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Abstract 

In many epidemiological studies where times to event data are clustered, introducing frailties in the Cox model 

can account for heterogeneity induced by such clustering. Analyses were carried out using data collected on a 

sample of cancer patients from University of Ilorin Teaching Hospital, using Full Bayesian inference based on 

Markov Chain Monte Carlo (MCMC) simulation technique. The approach allows the estimation of very 

complex and realistic models.  The results showed that sex and age were significant risk factors associated with 

death from some selected cancers. The risk of dying from the selected cancers was observed to progressively 

increase as age of patient’s increases. Using Deviance Information Criterion (DIC) for model comparison, it was 

observed that the flexible semi parametric additive P-spines model, which allows for nonlinearity due to 

metrical covariate age, was better than the model that introduced metrical age linearly as fixed effect. It was also 

found that models that accounted for heterogeneity induced by clustering observations were more adequate than 

those that ignored it. On effect of interaction between sex and age on the death due to cancer, the model that 

contained interaction between sex and age when metrical age was modeled nonlinearly was observed to be 

better than those that modeled metrical or categorized age as linear effect.  

 

Keywords:  Survival time, Censoring, Independence, Frailty, Markov Chain Monte Carlo 

1. Introduction 

Survival time data are usually non-normal due to a number of censored observations thereby 

making analysis of such skewed data different from standard analyses. The most common 

censoring in survival time data is right censoring, which occurs when the actual time a 

subject experiences the event of interest is not known.  In this type of censoring, it is assumed  

for some individuals in the study that there is a time to event T*,  and the right censoring time 

C, where the T*’s are assumed to be independently and identically distributed with density 

function f(t) and survival function S(t). The exact survival time T of any individual will be 

known if and only if T*≤C. If however, T*>C, then the individual is a survivor and the exact 

survival time is censored at C. Thus the observed time is T = min(T*,C)  and the data for such  

 
Corresponding Author:  Abiodun, A. A. 

Email: alfredabiodun1@gmail.com  

 

Ilorin Journal of Science  

Volume 1, Number 1, 2014, pp. 61 – 73 (Printed in Nigeria) 

ISSN: 2408 – 4840 © 2014 Faculty of Physical Sciences, University of Ilorin 

https://doi.org/10.54908/iljs.2014.01.01.005 

 

JOURNAL OF SCEINCE 

ILORIN 



Abiodun                    ILORIN JOURNAL OF SCIENCE 

62 
 

a design can be represented by a pair of random variables (T,δ), where δ indicates whether the 

survival time T corresponds to an event (δ =1) or is right censored (δ =0). 

Often times, survival data contains tied observations, and these need be taken care of 

during analysis. The ideal method of handling ties is the Exact method of partial likelihood 

under Cox proportional hazard model formulation. This is however computer intensive 

(Huang and Liu, 2007). The methods by Breslow (1974) and Efron (1977) are much simpler. 

Adeleke et al. (2013) applied these estimation methods to breast cancer data under  non-

proportional parametric and semiparametric survival models. 

Often times, survival data contains tied observations and the estimation methods for 

handling such data include Exact method of partial likelihood by Breslow (1974) and Efron 

(1977) methods under Cox proportional hazard model formulation,are much simpler. Adeleke 

et al. (2013) analyzed data on cancer patients using these methods. 

In several survival studies, failure times are aggregated in clusters and in such 

situation, subjects belonging to the same cluster are similar with respect to certain 

characteristics so that their survival times are correlated whereas the survival times of 

subjects belonging to different clusters are independent.  

A standard statistical approach to model clustered failure time data is the frailty 

model, which is a random effects model for survival data, where frailties are usually 

introduced as multiplicative random terms in the proportional hazards model (Cox, 1972). 

Observations belonging to the same cluster share the same characteristics than those 

belonging to different clusters.  Frailty model was proposed by Clayton (1978), where the 

dependence between subjects was modeled by a common random effect (shared frailty 

model).  This was extended by the correlated frailty model (Yashin et al., 1995; Xue and 

Brookmeyer, 1996; Yau and McGilchrist, 1997; Ripatti and Palmgren, 2000). Commonly 

used frailty distributions are the gamma, normal and lognormal distributions. Shared positive 

stable frailty model has also attracted attentions recently (Liu, et al, 2011). This is 

documented in Fine,Glidden and Lee (2003) and also in Martinussen and Pipper (2005). Liu 

et al (2011) proposed a covariate-dependent positive stable shared frailty model under a 

unified framework, where the marginal regression parameters and the covariate effects on the 

frailty distribution can be consistently estimated. Frailty models with flexible distributions of 

the frailties have also been proposed in the Bayesian context ( Kim and Dey, 2008; Kom´arek 

and Lesaffre, 2008, 2009; Callegaro and  Iacobelli, 2012). 
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2. Materials and Methods 

2.1 Cox Proportional Hazards Model with Shared Frailty 

One popular regression model formulation that is often used in survival analysis is the Cox 

proportional hazards model (Cox, 1972). The model utilizes the hazard function λ(t), defined 

as the probability of experiencing event of failure in the small interval ),( ttt + , given that 

such an event has not been experienced prior to time t, and it is expressed as 

( )
t

tTttTt
t

t 

+
=

→

Pr
lim)(

0


                                                     (1)      
 

Suppose that we observe censored survival data from G clusters with ng subjects in gth 

cluster (g = 1, . . . ,G and i = 1, . . . , ng ). Let tig =min(Tig,Cig) be the observed time for ith 

subject in the gth cluster, where Tig is the true survival time and Cig is the censoring time, 

then the  survival data can  be given in the form (tig,, δig, zig ) , where tig, is the time to failure 

of the ith subject in gth cluster, δig  is the censoring indicator such that for the δig ith subject in 

cluster g, δig =1 if event of failure occurs to the subject at time tig,, and  =0 if the time is 

right censored. If zig is the vector of covariates thought to be associated with tig and vg is the 

cluster specific random effect (frailty) shared by all subjects in cluster g, then conditional on 

zig and vg, the Cox proportional hazards model (Cox, 1972), extended to include the frailties 

exp(vg ), is given by  

),exp()(),( 0 gigiggigig vztvzt +=                                                                                    (2)  

where )(0 igt  is an unspecified baseline hazard function,   is a vector of the regression 

parameters and vg , g = 1, . . . ,G are independent and identically distributed frailties 

with density function f (v). 

The  log-likelihood, conditional on the value of vg  can be expressed as 

])exp()(})({log[),,( 000 gigiggigig
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vl +−++=  ,                           (3)                    

 where )(0 t  denotes the cumulative baseline hazard function obtained by 

=

t

dsst

0

00 )()(  . The augmented loglikelihood which can be obtained by adding 

log of the density of the frailties to (3) is given as  
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By integrating the likelihood function with respect to )( gvf , we obtain marginal likelihood 

for gth cluster as 
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where   denotes the parameter vector of the distribution  f (v). 

The full loglikelihood is then given as  
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Model in (2) can be written as. 

)},(exp{),( tvzt igigig  =                                               (7) 

with gigi bztft ++=  )()( 0 ,
  

where f0(t)=log λ0(t)  

 An assumption often made in investigating the relationship between response variable and a 

set of covariates is that of linear effects of the metrical covariates on the response variable, 

such assumption on which the model expressed in (7) is based is too restrictive because in 

practical situations, effect of covariate such as age may be nonlinear and may not be 

adequately described by a linear relationship. Thus extending Hennerfeind et al. (2006), the 

predictor in (7) may be replaced with a more flexible semiparametric structured additive 

predictor that incorporates the complexity of nonlinearity in the same model framework. This 

is given by 

gigijji bzxftft +++=  )()()( 0 ,                                                                                         (8)   

where 

f0(t)=log λ0(t) is the log-baseline effect  

fj  is the nonlinear effect of a  covariate xj  

  is the vector of  the usual linear  effects of categorical variables.  
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bg is the cluster specific unstructured random effect (frailty) with big=bg if ith subject is in 

cluster g, g =1,…,G. Clearly, bg are usually assumed to be independent realizations from 

normal or log-gamma distribution with known mean and unknown variance. 

2.2 Modeling Interaction Effect 

Often, a model may have covariates z1 and z2 say, such that the effect of the two cannot be 

separated. In such a model, it will be inadequate to determine the incremental effects of both 

variables separately on the response variable. An interaction between two variables means 

that the effect of one variable on the outcome of interest is different depending on the level of 

the other variable (Wassertheil-Smoller, 2004). Interaction in Logistic and Cox regression 

models are inherently multiplicative, in which case the joint effect of the two variables is 

greater than the product of the individual effects of each variable.  One way to describe such 

interaction effect is to add variable z3=z1*z2 to the model (Harrell, 2001). In the field of 

biostatistics and epidemiology, some types of interactions that have consistently been found 

to be important in predicting outcomes include interactions between treatment and severity of 

diseases, between age and risk factors, between age and type of diseases.    

2.3 Bayesian Inference      

One commonly used inference method for frailty model is Full Bayesian analysis via Markov 

Chain Monte Carlo (MCMC) technique (Jones, 2004). In this method, each of the parameters 

in the model is iteratively re-sampled using its conditional densities given the current values 

of other parameters. For defining priors and developing posterior analysis, the predictor in (8) 

need be written in generic matrix notation. We thus express f0(t),  f and b in matrix product of 

an appropriately defined designed matrix Z which leads to re-expressing (5) as 

η = Z0β0(t)+Z1 β1+….+Zm βm+ Vγ                                                                              (9) 

 Assignment of priors are as follows:  For fixed effect parameter γ, diffused prior  

constP )( P(γ ) is assumed 

For non linear effects f and b, the general form of priors for j can be put in the form  
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where Kj is a precision or penalty matrix which shrinks parameters towards zero or penalizes 

too abrupt jumps between neighbouring parameters. It also depends on the prior assumptions 

about smoothness of fj and the type of covariate. For example, for P-splines with first order 

random walk penalty, Kj is given by 
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      1-      1  

jK ,  

and for an independent and identical random effect, the penalty matrix is the identity matrix, 

 i.e. Kj =I. The variance parameter 
2

j controls the tradeoff between flexibility and smoothing 

and an inverse gamma prior (the conjugate prior) is assumed. i.e. 
2

j ~IG(a,b). 

For the baseline and non-linear effects (g0(t)) and continuous covariate (fj), Bayesian P-

splines prior as in Lang and Brezger (2004) has been assigned and for the random effect (bj), 

independently and identically distributed Gaussian Prior, ),0(~ 2
bNbg  has been assigned.  

Monte Carlo simulation methods are based on the principle of posterior distribution of 

sampling and subsequent use of these simulated samples for estimating the posterior 

distribution. 

Suppose that ( )/0 ,.... m = denote the vector of all regression coefficients in the generic 

notation for the functions,  denotes the vector of linear effects and 2 = (o,m) which is the 

vector of all variance components, then full Bayesian inference is based on the posterior 

distribution  ( ) ( ) ( )222 ,,,,,,  pLdatap  . 

This is based on the assumptions that observations are independent conditional on covariates 

and entire set of parameters, and that prior distribution for fixed random and hyperparameters 

are mutually independent. The posterior distribution can therefore be written as 

   ( ) ).()())(().,,(,, 22

0

22  ppppLdatap jjj

m

j 
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            For updating the parameter vectors j which correspond to the functions fj(xj), fixed linear 

effect  and random effect bg, Metropolis Hasting algorithm (Gamerman, 1997) and Brezger 

& Lang, 2006), based on iteratively weighted least squares (IWLS) proposals has been used.            
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3. Results and Discussion 

 Data were collected on a sample of 240 cancer patients who were admitted at the University 

of Ilorin Teaching Hospital (UILTH) from 2006 to 2012. The record of each patient 

contained information of variables length of stay in hospitals (in days), sex, age of patients 

and outcome which indicates whether the patient is dead or alive. Survival time is defined as 

length of admission before death occurs, while those who were still alive at the time of data 

collection were right-censored. Ten types of cancer were included in the study, excluding 

prostate and breast cancers because they are gender related and may possibly introduce 

gender bias into the analysis. Similar data have been analyzed in Abiodun (2009). 

Observations on patients having similar cancer are expected to be more correlated than for 

patients with different types of cancer. This is because many different cancer/tumour types 

with distinct sites, present different clinical behaviours (Eschenbach & Collins, 2005). 

Therefore, cancer type has been included in the model as random effect (frailty) 

Sex and metrical age were first fitted as linear effects.  Thus, the fitted model, dropping 

subscript i is  

 210 )()(  agesextft ++=  

To gain more insight into the analysis with respect to gender differentials, separate models 

were fitted for males and females. Also, since the assumption of linear effects of metrical 

covariates such as age on the predictor is too restrictive as discussed in section (2), two 

alternative approaches were considered (Abiodun, 2009). Firstly, age was grouped into three 

categories and modelled as linear effects with diffuse prior; secondly, it was incorporated 

additively in the predictor using smooth regression function and modelled as nonlinear effect 

using P-splines prior as in Lang and Brezger (2004).  In this paper age was grouped into “less 

than 23 years” (reference group), “23-39 years”, “40-55 years”, and “greater than 55 years”. 

The age grouping has demographic justification guided by number of observations in each 

group such that no group has too few observations that may render the results incredible.  The 

research interest thus include: investigating the superiority of modelling metrical age, using 

P-splines over fitting it as linear effect, comparing models that included cancer types as 

random effects (frailty) with models that assumed independence (no frailty) for the survival 

times of the patients ignoring frailty and modelling interactions between sex and age for all 

patients.  Model comparison was based on Deviance information criterion (DIC), introduced 
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by Spiegeihalter et al (2002), which is a Bayesian analogue of Akaike Information criterion 

(AIC).  The following models were fitted for all patients and separately for males and 

females.  

Models for all patients 

Model 1:  agesextf ++= )(0  (fitting metrical age as linear effect) 

Model 2: gbagesextf +++=  )(0  (Model 1 with frailty) 

Model 3: agefsextf ++=  )(0      (fitting metrical age with P-splines) 
 

Model 4: gage bfsextf +++=  )(0  (Model 3 with frailty) 

Model 5:  3210 )( ageageagesextf ++++=  (fitting categorized age as linear effect) 

Model 6: gbageageagesextf +++++=  3210 )(
  (Model 5 with frailty) 

Model 7: gage bagesexfsextf ++++=  *)(0 (Model 2 with interaction effect of sex and 

metrical age ) 

Model 8: gageage bfsexfsextf ++++= *)(0  (Model 4 with interaction effect of sex and 

metrical age ) 

Model 9: 

gbagesexagesexagesexageageagesextf ++++++++=  3213210 ***)(
       

(Model 6 with interaction effect of sex and categorical age)  

 Gender Models   

Model 1:  agetf += )(0  (fitting metrical age with linear as linear effect) 

Model 2: gbagetf ++=  )(0    
(Model 1 with frailty) 

Model 3: ageftf += )(0
  (fitting continuous age with P-splines)

 

Model 4: gage bftf ++= )(0    (Model 3 with frailty) 

Model 5:  3210 )( ageageagetf +++=    (fitting categorized age  as linear effect) 

Model 6: gbageageagetf ++++=  3210 )(
   (Model 5 with frailty)

 

Table 1 shows the hazard ratio, standard error and the 95% confidence intervals when sex and 

metrical age were fitted as linear effect (Model 1).  As observed, effects of sex and age are 

seen significant (the confidence intervals do not include 1). Table 2 shows the results of 
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linear effects using categorized age for all, male and female patients. As observed in the 

table, age of the patients have significant influence on the death from cancer. For all patients, 

the hazard ratio for male patients is 0.465, meaning that male patients have lower risk of 

dying from cancer than their male counterparts. Age is also observed to have significant 

effect on mortality due to cancer. The hazard ratio of patients who are 23-39years old is 1.34, 

meaning that patients between age 23-39 years are 1.34 times more likely to die from cancer 

than those aged less than 23 years. The corresponding hazard ratio for male patients is 1.56, 

while it is 1.25 for female patients. Patients who are 40-55 years old have hazard ratios of 

1.52, 1.705 and 1.63 for all patients, male and female patients respectively, while patients 

who are older than 55 years have hazard ratios of 1.88 for all patients, 1.93 for male patients 

and 1.72 for female patients. 

                       Table 1: Model with linear effect estimates of sex and metrical age  

Covariate Hazard 

Ratio 

Std. error 95% Credible Interval 

Lower         Upper 

Male 0.496 0.249 0.296          0.797 

Age 1.009 0.006 1.002          1.020  

 

                       Table 2: Model with linear effect of categorized age for all, male  

                       and female patients.  

       

                                                          All patients 

Covariate Hazard 

Ratio 

Std. error 95% Credible Interval 

Lower           Upper 

Male 0.465 0.254 0.283             0.774  

 23-39 years 1.336 0.396 1.624             2.950 

40-55 years 1.519 0.375 1.382             3.283 

>55 years 1.883 0.358 1.062             3.845 

 

     Male patients  

Covariate 

(Age) 

Hazard 

Ratio 

Std. Error 95% Credible Interval 

Lower           Upper 

23-39 years 1.557 0.465 1.904             3.333 

40-55 years 1.705 0.475 1.382             3.650 

>55     years 1.929 0.482 1.539             3.811 

                                                                              Female Patients 

Covariate 

(Age) 

Hazard 

Ratio 

Std. error 95% Credible Interval 

Lower           Upper 

23-39 years 1.246 0.413 1.709            3.031 

40-55 years 1.626 0.387 1.417            3.789  

>55   years 1.724 0.438 1.481           3.600 
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Table 3:  Deviance Information Criterion (DIC) for the various models for combined, male and 

female patients.                                               

Model                                                  DIC 

All patients Male Female 

1  751.534 363.124 416.924 

2  749.156 346. 260 408.026 

3  742.281 337.341 401.092 

4  738.381 329.106 377.028 

5  749.704 341.876 389.682 

6  742.632 334.405 365.080 

7  749.318   

8  721.342    -    - 

9  742.354    -    - 

 

In Table 3, values of Deviance Information Criterion (DIC) for the various models under 

independence and those fitted with frailty are presented. Comparing models with P-splines 

prior, with linear effect of metrical age and with categorized age, the values of DIC for P-

splines models are seen to be generally least, implying best models. As observed, for all 

patients, when metrical age is fitted with P-splines prior, (i.e Model 3 for independence and 

Model 4 with frailty), the values of DIC are 742.281 and 737.043 respectively compared with 

models fitted as linear effect of metrical age which have DIC of 751.534 and 749.146 for 

independence model (Model1) and model with frailty (Model 2) respectively. The 

corresponding models under categorized age (Model 5 and Model 6), though performed 

worse than P-spline models, and are observed to be better in performances (with DIC of 

749.704 and 742.632 respectively) than the models with linear effects of metrical age under 

both independence and frailty specifications. The directions of the performances are the same 

in gender models. For example, for male patients under independence specification, DIC for 

P-splines model (Model 3) is 337.341, compared to 363.124 and 341.876 under model for 

linear effect of metrical age (Model 1) and model for categorized age (Model 5) respectively. 

Under frailty specification, P-spline model has DIC of 329.106 while models for linear effect 

of metrical age and categorized age have DIC of 346.260 and 334.405 respectively. Also for 

female patients, under independence specification, P-splines model has DIC of 401.092, 
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model with linear effect of metrical age has 416.924 and model with categorized age has 

389.682. The corresponding values under frailty model are 377.028, 408.026 and 365.080 for 

P-splines model, model with linear effect of metrical age and model with categorical age 

respectively. 

Comparing frailty models with independence models (without frailty), it is observed that 

models fitted with frailty generally perform better than independence models. As observed, 

for combined, male and female patients, all models fitted with frailty have lower values of 

DIC than those fitted under independence assumption. These include Model 4 (frailty) versus 

Model 3 (independence) for P-splines model, Model 2 (frailty) versus Model 1 

(independence) for model with linear effect of metrical age and Model 6 (frailty) versus 

Model 5 (independence) for model with categorized age. 

The major interest of modelling interaction between age and sex in this study is to investigate 

the comparative performances of the various frailty models when interaction terms are added 

to models fitted with metrical age as linear effect as well as nonlinear effect with P-spline and 

model fitted with categorical age. Therefore, only the AIC, rather than the hazard ratios are 

reported in Table 3. As observed, inclusion of multiplicative interaction between sex and 

metric age, modelled as linear effect  (Model 7 with AIC 749.318) does not show any 

improvement on the corresponding model without interaction term (Model 2 with DIC 

749.156). On categorized age, inclusion of interaction term (Model 9, DIC=742.354) only 

shows slight improvement over the corresponding model without interaction (Model 6, 

DIC=742.632). For P-spline model, interaction effects of sex with  metrical age substantially 

improves the model, the DIC is 721.342 for model with interaction term (Model 8)  and 

738.381for model without interaction term (Model 4). However, comparing the models with 

interaction terms, it is observed that model fitted with  P-spline has the best performance 

while that fitted with metrical age as linear effect has the worst performance. 
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4.  Conclusion 

In the analysis of data on hospital admission for the cancer patients under study, results 

showed significant differences among age groups with respect to the risk of dying from the 

selected cancer considered. Results of Deviance Information Criterion (DIC) also revealed 

that when we allowed for non – linearity in the effects on the metrical covariate (age), the 

model with P-splines prior as in Lang and Brezger (2004) was found to be more adequate 

than fitting metrical age as linear effect. It was also found that to study the linear effect of age 

on death from cancer, categorizing age was a better alternative. The study also confirmed that 

assumption of independence for the survival time of subjects clustered by cancer type was 

inadequate, rather a model that accounted for heterogeneity induced by such clustering 

(frailty model in this study) was preferred. On the effect of interaction effect of sex and age 

on the death due to cancer, model that contained interaction between sex and age when 

metrical age was modeled nonlinearly was observed to be better than when metrical or 

categorized age was modeled linearly.  

Caveat: The findings in this study are based on the age reported by the patients which may 

not be their true age.  Despite this limitation, the study strength is significant 
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