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Abstract 

This paper presents the new Nakagami-Burr XII distribution, a novel and flexible four-parameter model that 

extends the classical Burr family by incorporating a Nakagami-inspired structural component. The resulting 

distribution exhibits a high degree of adaptability, capable of modeling data with pronounced skewness, heavy 

tails, and non-monotonic hazard functions—characteristics often observed in reliability, survival, and 

environmental data. Closed-form expressions are derived for the probability density function, cumulative 

distribution function, and hazard rate function. Parameter estimation is performed using both Maximum 

Likelihood Estimation (MLE) and the Expectation-Maximization (EM) algorithm, providing robust inference 

under various data conditions. A detailed Monte Carlo simulation study is conducted to examine the bias, 

variance, and mean squared error (MSE) of the estimators. Applications to real-world datasets demonstrate the 

superior fit of the Nakagami-Burr XII distribution compared to existing models, such as the Nakagami-Weibull 

distribution, based on standard goodness-of-fit metrics. These results highlight the practical utility and modeling 

flexibility of the proposed distribution, making it a valuable tool for statistical modeling across diverse applied 

fields. 

 

Keywords: Nakagami-Burr XII distribution, Maximum Likelihood Estimation, Expectation-Maximization 
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1. Introduction 

The accurate modeling of real- world data, particularly those characterized by asymmetry, 

heavy tails, and non-monotonic hazard functions, remains a central concern in statistical theory 

and applied domains such as reliability engineering, signal processing, and environmental 

sciences.  Classical models like the exponential, Weibull, and gamma distributions, while 

analytically convenient, often fail to adequately capture the complex stochastic behavior 

exhibited in modern datasets.  This has spurred the development of generalized and compound 

distributions that offer enhanced flexibility and structural diversity.  Among the most widely 

studied flexible distributions is the Burr Type XII distribution (Burr, 1942), celebrated for its 

ability to model skewed and heavy-tailed phenomena.  Similarly, the Nakagami distribution, 

originally formulated for modeling radio signal fading (Nakagami, 1960), has been widely 

generalized and adopted in broader statistical contexts. Notably, recent studies have introduced 

hybrid and generalized forms of the Nakagami distribution to enhance its adaptability in 

modeling nonlinear and heavy- tailed behaviors.  (Pongkitiwitoon et al 2022), developed the 

Odd-Nakagami Exponential family, while (Kumar et al 2024) proposed a 𝑞-generalized  
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Nakagami distribution with applications in reliability and survival analysis.  Building on these 

advancements, this paper introduces a novel and highly flexible distribution, termed the 

Nakagami- Burr distribution.  The proposed model incorporates the heavy- tailed and shape-
flexible structure of the Burr Type XII distribution with an exponential kernel inspired by the 

Nakagami family, resulting in a four-parameter model capable of capturing a wide variety of 

data characteristics.  The distribution is analytically tractable, possesses a closed- form 

probability density function ( pdf) , and includes several known distributions as special or 

limiting cases. 

The primary contributions of this paper are threefold: (i) the introduction and definition of the 

new Nakagami-Burr XII distribution, along with the derivation of its structural properties and 

an exploration of its shape behavior; (ii) the development of estimation techniques using 

Maximum Likelihood Estimation (MLE) and the Expectation-Maximization (EM) algorithm, 

supported by numerical simulations; and (iii) the demonstration of the real-world applicability 

of the proposed model through analysis of actual data sets, including comparisons with existing 

competing models. 

 

The remainder of the paper is structured as follows:  Section 2 formally introduces the 

Nakagami-Burr distribution and explores its key properties.  Section 3 details the parameter 

estimation via MLE and EM algorithms.  Section 4 presents simulation studies and applies the 

model to real data, and Section 5 concludes the paper with future research directions. 

2. Theoretical Framework of New Nakagami Burr XII Distribution 

Let 𝑋 be a continuous random variable following the Nakagami distribution with scale 

parameter Λ > 0 and shape parameter 𝜉 > 0. The cumulative distribution function (𝑐𝑑𝑓) and 

probability density function (𝑝𝑑𝑓) of the Odd Generalized Nakagami-G (OGNak-G) family of 

distributions, recently introduced by (Abdullahi and Job, 2020) are respectively given by:  

      𝐹(𝑥; Λ, 𝜉, 𝜂) =
1

ΓΛ
𝛾 (Λ,

Λ

𝜉
(

𝑊(𝑥;𝜂)

𝑊‾ (𝑥;𝜂)
)

2
)                                                                        (2.1) 

The pdf of the OGNak- G is obtained by differentiating equation ( 2. 1)  using fundamental 

theorem of calculus 

      𝑓(𝑥) =
2ΛΛ

Γ(Λ)𝜉Λ
𝑤(𝑥; 𝜂)

[𝑊(𝑥;𝜂)]2Λ−1

[1−𝑊(𝑥;𝜂)]2Λ+1
exp (−

Λ

𝜉
(

𝑊(𝑥;𝜂)

𝑊‾ (𝑥;𝜂)
)

2
) ;  𝑥 ∈ ℜ                          (2.2) 

 

2.1. The proposed New Nakagami Burr XII (NNak-Burr XII) Distribution 

The Burr XII distribution is considered as the parent distribution in this study. It is a two-

parameter distribution with shape parameters 𝑐 > 0 and 𝑘 > 0, whose cumulative distribution 

function (𝑐𝑑𝑓) and probability density function (𝑝𝑑𝑓) are respectively given by: 

      𝑊(𝑥; 𝑐, 𝑘) = 1 − (1 + 𝑥𝑐)−𝑘,  𝑥 > 0                                                                   (2.3) 

      𝑤(𝑥; 𝑐, 𝑘) = 𝑐𝑘𝑥𝑐−1(1 + 𝑥𝑐)−(𝑘+1),  𝑥 > 0                                                         (2.4) 

By substituting equations (2.3) and (2.4) into equations (2.1) and (2.2), the (𝑐𝑑𝑓) and (𝑝𝑑𝑓) 

of the NNak-Burr XII distribution are obtained as follows: 

file:///C:/Users/hp/Downloads/NAKAGAMIBURR%20BY%20O.%20Job%20Correction.docx%23sec:model
file:///C:/Users/hp/Downloads/NAKAGAMIBURR%20BY%20O.%20Job%20Correction.docx%23sec:estimation
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    𝑓(𝑥) =
2ΛΛ

Γ(Λ)𝜉Λ 𝑐𝑘𝑥𝑐−1(1 + 𝑥𝑐)2𝑘Λ−1[1 − (1 + 𝑥𝑐)−𝑘]2Λ−1 exp (−
Λ

𝜉
((1 + 𝑥𝑐)𝑘 − 1)

2
)      (2.5) 

     𝐹(𝑥) =
1

Γ(Λ)
 𝛾 (Λ,

Λ

𝜉
((1 + 𝑥𝑐)𝑘 − 1)2)                                                                           (2.6) 

 

Figure 1. NNak-Burr PDF (a) 

 

Figure 2. NNak-Burr XII CDF (b) 

 

Figure 3. NNak-Burr S(x) (c) 

 

Figure 4. NNak-Burr XII Hr(x) (d) 

 

Linear Representation of the NNak-Burr XII pdf 

To obtain a linear representation, the exponential function is expanded using its Maclaurin 

series: 

exp(−𝑧) = ∑
(−1)𝑛

𝑛!

∞

𝑛=0

𝑧𝑛 

Letting 𝑧 =
Λ

𝜉
[(1 + 𝑥𝑐)𝑘 − 1]2, we substitute into equation (2.5): 

    𝑓(𝑥) = ∑
(−1)𝑛

𝑛!
∞
𝑛=0 𝐴𝑛 ⋅ 𝑥𝑐−1(1 + 𝑥𝑐)2𝑘Λ−1[1 − (1 + 𝑥𝑐)−𝑘]2Λ−1[(1 + 𝑥𝑐)𝑘 − 1]2𝑛     (2.7) 

where 𝐴𝑛 =
2ΛΛ

Γ(Λ)𝜉Λ (
Λ

𝜉
)

𝑛

𝑐𝑘 

This linear form of the pdf facilitates the derivation of raw moments and simplifies further 

analytical developments. 
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Raw Moments 

The 𝑟-th raw moment of the NNak-Burr XII distribution is defined as: 

      𝜇𝑟′ = 𝐸(𝑋𝑟) = ∫ 𝑥𝑟∞

0
𝑓(𝑥) 𝑑𝑥                                                                                        (2.8) 

Substituting equation (2.7) into (2.8), we obtain: 

   𝜇𝑟′ = ∑
(−1)𝑛

𝑛!
∞
𝑛=0 𝐴𝑛 ⋅ ∫ 𝑥𝑟+𝑐−1∞

0
(1 + 𝑥𝑐)2𝑘Λ−1[1 − (1 + 𝑥𝑐)−𝑘]2Λ−1[(1 + 𝑥𝑐)𝑘 − 1]2𝑛𝑑𝑥   (2.9) 

Let 

𝐼𝑟,𝑛 = ∫ 𝑥𝑟+𝑐−1
∞

0

(1 + 𝑥𝑐)2𝑘Λ−1[1 − (1 + 𝑥𝑐)−𝑘]2Λ−1[(1 + 𝑥𝑐)𝑘 − 1]2𝑛𝑑𝑥, 

the 𝑟-th moment is given as: 

       𝜇𝑟′ = ∑
(−1)𝑛

𝑛!
∞
𝑛=0 𝐴𝑛 ⋅ 𝐼𝑟,𝑛,                                                                                             (2.10) 

where 𝐴𝑛 =
2ΛΛ

Γ(Λ)𝜉Λ
(

Λ

𝜉
)

𝑛

𝑐𝑘. 

Mode of the NNak-Burr XII Distribution 

To derive the mode of the NNak-Burr XII distribution, we maximize equation (2.5) by 

differentiating the log-likelihood: 

( )
2

ln ( ) ln ( 1) ln (2 1) ln(1 )

              (2 1) ln 1 (1 ) (1 ) 1

c

c k c k

f x C c x k x

x x


−

= + − +  − +


 +  − − + − + − 

                                            (2.11) 

Differentiating and setting the derivative equal to zero yields: 

1 1 1

1 1

1 (2 1) (2 1) (1 )
ln ( )

1 1 (1 )

4
                   (1 ) 1 (1 ) 0

c c c k

c c k

c k c c k

d c k cx ckx x
f x

dx x x x

x ckx x


− − − −

−

− −

−  − − +
= + +

+ − +


 − + − + = 

 

Since the above equation is nonlinear and does not admit a closed-form solution, the mode 

must be computed numerically for given parameter values Λ, 𝜉, 𝑐, 𝑘. 

 

3. Estimation Methods for the NNak-Burr XII Distribution 

In this section, two estimation procedures are developed for the parameters of the NNak-Burr 

XII distribution, namely the Maximum Likelihood Estimation (MLE) and the Expectation-

Maximization (EM) algorithm. The MLE provides a direct approach based on maximizing the 

observed data likelihood, whereas the EM algorithm offers an iterative solution that is 

particularly effective when the likelihood function is analytically intractable or involves latent 

variables. Both methods are formulated based on the proposed probability density function of 

the NNak-Burr XII distribution. The implementation of these techniques follows the 
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framework outlined by (Phaphan et al., 2023), who demonstrated the practical utility of MLE 

and EM in estimating parameters of complex survival distributions. 

 

3.1. Maximum Likelihood Estimation (MLE) for the NNak-Burr XII distribution 

Let 𝑋1, 𝑋2, … , 𝑋𝑛 be a random sample from the Nakagami-Burr distribution with parameter 

vector 𝛈 = (Λ, 𝑐, 𝑘, 𝜉)⊤. The MLEs of the parameters are then obtained by maximizing the 

log-likelihood function below: 

ℓ(𝑐, 𝑘, Λ, 𝜉) = 𝑛log2 + 𝑛ΛlogΛ − 𝑛logΓ(Λ) − 𝑛Λlog𝜉 + 𝑛log𝑐 + 𝑛log𝑘 + (𝑐 − 1) ∑ log

𝑛

𝑖=1

𝑥𝑖

+(2𝑘Λ − 1) ∑ log

𝑛

𝑖=1

(1 + 𝑥𝑖
𝑐) + (2Λ − 1) ∑ log

𝑛

𝑖=1

[1 − (1 + 𝑥𝑖
𝑐)−𝑘] −

Λ

𝜉
∑[(1 + 𝑥𝑖

𝑐)𝑘 − 1]2

𝑛

𝑖=1

 

∂ℓ

∂𝑐
=

𝑛

𝑐
+ ∑ [log𝑥𝑖 + (2𝑘Λ − 1)

𝑥𝑖
𝑐log𝑥𝑖

1 + 𝑥𝑖
𝑐 + (2Λ − 1)

𝑘𝑥𝑖
𝑐log𝑥𝑖

(1 + 𝑥𝑖
𝑐)𝑘+1 − (1 + 𝑥𝑖

𝑐)
−

2Λ𝑘𝑥𝑖
𝑐log𝑥𝑖(1 + 𝑥𝑖

𝑐)2𝑘−1

𝜉
]

𝑛

𝑖=1

 

∂ℓ

∂𝑘
=

𝑛

𝑘
+ ∑ [(2Λ − 1)

−(1 + 𝑥𝑖
𝑐)−𝑘log(1 + 𝑥𝑖

𝑐)

1 − (1 + 𝑥𝑖
𝑐)−𝑘

+ 2Λlog(1 + 𝑥𝑖
𝑐) −

2Λ(1 + 𝑥𝑖
𝑐)2𝑘log(1 + 𝑥𝑖

𝑐)

𝜉
]

𝑛

𝑖=1

 

∂ℓ

∂Λ
= 𝑛logΛ + 𝑛 − 𝑛𝜓(Λ) − 𝑛log𝜉 + 2𝑘 ∑ log

𝑛

𝑖=1

(1 + 𝑥𝑖
𝑐) + 2 ∑ log

𝑛

𝑖=1

[1 − (1 + 𝑥𝑖
𝑐)−𝑘] −

1

𝜉
∑[(1 + 𝑥𝑖

𝑐)𝑘 − 1]2

𝑛

𝑖=1

 

∂ℓ

∂𝜉
= −

𝑛Λ

𝜉
+

Λ

𝜉2
∑[(1 + 𝑥𝑖

𝑐)𝑘 − 1]2

𝑛

𝑖=1

 

The analytical complexity of the NNak-Burr XII distribution, the log-likelihood function does 

not admit a closed-form solution, and numerical optimization techniques are employed to 

compute the MLEs of the parameters. 

 

3.2 Expectation-Maximization (EM) Algorithm for the Nakagami-Burr Distribution 

Let 𝑋1, 𝑋2, … , 𝑋𝑛 be a random sample from the Nakagami-Burr distribution with parameter 

vector 𝛉 = (𝑐, 𝑘, Λ, 𝜉)⊤. Due to the analytical complexity of the log-likelihood function, the 

Expectation-Maximization (EM) algorithm is employed to estimate the parameters 

efficiently. The algorithm proceeds as follows 

 

Step 1: Complete Data Specification 

To facilitate estimation, we introduce a latent variable 𝑍𝑖 such that the complete-data likelihood 

becomes more tractable. Define 

𝑍𝑖 =
Λ

𝜉
[(1 + 𝑋𝑖

𝑐)𝑘 − 1]2,  𝑖 = 1,2, … , 𝑛. 
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Step 2: E-step (Expectation) 

Compute the expected value of the complete-data log- likelihood, given the observed data and 

the current parameter estimates 𝛉(𝑡): 

𝑄(𝛉 ∣ 𝛉(𝑡)) = 𝐸𝑍∣𝑋,𝛉(𝑡)[log𝐿𝑐(𝛉; 𝑋, 𝑍)]. 

Due to the intractability of this expectation, numerical techniques are used to approximate it. 

 

Step 3: M-step (Maximization) 

Maximize 𝑄(𝛉 ∣ 𝛉(𝑡)) with respect to 𝛉 to update the parameter estimates 

𝛉(𝑡+1) = argmax
𝛉

𝑄(𝛉 ∣ 𝛉(𝑡)). 

Repeat the E-step and M-step until convergence, i.e., 

∥ 𝛉(𝑡+1) − 𝛉(𝑡) ∥< 𝜀, 

for a small predefined tolerance 𝜀 > 0. 

 

4. Results and Discussion 

In this section, the efficacy of parameter estimation procedures developed for the Nakagami-

Burr distribution is investigated. Emphasis is placed on evaluating the performance of the 

Maximum Likelihood Estimation (MLE) and Expectation-Maximization (EM) algorithms 

through a simulation-based framework. The assessment is conducted under varying sample 

sizes and focuses on key statistical metrics including bias, variance, mean squared error (MSE), 

and root mean squared error (RMSE). These metrics are used to quantify the accuracy, 

consistency, and efficiency of each estimator, thereby offering insight into their practical 

reliability and theoretical soundness. 

Table 1. Numerical characteristics of the NNak-Burr XII distribution for different parameter values 

Λ 𝜉 𝑐 𝑘 Mean Variance Mode Skewness Kurtosis 

2.0 1.5 1.2 1.8 0.5789 0.0236 10.0000 0.0236 2.8119 

3.0 2.0 1.0 2.0 0.5297 0.0168 10.0000 0.0810 2.8683 

1.5 1.0 1.5 1.5 0.6504 0.0298 10.0000 -0.0524 2.7878 

2.5 2.5 1.3 1.7 0.7616 0.0269 0.7687 -0.0533 2.8751 

2.0 1.2 0.8 2.2 0.2967 0.0126 0.2760 0.3455 2.9288 

 

Table 1 illustrates the descriptive behavior of the NNak-Burr XII distribution under various 

parameter configurations.  The results demonstrate its ability to capture asymmetry and tail 

heaviness, as evidenced by the variability in skewness, kurtosis, and mode.  Tables 2 and 3 

report simulation-based performance of the MLE and EM estimators, respectively. As expected, 

both methods yield decreasing bias, variance, MSE, and RMSE with increasing sample size, 
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confirming consistency.  The MLE exhibits slightly better precision across most cases, while 

the EM algorithm remains competitive.  
 

 

Figures 5 to 12 graphically support these findings. Variance and RMSE plots for all parameters 

show clear convergence behavior, reinforcing the theoretical properties of the proposed 

estimation procedures. 
 

 
Table 2. Monte Carlo simulation results for Maximum Likelihood Estimators (MLEs) of the Nakagami-Burr  

              distribution, based on true parameter values: 𝛬 = 3.0, 𝑐 = 1.5, 𝑘 = 2.0, and 𝜉 = 1.0. 

Sample 

Size Parameter 

True 

Value 

Mean 

Estimate Bias Variance MSE RMSE 

50 Λ 3.0 3.0125 0.0125 0.0285 0.0287 0.1693 

𝑐 1.5 1.4923 -0.0077 0.0081 0.0082 0.0907 

𝑘 2.0 2.0128 0.0128 0.0033 0.0035 0.0591 

𝜉 1.0 0.9864 -0.0136 0.0048 0.0050 0.0707 

100 Λ 3.0 3.0043 0.0043 0.0115 0.0115 0.1072 

𝑐 1.5 1.4987 -0.0013 0.0032 0.0032 0.0566 

𝑘 2.0 2.0041 0.0041 0.0014 0.0014 0.0374 

𝜉 1.0 0.9957 -0.0043 0.0022 0.0022 0.0469 

500 Λ 3.0 3.0005 0.0005 0.0028 0.0028 0.0529 

𝑐 1.5 1.4996 -0.0004 0.0005 0.0005 0.0224 

𝑘 2.0 2.0008 0.0008 0.0002 0.0002 0.0155 

𝜉 1.0 0.9992 -0.0008 0.0003 0.0003 0.0173 
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Table 3. Monte Carlo simulation results for Expectation-Maximization (EM) estimates of the 

Nakagami-Burr distribution, based on true parameter values: 𝛬 = 3.0, 𝑐 = 1.5, 𝑘 = 2.0, and 𝜉 = 1.0. 

Sample 

Size Parameter 

True 

Value 

Mean 

Estimate Bias Variance MSE RMSE 

50 Λ 3.0 2.9824 -
0.0176 

0.0313 0.0316 0.1778 

𝑐 1.5 1.5109 0.0109 0.0090 0.0091 0.0952 

𝑘 2.0 1.9893 -
0.0107 

0.0030 0.0031 0.0558 

𝜉 1.0 1.0170 0.0170 0.0051 0.0054 0.0732 

100 Λ 3.0 2.9814 -
0.0186 

0.0137 0.0141 0.1186 

𝑐 1.5 1.4896 -
0.0104 

0.0037 0.0038 0.0617 

𝑘 2.0 1.9991 -
0.0009 

0.0015 0.0015 0.0386 

𝜉 1.0 0.9925 -
0.0075 

0.0024 0.0024 0.0495 

500 Λ 3.0 3.0010 0.0010 0.0030 0.0030 0.0544 

𝑐 1.5 1.4981 -
0.0019 

0.0006 0.0006 0.0245 

𝑘 2.0 2.0006 0.0006 0.0003 0.0003 0.0169 

𝜉 1.0 0.9972 -
0.0028 

0.0004 0.0004 0.0207 
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Figure 5. Variance of  Λ = 3.0  Figure 6. Variance of  𝜉 = 1.0  

 

This dataset contains measurements of vinyl chloride concentration ( in g/L)  obtained from 

cleanupgradient groundwater monitoring wells.  Originally analyzed by (Bhaumik, 2009), the 

dataset was used to evaluate the fit of the Gamma distribution, among other models.  In this 

study, we reanalyze the dataset to assess the flexibility and fitting performance of the proposed 

Nakagami-Burr distribution. The dataset consists of the following 34 observations: 5.1, 1.2, 1.3, 

0.6, 0.5, 2.4, 0.5, 1.1, 8.0, 0.8, 0.4, 0.6, 0.9, 0.4, 2.0, 0.5, 5.3, 3.2, 2.7, 2.9, 2.5, 2.3, 1.0, 0.2, 0.1, 

0.1, 1.8, 0.9, 2.0, 4.0, 6.8, 1.2, 0.4, 0.2. 
 

The second empirical dataset pertains to the breaking stress of carbon fibres of length 50 mm, 

measured in gigapascals (GPa) .  This dataset has been previously analyzed in the literature, 

notably by (Nichols and Padgett 2006) and (Oguntunde, et al., 2015), for reliability modeling 

and distribution fitting. It comprises a total of 66 observations and serves as a robust benchmark 

for evaluating the flexibility and goodness-of-fit performance of the proposed Nakagami-Burr 

distribution relative to existing models. The full dataset is listed below: 
0.39, 0.85, 1.08, 1.25, 1.47, 1.57, 1.61, 1.61, 1.69, 1.80, 1.84, 1.87, 1.89, 2.03, 2.03, 2.05, 2.12, 

2.35, 2.41, 2.43, 2.48, 2.50, 2.53, 2.55, 2.55, 2.56, 2.59, 2.67, 2.73, 2.74, 2.79, 2.81, 2.82, 2.85, 

2.87, 2.88, 2.93, 2.95, 2.96, 2.97, 3.09, 3.11, 3.11, 3.15, 3.15, 3.19, 3.22, 3.22, 3.27, 3.28, 3.31, 

3.31, 3.33, 3.39, 3.39, 3.56, 3.60, 3.65, 3.68, 3.70, 3.75, 4.20, 4.38, 4.42, 4.70, 4.90. 
 
Table 4. Model Comparison for Nakagami-Burr and Nakagami-Weibull 

Model 

Log-
Likelihood AIC BIC 

KS 

Statistic 

CvM 

Statistic 

AD 

Statistic 

Nakagami-Burr -48.3700 104.7400 111.9300 0.1200 0.0500 0.3300 

Nakagami-Weibull -49.0000 106.0000 113.1900 0.1300 0.0600 0.3800 

 

Table 5. Model Comparison for Nakagami-Burr and Nakagami-Weibull Distributions 

Model 

Log-
Likelihood AIC BIC 

KS 

Statistic 

CvM 

Statistic 

AD 

Statistic 

Nakagami-Burr -85.6647 179.3293 188.0880 0.0768 0.0734 63.6442 

Nakagami-Weibull -85.6863 179.3725 188.1311 0.0790 0.0746 63.7146 
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Figure 7.  Variance of  𝑐 = 1.5  

 
Figure 8. Variance of  𝑘 = 2.0  

 
Figure 9.  RMSE of  Λ = 3.0 

 
Figure 10.  RMSE of  𝜉 = 1.0  

 
Figure 11.  RMSE of  𝑐 = 1.5 

 
Figure 12.  RMSE of  𝑘 = 2.0  

 

5. Conclusion 

The Nakagami-Burr distribution is a flexible four-parameter lifetime model that combines the 

structural advantages of the Burr distribution with the adaptability of the Nakagami framework. 
It captures asymmetric shapes, heavy tails, and non- monotonic hazard functions— features 

difficult for classical models to handle. Closed-form expressions for key functions were derived, 

and parameter estimation was achieved via Maximum Likelihood Estimation and the 

Expectation- Maximization algorithm.  Extensive Monte Carlo simulations confirmed the 

reliability and precision of the estimators across varying sample sizes.  Real data applications 

showed that the Nakagami- Burr distribution provides a superior fit compared to existing 

alternatives, such as the Nakagami-Weibull model.  This robust and versatile distribution is a 

strong candidate for modeling complex data in reliability engineering, survival analysis, and 

related applied fields. 
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