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Abstract  

A deterministic mathematical model for polio infection dynamics with emphasis on immigration and vaccination 

was formulated and analyzed. We derived the basic reproduction number, 0R of the model formulated. The 

effective reproduction number was computed using the next generation matrix to enable a qualitative analysis to 

be carried out on the model. Also, the disease-free equilibrium and endemic equilibrium points were computed. 

On analyzing the equilibrium points, we found that the disease-free equilibrium point is locally asymptotically 

stable if 0 1R  and the condition for existence on an Endemic Equilibrium point was also established. More so, 

numerical simulations showed that vaccination coverage of about 75% would be enough to eradicate polio from 

the population. 
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1. Introduction 

Polio is an infectious disease caused by poliovirus. There is always muscle weakness which 

could lead to inability to move in about 0.5% of cases. This can happen over a couple of hours 

to a couple of days. The weakness could include the legs as well as the muscles of the head, 

neck and diaphragm. Many but not all individuals infected can recover completely from this 

infection. In those with muscle weakness, about 2% to 5% of children and 15% to 30% of 

adults die. 25% of people have minor symptoms such as fever and a sore throat and up to 5% 

have headache, neck stiffness and pains in the arms and legs. These individuals get back to 

normal after a couple of weeks (Hamborsky et al., 2015). There may be no symptoms in up to 

70% of infections. Post-polio syndrome may occur years after recovery with a moderate 

advancement of muscle weakness like what the individual had at the initial age of the illness 
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 (Post-Polio Syndrome Fact Sheet, 2014). It can cause lifelong paralysis (can’t move parts of 

the body), and it can be deadly (CDC, 2014). Up to 95% of individuals leaving with polio virus 

have no symptoms. However, polio can be spread by individuals leaving with polio virus 

without symptoms and then cause others to develop polio infection (CDC, 2014).  

 

Over the years, different authors have used different approaches to model the disease. For 

instance; a simple SIR epidemic model was developed by (Shulgin et al., 1998) with pulse 

vaccination. The result shows that pulse vaccination could lead to total eradication of the 

epidemic if certain conditions like the period of pulses and the magnitude of vaccination are 

fulfilled. A simple two-dimensional SIS model with vaccination was developed and analyzed 

by (Kribs-Zaleta & Velasco- Hernandez, 2000). The result of their model resulted into 

backward bifurcation. (Farrington, 2003) developed and analyzed a mathematical model of 

polio virus. Their model shows a positive result of vaccination on the transmission dynamics 

of polio. (Gumel & Moghadas, 2003) also proposed a mathematical model of polio virus. They 

were able to obtain the optimal vaccine coverage needed for the total eradication of the 

infection. (Manju & Archana 2010) analyzed an epidemic model on Polio with vaccination to 

determine the impact of vaccination when it is administered in susceptible and exposed 

population.  

 

(Okuonghae et al., 2015) built a deterministic model for the transmission dynamics of two 

strains of polio, the vaccine-derived polio virus (VDPV) and the wild polio virus (WPV) in a 

population. It was observed that Oral Polio Vaccine (OPV) reversion (leading to increased 

incidences of WPV and VDPV strains), together with the joint impact of giving vaccine to 

certain unvaccinated susceptible individuals and children who are susceptible and missed up, 

could lead to backward bifurcation if the effective reproduction number is less than one. In the 

absence of OPV reversions (leading to the co-existence of both strains in the population), it 

was noticed that the disease-free equilibrium of the model is globally-asymptotically stable if 

the effective reproduction number is less than one. The result of the numerical simulations 

shows that the model developed experiences the phenomenon of competitive exclusion, where 

the strain with the largest effective reproduction number gives room for the other one to go into 

extinction. 

 

In this study, we formulated a deterministic mathematical model for transmission dynamics of 

polio virus. The model developed considered the total population to be non-constant and non-

aged structured. It should be clearly known that we are interested in investigating the effect(s) 
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of vaccination and immigration on the transmission dynamics of polio virus in a non-constant 

population.  

 

2. Model Formulation 

In this section, we formulate a deterministic mathematical model for polio virus which 

incorporates immigration and vaccination strategy. The total population N (t) is divided into 

four compartments namely: Susceptible S(t), Vaccinated V(t), Exposed E(t), Infectious and 

paralyzed individuals I(t). In this model, individuals are recruited into the population either by 

immigration at the rate  or per capital birth rate . We assume that proportions   of 

newborns in the population and   of the immigrants were vaccinated at birth or at one point in 

their life to protect them against infection. A proportion   of the recruits are vaccinated, the 

remaining 1-  are not vaccinated so the join the susceptible compartment. A proportion    of 

the newborns are vaccinated, the remaining 1-    are not vaccinated so they join the susceptible 

compartment.  

We assume that the population of the susceptible will receive a vaccine at the rate   to have a 

permanent immunity. Furthermore, we assume that the natural death rate   is constant, the 

disease induced death rate is I , the members of the population mix homogeneously,   

probability that a susceptible individual becomes infected by one infectious individual. 

Susceptible individuals enter the exposed class at a rate  which is the force of infection. The 

exposed individuals are those ones who just got the infection (asymptomatic) but they can still 

infect others. After some time, the exposed now move from the exposed class into the infectious 

class at the rate . According to the nature of the disease, most infected individual cannot 

recover from the infection (WHO, 2018) hence, we would not consider recovered class.   
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Figure 1: The flow diagram. 

 

Table 1: State variables and model parameters. 

Parameters 

and State 

Variables 

Description  

      S  Susceptible individuals 

      E                                                             Exposed individuals 

       I Infectious individuals and Paralyzed individuals  

      V Vaccinated individuals 

       N Total population 

        Probability of an infected individuals to infect others 

c  Per capital contact rate 

  Natural death rate 

( )S t  

( )V t
 

( )R t
 

( )I t
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2.1 The Model Equations 

From the assumptions and the dynamics between the compartments shown in the model 

compartments in figure 1, the effect of immunization on the epidemiology of polio virus is 

modeled by the following system of ordinary differential equations; 

(1 ) (1 ) ( )

( )

( )

dS
S

dt

dE
S E

dt

dI
E I

dt

dV
S V

dt

     

  

  

   


= − + −  − + + 


= − +


= − +


= +  + −


,                                                                 (1) 

where   is the force of infection;
( )c E I

N




+
=

 

 

  Immigration 

  Per capital birth rate 

  Rate at which susceptible individuals move to 

vaccinated class 

  

                                                                                  

                                        

    

   

(1 )−            

     (1 )−    

           

Force of infection 

proportion of the newborn that are vaccinated 

proportion of the recruits that are vaccinated 

Rate at which exposed individuals move to Infectious 

class 

proportion of the newborn that are not vaccinated 

proportion of the recruits that are not vaccinated 

Disease induced death rate 
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3. Model Analysis 

We provide comprehensive qualitative analysis of the model equation in this section. 

3.1 The Positive Invariant Region 

N=S+E+I+V,                                                                                                                      (2) 

dN dS dE dI dV

dt dt dt dt dt
= + + + ,                                                                                                (3) 

(1 ) (1 )
dN

S E I V I
dt

         = − + −  +  + − − − − − ,                                        (4)         

The positive invariant region can be obtained by using the following theorem as applied by 

(Bolarin & Omatola, 2016). 

 

Theorem 1: 

The solutions of the system (1) are feasible for 0t  if they enter the invariant region D. 

Proof: 

Let ( ), , ,D S E I V= R4
+ be any solution of the system (1) with non-zero initial conditions. 

 Assuming there are no disease-induced deaths, equation (4) now becomes; 

(1 ) (1 )
dN

N
dt

      − + −  +  + − ,                                                                   (5) 

(1 ) (1 )
dN

N
dt

     +  − + −  +  + ,                                                                   (6) 

(1 ) (1 )
( ) tN t Ce     



−− + −  + +
= + .                                                              (7) 

Applying the initial condition ;0=t  0(0)N N= :
 

0

(1 ) (1 )
N C

    



− + −  + +
 + ,                                                                        (8) 

0

(1 ) (1 )
N C

    



− + −  + +
−  ,                                                                        (9) 
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0

(1 ) (1 ) (1 ) (1 )
( ) tN t N e          

 

− − + −  +  + − + −  +  +
  + − 

 
.       

              (10) 

Therefore, as t →  in equation (10) the human population N approaches

(1 ) (1 )
K

    



− + −  +  +
= , that is, N

(1 ) (1 )
K

    



− + −  +  +
→ =  the 

parameter
(1 ) (1 )

K
    



− + −  +  +
=  is called the carrying capacity. Hence all feasible 

solution set of the model (1) enter the region 

( ) 4 (1 ) (1 )
, , , : 0, 0, 0, 0,D S E I V R S E I V N

    



 − + −  +  +
=       
 

. 

Therefore, the region D is positively-invariant and system (1) is epidemiologically meaningful 

and mathematically well-posed in the domain D. 

 

3.2 Positivity of the Solutions 

Theorem 2:  

Let the initial data be ( ) (0) 0, (0), (0), 0S E I V D    . 

Then the solution set  , , , ( )S E I V t of the system of equations (1) to (4) is positive for all 0t  

Proof: 

From the first equation of (1), we have: 

(1 ) (1 ) ( ) ( )
dS

S S
dt

        = − + −  − + +  − + + ,                                                          (11) 

( )
dS

S
dt

   − + + ,                                                                                                                 (12) 

( )( ) tS t Ke   − + + ,                                                                                                           (13) 

where K= Ce , using the initial condition 0=t  KS  )0( . 

Therefore  

( )
( ) (0) 0

t
S t S e

  − + +
  ,                                                                                          (14) 
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from the equation (2), we have:         

( ) ( )
dE

S E E
dS

    = − +  − + ,                                                                                       (15) 

( )
dE

E
dS

  − +  ,                                                                                                                 (16) 

( )( ) tE t Ke  − + .                                                                                                         (17) 

Applying the initial condition 0=t  (0)E K   to have: 

( )
( ) (0)

t
E t E e

 − +
 .                                                                                         (18) 

Similarly, it can be verified that the rest of the equations are positive for all 𝑡 > 0, since 0e  

  .  

 

3.3 Disease Free Equilibrium State 

The disease-free equilibrium of the model (1) is obtained by setting 

0
dS dE dE dV

dt dt dt dt
= = = = .                                                                                                    (19)                     

In this case there is no disease: E = I = 0. Hence, the DFE of our equation is given by: 

(1 ) (1 )

( )

0

0

(1 ) (1 )

( )

S

E

I

V

  

  

    


   









− + −  
   + +
  
  

=   
  
    +  − + −   +   +                                                                        (20)

 

3.4 Basic Reproduction Number, 0R  

Poletti et al. (2013) defined 0R as the average number of secondary infections produced by 

individuals that are infectious during his or her entire period of infectiousness. R0 determines 

if a disease will persist or will die out in a community. If R0 <1 it indicates that infectious 

individual will cause less than one secondary infection and hence the disease will not remain, 

then when R0>0 the disease will take over the population. In a more complicated epidemic, the 
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0R can be calculated by using the next generation operator approach by (van den Driessche & 

Watmough, 2002). 

From the system (1) we define f and vi i as: 

( )
( )

( )
0

i i

c E I S
E

f and vN
E I


 

  

+ 
+  = =    − + 

 
,                                     (21) 

1

1 0 0( ) ( )

1
0

( )
( ) ( )( ) ( )

1
0 0 0 0

( )( ) ( )

i i

j j

f E v E
FV

x x

cS cS cScS cS

N N NN N

   
 

       


     

−

−

   

    
=    

       

 
     ++     = = + + + +    
      + + + 

      (22) 

Therefore, the basic reproduction number ( )== −1

0 FVR  spectra radius of 1−FV and hence 

   
0

(1 ) (1 ) (1 ) (1 )

( )( ) ( )( )( )

c c
R

N N

       

          

− + −  − + − 
= +

+ + + + + +                                                        (23)

 

 

3.5 Local Stability Analysis of Disease Free Equilibrium State. 

Theorem 3: The disease-free equilibrium, E of (23) is locally asymptotically stable (LAS) in 

D if 0 1R  . 

Proof: We shall use Jacobean stability technique to carry out the local stability analysis of the 

disease disease-free equilibrium.  

Jacobean matrix of the system of equations at disease-free equilibrium is: 
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(1 ) (1 ) (1 ) (1 )
( , 0 0 )

( ) ( )

(1 ) (1 ) (1 ) (1 )
( ) 0

( ) ( )

(1 ) (1 ) (1 ) (1 )
0 ( ) 0

( ) ( )

0 0

0 0

J

c c

N N

c c

N N

       


      

       
 

     

       
 

     

  

 

 − + −  +  − + − 
+ = 

+ + + 

− + −  − + −  
− + − − + + + +
 

− + −  − + −  
− + + + + +

 
− − 

 
−                          (24)

 

 

Determinant gives 

   2
(1 ) (1 ) (1 ) (1 )

( )( ) 1
( )( ) ( )( )( )

c c

N N

       
    

         

  − + −  − + − 
+ + − +   + + + + +  

,

                         (25)

 

but 
   

0

(1 ) (1 ) (1 ) (1 )

( )( ) ( )( )( )

c c
R

N N

       

         

− + −  − + − 
= +

+ + + + +
.

                                               (26)

 

Hence, DFE is Locally Asymptotically Stable (LAS) if 0 1R  . The epidemiology implication 

of the theorem is that polio can be eliminated (control) from the population when 0 1R  , if the 

initial size of the sub-populations are in the basin of attraction of the DFE. 

3.6 Global Stability of Disease Free Equilibrium ( E ) 

Lemma 1: (Castillo-Chavez et al., 2002): Let ( ) nx f x→  be a 
1C function for x in an open 

set .nD  Consider the differential equation  

' ( )x f x= .                                                                                                                                  (27) 

Denote by 0( , )x t x  the solution to (27) such that 0 0(0, )x x x= . A set K  is said to be absorbing 

in D  for (27) if 1( , )x t K K  for each compact 1K D and t  sufficiently large. We make the 

following two basic assumptions: 

(H1) There exists a compact absorbing set K D  

(H2) Equation (27) has a unique equilibrium x in D  

The equilibrium x is said to be globally stable in D  if it is locally stable and all trajectories in 

D  converges to x . 
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Note: (H1) is equivalent to uniform persistence of equation (27) (see Butler & Waltman, 1986; 

Waltman, 1991). 

Theorem 4: The disease-free equilibrium E is Globally Asymptotically Stable (GAS) in D  

if 0 1R  . 

Proof:  

To establish this, we re-write the model equation as follows: 

(1 ) (1 ) ( )

( )

( )

dS
S

dt

dE
S E

dt

dI
E I

dt

     

  

  


= − + −  − + + 




= − + 



= − + 


,                                                                              (28)                                                         

 with  

dN
N S I

dt
  = − − −                                                                                                         (29) 

where 

(1 ) (1 )   = − + −  .                                                                                                         (30) 

The reproduction number of the reduced system is given as: 

0
( )( )

R


   


=

+ +
.                                                                                                              (31) 

Now, consider a Lyapunov function ( )L E I  = + + , the time derivative is given by 

' { ( ) } ( ){ ( ) }L S E E I        = − + + + − + .                                                                  (32)                   

After carrying out algebraic manipulations, we have 

'

0

( )
S I

L
R

 




= −


,                                                                                                              (33) 

recall that 
( )c E I

N




+
= , then equation (33) becomes: 
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'

0

0

1
   0

cE S cI S I
L

N N R

c S
I

N R

   

 

= + −
 

 
 −  

 

 

Noting that S N for all time t , ' 0L  if and only if 0 1R  , and ' 0L = if and only if 0I = . 

Therefore, L is a Lyapunov function for the system equation (28). Thus, it follows by the 

LaSalle’s Invariant Principle [cite], that the DFE of the model (1) is GAS whenever 0 1R   

otherwise by Lemma 1, model (1) has an Endemic Equilibrium whenever 0 1R   because ' 0L 

for S sufficiently close to the invariant region except when 0E I= = . 

3.7 Existence of Endemic Equilibrium Point in Terms of force of Infection 

' ( , , , ) ( , , , )E S E I V S E I V       = =  is the endemic equilibrium point. 

(1 ) (1 ) ( ) 0
cE S cI S

S
N N

 
    

       
   

   
− + −  − − − + = ,                                                 (34) 

( ) 0
cE S cI S

E
N N

 
 

       
 

   
+ − + = ,                                                                                 (35)                       

( ) 0E I  
   − + = ,                                                                                                             (36) 

0S V   
   

+ + − = ,                                                                                                    (37) 

      

(1 ) (1 ) ( ) 0S S        − + − − − + = ,                                                                            (38) 

( ) 0S E     − + = ,                                                                                                             (39)                       

0E I 
   − = ,                                                                                                                    (40) 

0S V   
   

+ + − = ,                                                                                                   (41)                   

where 
( )c E I

N




   
 

 

+
=

                                                                                                    (42)
 

  
(1 ) (1 )

( )
S

  

  





− + − 
=

+ +
.                                                                                                      (43) 

Putting equation (43) in equation (41) we have 
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(1 ) (1 )

( )
V

      

    

 

 

+  − + − 
= +

+ +
,                                                                              (44) 

putting equation (43) into equation (39) we have 

[(1 ) (1 ) ]

( )( )
E

   

    

 
 

 

− + − 
=

+ + +
,                                                                                                 (45) 

and putting equation (45) into equation (40) we have 

[(1 ) (1 ) ]

( )( )
I

   

     






− + − 
=

+ + +
.                                                                                                  (46) 

Hence, the endemic equilibrium points of our model equation in terms of forces of infection 

are given as;  

(1 ) (1 )

( )

[(1 ) (1 ) ]

( )( )

[(1 ) (1 ) ]

( )( )( )

(1 ) (1 )

( )

S

E

I

V

  

  

   

    

   

      

      

    

 

 

 
 

 

 

 

 

 
 

− + −   
 + + 
  
 − + −  
   + + + = 
 − + −  
   + + + +  
 +  − + −  

+    + + 

.                                                                      (47) 

Putting equations (9) and (10) into equation (6) we have: 

[(1 ) (1 ) ] [(1 ) (1 ) ]

( )( ) ( )( )

c

N

        


          

  
 

     

 − + −  − + − 
= + 

+ + + + + + 
,                                   (48) 

( ) ( )( ) [(1 ) (1 ) ]

[(1 ) (1 ) ]

N N c

c

           

    

      + + + + = − + −  

+ − + − 
                                (49) 

A B +  ,                                                                                                                                      (50) 

where  

A ( )N    = + , 

B ( )( ) [(1 ) (1 ) ] [(1 ) (1 ) ]N c c             = + + − − + −  − − + −  , 

B
[(1 ) (1 ) ] [(1 ) (1 ) ]

( )( ) 1 ( )
( )( ) ( )( )

c c
N

N N

       
    

       

 

   

 − + −  − + − 
= + + − + 

+ + + + 
, 
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B  0( )( ) 1N R     = + + − .                                                                                         

 

4. Numerical Simulation 

We used maple software to plot the graph of our model equations. Since, most of the parameters 

were not readily available; we assumed some and obtain the rest from the papers we reviewed 

just for illustration. The total number of the population of sample considered is 1,460. For us 

to be able to investigate the effects of vaccine on recruits or newborn which are vaccinated or 

susceptible, graphical representations showing the time graphs of different state variables are 

provided. 

Table 2: Initial conditions for the state variables and parameters values. 

 

 

 

 

 

 

 

 

 

 

 

 

Parameters 

and State 

Variables 

              Value             Source 

S     500 Manju & Archana (2011) 

E     200 Manju & Archana (2011) 

I     160 Manju & Archana (2011) 

V     600 Manju & Archana (2011) 

N
 

   1,460 Calculated 

     1000 Assumed 

     1000 Assumed 

     0.25 Assumed 

     0.5 Manju & Archana (2011) 

     0.25 Assumed 

I     0.6 Manju & Archana (2011) 

     0.5 Assumed 

     0.25 Assumed 

     0.25 Assumed 

C    0.5 Assumed 
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Figure 1: The graph of susceptible individuals versus time. 

 

Figure 2: The graph of Exposed individuals versus time. 
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Figure 3: The graph of Infectious individuals versus time. 

 

 

Figure 4: The graph of Vaccinated individuals versus time. 
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4.1 Discussion 

Figure 1 is the graph of susceptible individuals versus time. The graph shows that the 

population of the susceptible individuals increases at low and moderate vaccination rates but 

goes to zero at high vaccination coverage. Figure 2 is the graph of Exposed individuals versus 

time. The graph shows that the population of the Exposed individuals decreases as the 

vaccination coverage increases and brought down the population Exposed individuals to zero 

at high vaccination rate. This means the polio can be eradicated completely in the population 

at time (t) = 5 years as per our graph. 

Figure 3 is the graph of Infectious and paralyzed individuals versus time. The graph shows that 

the population of the Infectious and paralyzed individuals decreases as the vaccination 

coverage increases and brought down the population Infectious and paralyzed individuals to 

zero at high vaccination rate. This means that, at high vaccination coverage, a disease-free 

equilibrium can be reached. Figure 4 is the graph of vaccinated individuals versus time. The 

graph validates the effects of vaccination on the dynamics of the disease in the population. 

 

5. Concluding Remarks 

In this work, we formulated a deterministic mathematical model of Polio infection dynamics, 

with the aim of performing a theoretical analysis of epidemiological meaningfulness. We 

derived the basic reproduction number, 0R  of the model, and it was used to perform a qualitative 

analysis on the model. We obtained both the Disease-Free Equilibrium (DFE) and the Endemic 

Equilibrium points of the model. We further proved that that the DFE is locally and globally 

asymptotically when 0 1R   which means the disease will die out, in addition to that, using 

Lemma 1 we show the existence of Endemic Equilibrium when 0 1R  . The result of the 

numerical simulation reveals that with 75% vaccination coverage for the immigrants and new-

born, polio would be eradicated completely. Therefore, we have been able to prove the 

assertion that prevention is better than cure even at just about 75% vaccination coverage. 
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