
18

ILJS-14-042

Efficiency Comparison of Some Selected Programming Languages

Aremu, D. R. and Salako, R. J.

Department of Computer Science, University of Ilorin, Ilorin, Nigeria.

Abstract

The choice of an algorithm comes down to a question of efficiency, which is a measure of complexity of an

algorithm. This paper addresses the questions of how to measure and compare the complexities of different

algorithms. The aim of the study was to analyze and to comparing the complexities of tree search algorithms using

software metrics approach to discover the most efficient programming language for implementing the tree search

algorithms. Implementations of the algorithms were carried out using C, C++, Pascal, Visual BASIC, and Java

programming languages. Complexity appraisals of the algorithms were carried out after the analyses and it was

discovered that the choice of programming language affects the complexity of the tree search algorithms. The results

showed that Pascal is the most efficient language for implementing Breadth-first algorithm, Java is the best for

Depth-first, Java or Pascal is the best for Depth-limited while C is the best programming language for implementing

A-star tree search algorithm. Visual BASIC is the worst language for implementing the entire search algorithm. It

was further revealed that the entire codes are structurally and logically simple.

Keywords: Complexity, Tree search, Halstead volume, Cyclomatic number, and Software,

1. Introduction

Recently, research has shown that different algorithms exist for solving a particular problem. It is

however difficult to readily determine which algorithm is better than the other. Given a problem

therefore, how can we find an efficient algorithm for its solution? How can we compare this

algorithm with other algorithms? Questions of these types are of interest to programmers and to

theoretically oriented computer scientists. The aim of this paper is to find out the most efficient

language for implementing the tree search algorithms. The methodology used to achieve this aim

involves: (i) implementing the tree search algorithms using C, C++, Pascal, Visual BASIC, and

Java programming languages; and (ii) analyzing and comparing the complexities of the tree

search algorithms by adopting the Halstead’s volume and Cyclomatic number analysis measures.

The result of complexity appraisals of the tree search algorithms showed that the choice of

Corresponding Author: Aremu, D.R.

Email: draremu2006@gmail.com

Ilorin Journal of Science
Volume 1, Number 1, 2014, pp. 18 - 27 (Printed in Nigeria)
ISSN: 2408 – 4840 © 2014 Faculty of Physical Sciences, University of Ilorin
https://doi.org/10.54908/iljs.2014.01.01.002

JOURNAL OF SCEINCE

ILORIN

mailto:draremu2006@gmail.com

Aremu & Salako ILORIN JOURNAL OF SCIENCE

19

programming language affects the complexity of the tree search algorithm. Pascal programming

language was found to be the most efficient language for implementing Breadth-first algorithm,

while Java is the best for Depth-first algorithm, Java or Pascal is the best for Depth-limited while

C is the best programming language for implementing A-star tree search algorithm. Visual

BASIC is the worst language for implementing the entire search algorithm. It was further

revealed that the entire codes are structurally and logically simple. The rest part of the paper is

organized as follows: Section 2 presented the related work, while section 3 discussed the tee

search algorithms models; in section 4, we discussed the analysis of the complexities of the tree

search algorithms; while section 5 presented the results of the analysis, and section 6 concluded

the paper.

2. Related Work

To compare the efficiency of algorithms, a measure of the degree of the difficulty of an

algorithm called computational complexity was developed by Juris Hartmains and Richard

Steams (Alfred et al., 1974).

We can express an approximation of a function using a mathematical notation called order of

magnitude of a function, or Big-O notation. Theoretical analysis concentrates on a

proportionality approach, expressing the complexity in terms of its relationships to some known

functions such as: N, N2, N3, 2N e.t.c. which are respectively linear, quadratic or double nested

loop, triple-nested loop, and exponential running times. This type of analysis is known as

asymptotic analysis (Kleinberg, 2005).

Empirical analysis focuses on the implementation complexity by using software complexity

measures available. Complexities of tree search algorithms have been mostly evaluated either

mathematically or by computing the computer execution time. Neither of the two approaches is

good enough for practical and realistic purpose especially in the situation where more than one

algorithm exists for solving a given problem or class of problems. There is a need therefore to

seek for pragmatic means of computing complexity of algorithms. Empirical analysis focuses on

the implementation complexity by using software complexity measures available.

Implementation complexities which involves software metrics is a pragmatic field that arises out

of attempts to estimate the amount of time it will take to code and maintain software.

Complexity of an algorithm is the determination of the amount of resources such as time and

storage necessary to develop, maintain, and execute the algorithm. Other items to be considered

under resources are: (a) Man-hours needed to supervise, comprehend code, test, maintain, and

Aremu & Salako ILORIN JOURNAL OF SCIENCE

20

change software, (b) Travel expenses, (c) the amount of re-used code modules, (d) Secretarial

and technical support, etc. Prominent among the measured resources are; time and space

complexities. Time complexity measures how much time the program take, while Space

complexity measures how much storage the program need to develop, maintain, and execute it.

A programmer will sometimes seek a tradeoff between space and time complexity. For example,

a programmer might choose a data structure that requires a lot of storage in order to reduce the

computation time. The choice between algorithms comes down to a question of efficiency.

Which one takes the least amount of computing time?. Or which one was the jobs with the least

amount of work are paramount questions asked by programmers (Nell, 2003). Given two or more

software that solve a particular problem, a programmer is faced with the problem of the choice of

the most efficient one in terms of quantitative measure of quality, understanding, difficulty of

testing and maintenance, as well as the measure of ease of using the software.

Algorithms are frequently assessed by the execution time, memory demand, and by the accuracy

or optimality of the results. For practical use, another important aspect is the implementation

complex. An algorithm which is complex to implement required skilled developers, longer

implementation time, and has a higher risk of implementation errors. Moreover, complicated

algorithms tend to be highly specialized and they do not necessarily work well when the problem

changes (Akkanen et al., 2000).

Algorithm analysis is an important part of a broader computational complexity theory, which

provides theoretical estimate for the resources needed by any algorithm which solve a given

computational problem. These estimates provide an insight into reasonable direction of search of

efficient algorithms (Jimmy, 2000).

Complexities of tree search algorithms have been mostly evaluated either mathematically or by

computing the computer execution time. Neither of the two approaches is good enough for

practical and realistic purpose especially in the situation where more than one algorithm exists

for solving a given problem or class of problems. There is a need therefore to seek for pragmatic

means of computing complexity of algorithms. Empirical analysis focuses on the implementation

complexity by using software complexity measures available. Implementation complexities

which involves software metrics is a pragmatic field that arises out of attempts to estimate the

amount of time it will take to code and maintain software.

In the realm of software metrics, code is looked at as output of labour. The complexity of a piece

of software is thought of in the same way as the complexity of an automobile; the number of

parts and the nature of the assembly may affect the amount of labour and time needed to create

the end product.

Aremu & Salako ILORIN JOURNAL OF SCIENCE

21

Parse and Oman (1995) applied a maintenance metrics index to measure the maintainability of C

source code before and after maintenance activities. This technique allows the project engineers

to track health of the code as it was being maintained. Maintainability is accessed but not in term

of risk assessment.

Stark (1996) collected and analyzed metrics in the categories of customer satisfaction, cost, and

schedule with the objective of focusing management’s attention on improvement areas and

tracking improvements over time. This approach aided management in deciding whether to

include changes in the current release, with possible schedule slippage, or include the changes in

the next release. However, the author did not relate these metrics to risk assessment.

Olabiyisi (2005) applied different software complexity measure such as Halstead metrics, and

Cyclomatic number to a set of sorting algorithms. For the calculation of the complexity

measurement, he developed a machine which is capable of finding the various implementation

complexity values of algorithms written in different programming languages.

(Norman, 2001) shifted the emphasis from design and code metrics to metric that characterize

the risk of making requirement changes. Although his software attributes can be difficult to deal

with due to fuzzy requirement from which they are derived, the advantage of having early

indicators of future soft are problems outweighs this inconvenience. He developed an approach

for identifying the requirements change risk factors as predictors of reliability and

maintainability problems. His case examples consist of twenty-four Space Shuttle change

requests, nineteen risk factors, and the associated failure and software metrics.

3. Tree Search Algorithms Models

A tree is the collection of objects usually referred to as nodes with hierarchical relations defined

on them. By manipulating the data structure, the tree is explored in different orders, for instance

level by level (Breadth-first search) or reaching a leaf node first and backtracking (Depth-first

search) e.t.c. (Thomas, 2000). In this project, the tree search algorithms are discussed as follows:

3.1 Breadth-First Search (BFS)

Breadth-first search (BFS) is an algorithm that begins at the root node and explores all the

neighboring nodes. Then for each of those nearest nodes, it explores their unexplored neighbor –

nodes and so on, until it finds the goal.

Algorithm of Breadth-First Search

procedure bfs (v)

q: = make_queue()

enqueue (q, v)

Aremu & Salako ILORIN JOURNAL OF SCIENCE

22

mark v as visited

while q is not empty

v = dequeue (q)

process v

for all univisited vertices v’ adjacent to v

mark v’ as visited

enqueue (q, v’)

3.2 Depth-First Search (DFS)

Formally, DFS is an uninformed search that progresses by expanding the first child node of the

search tree that appears and thus going deeper and deeper until a goal node is found, or until it

hits a node that has no children. Then the search backtracks, returning to the most recent node it

had not finished exploring. In a non-recursive implementation, all freshly expanded nodes are

added to a last- in-first- out (LIFO) stack for expansion (Thomas, 2000). Time complexity of

both algorithms are proportional to the number of vertices plus the number of edges in the graphs

they traverse.

Algorithm of Depth-First Search

dfs (graph G)

{

list L = empty

tree T = empty

choose a starting vertex x

search (x)

while (L is not empty)

remove edge (v, w)from end of L

if w not yet visited

{

add (v, w) to T

search (w)

}

}

search (vertex)

{

visit v

for each edge (v, w0

add edge (v, w) to end of L

}

Aremu & Salako ILORIN JOURNAL OF SCIENCE

23

3.3 Depth-Limited Search

Like the normal depth-first search, depth-limited search is an uninformed search. It works

exactly like depth-first search, but avoids its drawbacks regarding completeness by imposing a

maximum limit on the depth of the search (Thomas, 2000).

Algorithm of Depth-Limited search

DLS (node, goal, depth)

{

if (node = = goal)

return node;

else

{

stack ;= expand (node)

while (stack is not empty)

{

node’ := pop (stack);

if (node’ . depth () < depth);

DLS(node’, goal, depth);

Else

; // no operation

}

}

}.

3.4 A* Search

A* (Pronounced ‘A star’) is a tree search algorithm that finds a path from a given initial node to

a given goal node. It employs a heuristic estimate that ranks each node by an estimate of the best

route that goes through that node. It visits the nodes in order of this heuristic estimate. The A*

algorithm is therefore an example of a best-first search (Hart et al., 1968).

Aremu & Salako ILORIN JOURNAL OF SCIENCE

24

Algorithm of A* Search

function A* (start, goal)

var closed := the empty set

var q := make_queue 9path (star))

while q is not empty

var p:= remove_ first (q)

var x:= the last node of p

if x in closed

continue

if x= goal

return p

add x to closed

foreach y in successors (p)

if the last node of y not in closed

enqueue (q,y)

4. Analysis of the Complexities of the tree search algorithms

.

This section presents the analysis of the complexities of the tree search algorithms by adopting

the Halstead’s volume and the Cyclomatic number analysis measures.

4.1 Halstead’s Volume

The Halstead measures are based on four scalar numbers derived directly from a program’s

source code i.e. N1, N2, n1, and n2 which are respectively Total number of operators, Total

number of operands, number distinct of operators and number of distinct operands. The Halstead

measures are described as shown in table 1 below.

Table 1: The Halstead Measures.

Measure Symbol Formula

Program Length N N = N1 + N2

Program Vocabulary N n = n1 + n2

Program Volume V V = N*(LOG2n)

Program Difficulty D D = (n1/2)*(N2/n2)

Program Effort E E = D*V

Aremu & Salako ILORIN JOURNAL OF SCIENCE

25

4.2. Cyclomatic Number

Using graph theory, the cyclomatic number is mathematically computed using the formula:

v(G) = number of closed loops + 1.

4.3. Analysis of Codes Generated for the tree Search Algorithms

We used Halstead’s volume and Cyclomatic number software complexity measures to evaluate

the complexity of each of the tree search algorithms, and implemented them using C, C++,

Pascal, Visual BASIC and Java programming languages. The results of the implementation are

presented in tables 2-5 below, for comparison purposes.

5. Results of the Analysis

Table 2: Breadth-First Search Algorithm Results.

LANGUAGES PROGRAM VOL (V) PROGRAM

DIFFIC (D)

PROGRAM

EFFORT (E)

CYCLOMATIC NUMBER

C

C++

PASCAL

Visual BASIC

JAVA

733

723

558

1045

1059

20

18

17

22

28

14660

13014

9486

22990

29707

5

5

3

6

4

Table 3: Depth-First Search Algorithm Results.

LANGUAGES PROGRAM VOL (V) PROGRAM

DIFFIC (D)

PROGRAM

EFFORT (E)

CYCLOMATIC NUMBER

C

C++

PASCAL

Visual BASIC

JAVA

459

481

454

883

348

20

21

11

15

9

9180

10101

4994

13245

3235

5

5

5

6

5

Table 4: Depth-Limited Search Algorithm Results.

LANGUAGES PROGRAM VOL (V) PROGRAM

DIFFIC (D)

PROGRAM

EFFORT (E)

CYCLOMATIC NUMBER

C

C++

PASCAL

Visual BASIC

JAVA

595

544

626

1297

543

21

19

14

22

18

12495

10569

8764

28534

9589

5

5

5

7

5

Aremu & Salako ILORIN JOURNAL OF SCIENCE

26

 Table 5: A-Star Search Algorithm Results

LANGUAGES PROGRAM VOL (V) PROGRAM

DIFFIC (D)

PROGRAM

EFFORT (E)

CYCLOMATIC NUMBER

C

C++

PASCAL

Visual BASIC

JAVA

936

1201

1171

1873

1416

19

40

24

44

14

17784

48040

28104

82412

19954

8

8

6

9

5

6. Conclusion

In this work, software complexity measures have been used to evaluate and compare the

complexities of a set of tree search algorithms implemented in different languages in order to

determine the best programming language for implementing each of the tree search algorithms. It

was discovered from the results the analysis that the choice of programming language affects the

complexity of tree search algorithms. It was discovered that Pascal programming language is the

best language for implementing breadth-first search, Java language was the best for

implementing depth-first search, while depth-limited search algorithm is best implemented in

Java and Pascal programming languages. C and Java languages are two candidate languages

contending for A-star tree search algorithm.

It was very apparent that the performance characteristics of Pascal and Java stand out very clear.

The biggest myth about Pascal is that it is a language without power but it is very convincing that

Pascal language, though an old language not commonly used in large companies is highly

efficient for implementing tree search algorithm. Visual BASIC; a worst programming language

for implementing the entire tree search algorithm was built for only windows (i.e not cross-

platform capable)

We concluded that the chosen search algorithms coded in five languages are logically and

structurally simple. This conclusion is reached because none of the cyclomatic complexity risk

evaluation numbers measured up to 10 which is the bench -mark for risk evaluation. This implies

that decision statements such as IF/THEN, IF/ELSE e.t.c. and control statements such as

DO/WHILE, DO/UNTIL e.t.c. in the source codes are not too many or very manageable in

number. It can therefore be deduced that testing and maintenance could be done with ease in the

Aremu & Salako ILORIN JOURNAL OF SCIENCE

27

codes generated using the entire programming languages. The cyclomatic complexity risk

evaluation result also means that modules in the source codes are highly cohesive. Cohesiveness

or binding refers to the relationships among pieces of modules. High cohesion is characterized

by a module that performs one distinct procedural task. Effort in future research will be geared

towards more complicated algorithms.

Acknowledgement

The authors: Aremu D. R. & Salako R.J. acknowledge the efforts of the reviewers in improving the quality of the

manuscript. Also we are grateful to the Faculty of Physical Sciences, University of Ilorin, Ilorin, Nigeria for

providing us the opportunity to publish this article in the maiden edition which was sponsored by the faculty.

References

Alfred, V.A., John, E. & Jeffrey, P.U. (1974). The Design and Analysis of Computer

 Algorithms. New York. Addison- Wesley Publishing Company, 78-98.

Hart, P.E. Nilsson, N.J. & Raphael, B. (1968). Correction to: A Formal for the Heuristic

 Determination of Minimum Cost Paths, SIGART Newsletter,37, 28-29.

Jimmy, W. (2000). Software size Measurement: A framework for counting source code

maintenance Activities, International Conference on software Maintenance Activities,

Opio (Nice), France, 12, 295-303.

Kleinberg, (2005). Algorithm Design. Pearson Addison-Wesley. Hongkong, 29-35.

McCabe, T.J. (1994): Software complexity. Crosstalk, 7, 12.

Nell, D. (2003). C++ Plus Data Structures. Jones and Batlett Publishers, Canada.

Norman, F.S. (2001). Investigation of the RISK TO software Reliability and Maintenability of

Requirements Changes. Proceedings of the international Conference on Software

Maintenance. Florence, Italy, 127-136.

Olabiyisi, S.O. (2005). Universal Machine for Complexity Measurement of Computer

Programs, Ph.D. Thesis,Department of Pure And Applied Mathematics, LAUTECH,

Ogbomoso.

Oman, P & Hagemeister, J. (1994): Construction and Testing of Polynomials Predicting

Software maintainability. Jour. of System and Software, 251-266.

Stark, P.B. (1996). A few considerations for ascribing statistical significance to earthquake

 predictions, Geophysical Research Letters, 23, 1399–1402.

 Thomas, H.C. (2000). Introduction to Algorithms. McGraw-Hill companies,

New York, 67-72.

