first derivative of the state 

equations joint generating functions, is given as 
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                                        𝑔𝑖−1(𝑖) =
𝜆𝑖

𝜆
𝑃(0)

𝜌𝑖 − 𝜌

1 − 𝜌
                                                                 (3.1) 

P(0), the overall probability of an idle system at an arbitrary switch point, can be estimated 

using a novel technique introduced in Mapp et. al (2010), called the Zero-server Markov 

chain for exhaustive service polling systems. It should be noted however, that in general, 

𝑃(0) ≠ 1 − 𝜌 

That is, for the polling model with probabilistic routing, the probability of an idle system at 

an arbitrary switch point is not the same with the general probability of an empty system, 

which is equal to 1 − 𝜌. 

By differentiating {𝐺𝑖(𝑧𝑗 , 0, 𝑧𝑘);  i, j, k = 1,2,3, i ≠ j, k} with respect to 𝑧𝑗 and 𝑧𝑘 and then 

setting 𝑧𝑗=𝑧𝑘 = 1 we have a set of 32 = 9 recursive equations for {𝑔𝑖(𝑗, 𝑘); i,j,k=1,2,3, 

i≠j,k}. The expression 𝑔𝑖(𝑗, 𝑘) is the cross correlation of the mean queue lengths at queues j 

and k at an i-switch point. The values of these 9 cross correlations: 

(𝑔1(2,3), 𝑔1(2,2), 𝑔1(3,3), 𝑔2(1,1), 𝑔2(1,3), 𝑔2(3,3), 𝑔3(1,1), 𝑔3(1,2), 𝑔3(2,2)) are obtained 

by solving the set of 9 equations with 9 unknowns, and this is achieved numerically. Such 

equations are amenable to numerical solutions, as results would converge numerically in a 

reasonable number of steps. 

      𝑔𝑖(𝑗, 𝑘) = 𝑔𝑖−1(𝑗, 𝑘) + 𝑔𝑖−1(𝑖, 𝑗)𝜆𝑘𝜃𝑖

+ 𝑔𝑖−1(𝑖, 𝑘)𝜆𝑗𝜃𝑖                                                    (3.2)           + 𝑔𝑖−1(𝑖, 𝑖)𝜆𝑗𝜆𝑘𝜃𝑖
2

+ 𝜆𝑗𝜆𝑘𝜆𝑖(1 − 𝜌𝑖)𝜃𝑖
(2)

,   𝑗 ≠ 𝑖, 𝑖 − 1,   𝑘 ≠ 𝑖, 𝑖 − 1                     

   𝑔𝑖(𝑖 − 1, 𝑘) = 𝑔𝑖−1(𝑖, 𝑘)𝜆𝑖−1𝜃𝑖 + 𝑔𝑖−1(𝑖, 𝑖)𝜆𝑖−1𝜆𝑘𝜃𝑖
2                                                (3.3)    

+ 𝜆𝑖−1𝜆𝑘𝜆𝑖(1 − 𝜌𝑖)𝜃𝑖
(2)

,          𝑘 = 𝑖, 𝑖 − 1 

   𝑔𝑖(𝑖 − 1, 𝑖 − 1) = 𝑔𝑖−1(𝑖, 𝑖)(𝜆𝑖−1𝜃𝑖)2 + 𝜆𝑖−1
2 𝜆𝑖(1 − 𝜌𝑖)𝜃𝑖

(2)
                                 (3.4) 

4 Waiting times 

For the system, we define a super cycle as the elapsed time between the arrival instant of a 

unit at any queue when the system is empty, and the first instant at which the system becomes 

empty again. 
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The units that arrive into queue i can be classified into two exclusive and exhaustive types:  

1) arrivals that either initiate a super cycle or occur during the first busy period in a super 

cycle; or  

2)  all other arrivals that occur after (and including) the second busy period at queue i in 

a super cycle. 

The Laplace-Stieltjes transform (LST) of the distribution of the waiting time of type 1 and 

type 2 units are given as 

                                                𝑊𝑖
∗(𝑠|𝑡𝑦𝑝𝑒 1) =

𝑠(1 − 𝜌𝑖)

𝑠 − 𝜆𝑖 + 𝜆𝑖𝐵𝑖
∗(𝑠)

                                             (4.1) 

and 

        𝑊𝑖
∗(𝑠|𝑡𝑦𝑝𝑒 2) =

𝜆𝑖(1 − 𝜌𝑖)[𝐺𝑖−1(0,1,1) − 𝐺𝑖−1 (0,1 − 𝑠
𝜆𝑖

⁄ , 1)]

𝑔𝑖−1(𝑖)[𝑠 − 𝜆𝑖 + 𝜆𝑖𝐵𝑖
∗(𝑠)]

                               (4.2) 

The mean number of arrivals into queue i during an interval of length t is 𝜆𝑖𝑡. The probability 

that an arbitrary arrival at queue i finds the system empty is (1 − 𝜌), so that 𝜆𝑖𝑡(1 − 𝜌) is the 

mean number of arrivals at queue i that initiate a super cycle during any length of time t. The 

mean number of units served in a busy period generated by each such arrival is1/(1 − 𝜌𝑖), 

hence the mean number of arrivals at queue i which initiate a super cycle during any elapsed 

time t is 

𝜆𝑖𝑡(1 − 𝜌)

(1 − 𝜌𝑖)
 

The probability that an arbitrary arrival into queue i is of type 1, 𝑃𝑖(𝑡𝑦𝑝𝑒 1) is given as 

                                    𝑃𝑖(𝑡𝑦𝑝𝑒 1) =
𝜆𝑖𝑡(1 − 𝜌)/(1 − 𝜌𝑖)

𝜆𝑖𝑡
=

(1 − 𝜌)

(1 − 𝜌𝑖)
                             (4.3) 

and 

                                    𝑃𝑖(𝑡𝑦𝑝𝑒 2) = 1 − 𝑃𝑖(𝑡𝑦𝑝𝑒 1) =
(𝜌 − 𝜌𝑖)

(1 − 𝜌𝑖)
                                        (4.4) 

Thus the Laplace-Stieltjes transform 𝑊𝑖
∗(𝑠), of the waiting time distribution is the weighted 

average of both types: 
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𝑊𝑖
∗(𝑠) = 𝑃𝑖(𝑡𝑦𝑝𝑒 1)𝑊𝑖

∗(𝑠|𝑡𝑦𝑝𝑒 1) + 𝑃𝑖(𝑡𝑦𝑝𝑒 2)𝑊𝑖
∗(𝑠|𝑡𝑦𝑝𝑒 2) 

Hence 

𝑊𝑖
∗(𝑠) =

𝑠(1 − 𝜌)

𝑠 − 𝜆𝑖 + 𝜆𝑖𝐵𝑖
∗(𝑠)

+
𝜆𝑖(𝜌 − 𝜌𝑖)[𝐺𝑖−1(0,1,1) − 𝐺𝑖−1 (0,1 − 𝑠

𝜆𝑖
⁄ , 1)]

𝑔𝑖−1(𝑖)[𝑠 − 𝜆𝑖 + 𝜆𝑖𝐵𝑖
∗(𝑠)]

                    (4.5) 

We shall now consider the LST 𝑊3
∗(𝑠). 

𝑊3
∗(𝑠)

=
𝑠(1 − 𝜌)

𝑠 − 𝜆3 + 𝜆3𝐵3
∗(𝑠)

                                                                                                                               (4.6)

+
[(𝜌 − 𝜌3) {𝐺1(0,1,1) [𝐺2(1,0,1) − (1 − 𝑝)𝐺2 (1,0,1 − 𝑠

𝜆3
⁄ )] − 𝐺2(1,0,1)𝑝𝐺1 (0,1,1 − 𝑠

𝜆3
⁄ )}]

[(1 − 𝑝)𝐺1(0,1,1)𝑔2(3) + 𝑝𝐺2(1,0,1)𝑔1(3)](𝑠 − 𝜆3 + 𝜆3𝐵3
∗(𝑠))

 

The expected waiting time at queue i, 𝐸(𝑊𝑖) for i=1,2, is given as 

𝐸(𝑊𝑖) = −
𝜕

𝜕𝑠
𝑊𝑖

∗(𝑠)|𝑠=0 =
𝜆𝑖𝑏𝑖

(2)

2(1 − 𝜌𝑖)
+

𝑔𝑖−1(𝑖, 𝑖)

2𝜆𝑖
2(1 − 𝜌𝑖)

                                           (4.7) 

and the expected waiting time at queue 3, 𝐸(𝑊3) is given as 

𝐸(𝑊3) =
𝜆3𝑏3

(2)

2(1 − 𝜌3)
+

(1 − 𝑝)𝜆1𝑔2(3,3) + 𝑝𝜆2𝑔1(3,3)

2𝜆3
2(1 − 𝜌3)[(1 − 𝑝)𝜆1 + 𝑝𝜆2]

                                    (4.8) 

Equation (4.8) thus establishes the mean waiting time at queue 3 and its relationship with the 

second factorial moments of the marginal queue length distribution in queue 3 when the 

server switches either from queue 1 (𝑔1(3,3)) or queue 2 (𝑔2(3,3)). Hence 𝐸(𝑊3) is a 

function of the amount of dispersion in the marginal queue length at queue 3, and it is 

inversely proportional to the polling or selection probability, p. 

It is interesting to note that for the case p=0, 𝐸(𝑊3) reduces to   

                         𝐸(𝑊3) =
𝜆3𝑏3

(2)

2(1 − 𝜌3)
+

𝑔2(3,3)

2𝜆3
2(1 − 𝜌3)

                                                            (4.9) 

The above expression coincides with previously obtained results in Eisenberg (1972) and 

Takagi and Kleinrock (1984). 
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5 Conclusion 

The steady-state system equations for the three-queue polling model with probabilistic 

routing, which were described in section 3 are a fundamental aspect in deriving various 

performance measures of the system. They are involved in the formulation of the queue 

length distribution, the intervisit-time distribution and the waiting time distribution. 

A unified embedding scheme as presented in this paper greatly simplifies the process of 

obtaining the distribution of the performance measures of the polling model. Moreover, 

operations of dynamically controlled and automated traffic control systems can be enhanced 

by the insights provided in this work.  
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