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Abstract 

The conventional conjugate gradient method solves linear and quadratic optimization problems but most real life 

problems consist of nonquadratic functions of several variables. In this work a nonlinear conjugate gradient 

algorithm for solving large scale optimization problems is presented. The new algorithm is a modification of the 

Fletcher-Reeves conjugate gradient method and it is proved to achieve global convergence under the strong Wolfe-

Powell inexact line search technique. Computational experiments show that the new algorithm presented performs 

better than the Fletcher-Reeves exact line search algorithm in solving high dimensional nonlinear optimization 

problems. 

 Keyword: unconstrained optimization, conjugate gradient, inexact line search, sufficient descent condition. 

 

1. Introduction 

An unconstrained nonlinear optimization problem is of the form:  

 )(xf
Rx

minimize
n


, (1) 

where RR →nf :  is a smooth and real valued nonlinear objective function of the vector 

nx R .Various optimization techniques have been developed for the solution of problems of 

the form (1), but the search for new and more efficient ones is an unending one. The most 

popular among these methods is the Conjugate Gradient Method (CGM). The linear conjugate 

gradient method was originally proposed by Hestenes and Stiefel in 1952, for solving 

symmetric positive definite systems of equations while in 1964, based on the idea of the linear  

 
*Corresponding Author: Ejieji, C. N. 

Email: ejieji.cn@unilorin.edu.ng 

Ilorin Journal of Science  

Volume 6, Number 1, 2019, pp. 25 – 41 (Printed in Nigeria) 

ISSN: 2408 – 4840 © 2019 Faculty of Physical Sciences, University of Ilorin 

https://doi.org/10.54908/iljs.2019.06.01.003 
 

JOURNAL OF SCEINCE 

ILORIN 



Ejieji et al.                              ILORIN JOURNAL OF SCIENCE 

26 
 

conjugate gradient method, Fletcher and Reeves gave a nonlinear conjugate gradient method 

for solving unconstrained optimization problems (Yarushi and Hiroshi, 2014). Nonlinear 

conjugate gradient methods are currently considered to be the most important techniques for 

solving large scale unconstrained optimization problems. The popularity of these methods are 

mainly due to their efficiency in solving large scale problems and their simplicity both in their 

algebraic expression and in their ease of implementation in computer codes (Ejieji and 

Bamigbola, 2006; Neculai, 2011).  

Consider the general unconstrained optimization problem:   

)(xf
Rx

minimize
n


, where RR →nf :  is continuously differentiable and its gradient is 

denoted by )(=)( xfxg  . 

The conjugate gradient algorithm generates a sequence of iterates according to  

 kkkk dxx ++ =1  (2) 

 for values of ...2,1,0,=k , where kx  is the current iteration point and 0>k  is the step 

length obtained by some line search, kd  is the search direction and is defined by :  

 




+−

−

− 1.,

0;=,
=

1 kdg

kg
d

kkk

k

k


, (3) 

 where )(= kk xgg  and k  is a scalar parameter known as the conjugate gradient coefficient. 

Several conjugate gradient methods have been proposed , and they mainly differ in the choice 

of the scalar parameter k . Some of the formulae for k  as reported in (Ahmad and Zabidin, 

2017) are: the Hestenes-Stiefel (HS), the Fletcher-Reeves (FR), the Polak-Ribiere-polyak 

(PRP), the conjugate descent (CD), the Liu-Storey (LS), and the  Dai-Yuan (DY) conjugate 

gradient coefficients. These choices of k  , where 11 = −− − kkk ggy   are expressed as follows: 

     • 
11

1)( =
−−

−

k

T

k

k

T

kHS

k
yd

yg
  by Hestenes and Stiefel,  

    • 
11

)( =
−− k

T

k

k

T

kFR

k
gg

gg
  by Fletcher and Reeves , 
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    • 
11

1)( =
−−

−

k

T

k

k

T

kPRP

k
gg

yg
  by Polak, Ribeere and Polyak,  

    • 
11

)( =
−−

−
k

T

k

k

T

kCD

k
gd

gg
  by Fletcher, 

    • 
11

1=
−−

−−
k

T

k

k

T

kLS

k
gd

yg
  by Liu and Storey,  

    • 
11

)( =
−− k

T

k

k

T

kDY

k
yd

gg
  by Dai and Yuan . 

The step length 0>k is computed by performing a line search along the search direction kd . 

However, for non linear problems, it is more appropriate and cost efficient to adopt some 

inexact line search procedure.  

Abdelrahman et al. (2017) proposed a new conjugate gradient method for unconstrained 

optimization problems with a parameter derived from the Fletcher Reeves conjugate parameter. 

The new method called ‘A Modified Fletcher Reeves Conjugate Gradient Method’ (AMFR 

CGM) was shown to possess the sufficient descent condition and to achieve global convergence 

properties under exact line search. The conjugate gradient coefficient of the method is given 

by:  

2

1

1

12

||||

||||

||||
||||

=
−

−

−

+

−

kk

T

k

k

k

T

kk

k

AMFR

k
gdg

d

dgg
g


   ,                                                                                  (4) 

 where 0>  and ||.||  is the euclidean norm. Using equation (4) , the following algorithm was 

developed:  

Algorithm 1.1 (AMFR CGM with exact line search) (Abdelrahman et al. , 2017)   

    • Step 1: Given nx R0  , 
610= −  , set 00 = gd − , if |||| kg  then stop. 

    • Step 2: Compute k  by applying exact line search, that is by using  

            0>,)(argmin=*

kkkk dxf  += . 
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    • Step 3: Set kkkk dxx ++ =1  , if + |||| 1kg  then stop.  

    • Step 4: Compute AMHF

k  by (4)  and generate 1+kd  by (3) .  

    • Step 5: Set 1= +kk  and go to step 2. 

Due to the fact that exact line search procedure is always very expensive and sometimes 

impossible especially for large dimensional problems, we apply the strong Wolfe-Powell 

inexact line search to the conjugate gradient parameter k  proposed by Abdelrahman’s 

algorithm to generate a new algorithm for solving large scale unconstrained optimization 

problems.  

The Strong Wolfe-Powell inexact line search conditions are :  

                
k

T

kkkkkk dgxfdxf  ++ )()(                     (5) 

                 
k

T

kk

T

kkk dgddxg  + )( ,                       (6) 

where 1<<<0   and kd  is a search direction (Mohamed et al. , 2016). We also investigated 

the convergence properties of our algorithm. The new method is proved to possess global 

convergence property. Numerical experiments with some standard test problems showed that 

the new algorithm performs better than the Fletcher-Reeves method. 

 

2. Materials and Methods 

The New Nonlinear Conjugate Gradient Algorithm with inexact line search 

We consider the nonlinear unconstrained optimization problem given in (1), where RR →nf :  

is continuously differentiable and its gradient is denoted by )(=)( xfxg  . Using an iterative 

scheme of the form kkkk dxx ++ =1  , where the search direction kd  is defined by:  

 





































+

−

+−

−

++

++

+

+

+

+ 1.,
||||

||||

||||
||||

0;=,

=
2

11

112

1

1

1

1 kd
gdg

d

dgg
g

g
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d
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k
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k
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kk

k
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k



                          (7) 
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 where 0>  and ||.||  is the euclidean norm , we propose a nonlinear conjugate gradient 

algorithm developed under the Strong Wolfe-Powell line search as follows : 

Algorithm 2.1 

A new nonlinear Conjugate Gradient Method (With Strong Wolfe-Powell Inexact line 

search) 

• Step 1: Choose an initial point nx R0  , (0,1)  , 0> , )
2

1
(0,  , ,1)(   set 0=k  

and 00 = gd − . 

• Step 2: If |||| kg  then stop. 

• Step 3: Find the step length k  by Strong Wolfe-Powell line search to satisfy: 

 
k

T

kkkkkk dgxfdxf  ++ )()(  

and 

 
k

T

kk

T

kkk dgddxg  + )( . 

• Step 4: Set a new iteration point kkkk dxx ++ =1 .  

• Step 5: If + |||| 1kg  then stop, otherwise go to the next step. 

• Step 6: Update the search direction by:  

 





































+

−

+−

−

++

++

+

+

+

+ 1.,
||||

||||

||||
||||

0;=,

=
2

11

112

1

1

1

1 kd
gdg

d

dgg
g

g

kg

d
k

kk

T

k

k

k

T

kk

k

k

k

k



 

• Step 7: Set 1= +kk  and go to step 3 . 

  

2.2  Some Convergence Properties of Algorithm 2.1 

We now investigate the Sufficient descent property, trust region feature and global convergence 

properties of Algorithm 2.1. 

 

Sufficient Descent Property and Trust Region Feature 

We show these by proving the following Lemma: 
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Lemma 2.1 

If the search direction 1+kd  meets the condition:   

 





































+

−

+−

−

++

++

+

+

+

+ 1.,
||||

||||

||||
||||

0;=,

=
2

11

112

1

1

1

1 kd
gdg

d

dgg
g

g

kg

d
k

kk

T

k

k

k

T

kk

k

k

k

k



 

Then: 

(i) the Sufficient Descent Property,  

 2

111 |||| +++ − kk

T

k gdg
  
                           (8) 

 and  

(ii) the Trust Region Feature 

 |||||||| 11 ++  kk gd                               (9) 

 will hold. 

Proof: 

From (7) , if 0=k  we have: 

11 = ++ − kk gd , multiplying both sides by T

kg 1+ , gives: 1111 = ++++ − k

T

kk

T

k ggdg . 

Since 0=k , we have : 1111 = ggdg TT − , 2

111 ||||= gdgT − . 

Hence condition (8)  is satisfied when 0=k . Also when 0k , we have  

 k

kk

T

k

k

k

T

kk

k

kk d
gdg

d

dgg
g

gd





















+

−

+−
++

++

+

++ 2

11

112

1

11
||||

||||

||||
||||

=


. 

Multiplying both sides by T

kg 1+ , we get: 
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




















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
















+

−

+−
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+

++++ k
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T

k

k

k

T
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k

k

T
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T

k d
gdg

d

dgg
g

ggdg
2

11

112

1

1111
||||

||||

||||
||||

=


 

which gives: k

kk

T

k

k

k

T

kk

k

T

kk

T

kk

T

k d
gdg

d

dgg
g

gggdg





















+

−

+−
++

++

+

+++++ 2

11

112

1

11111
||||

||||

||||
||||

=


. 

Therefore 

 k
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T

k

k

k

T
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T

k

k

T

k
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T

k d
gdg

d

dggg
gg

gdg





















+

−

+−
++

+++

++

+++ 2

11

1112

11

2

111
||||

||||

||||
||||

||||=


,

 

from which we get 
2
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1112

11

2

111
||||

||||

||||
||||

||||=
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T

k

k

kk

T
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T

k
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T

k
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T

k
gdg

d

ddggg
dgg

gdg
+

−

+−
++

+++

++

+++


 

or 

 
2

11

111

2

11

2

111
||||||||

||||

||||||||||||||||

||||||||||||

||||
kkk

k

kkkkk

kkk
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T
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gdg

d
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dgg
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+

−

+−
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+++
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
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2

112

1
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||||||||||||||||||||||||||||
||||
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kkkkkkk
k

gdg

dgggdgg
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−
+−
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+++++
+


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This simplifies to 

 
2
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3

12
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||||||||||||

||||||||||||||||
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
  

which implies that       
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 2

111 |||| +++ − kk

T

k gdg .  

Therefore, condition (8)  is satisfied for 1k  

To prove (9)  we have: when 0=k : 

11 = ++ − kk gd  

1010 = ++ −gd  

11 = gd −  

||||=|||| 11 gd  

When 1k , we have: k

kk

T

k

k

k

T

kx

k

kk d
gdg

d

dgg
g

gd





















+

−

+−
++

++

+

++ 2

11

112

1

11
||||

||||

||||
||||

=


 

  

  
( ) 














+

−
+−

++

+++

++ 2

11

11

2

1

11
||||||||

||||||||||||
=

kk

T

kk

kk

T

kkkkk

kk
gdgd

ddggddg
gd


, 

  
( )

||
||||||||
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Therefore 
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Hence 

|||||||| 11 ++  kk gd                                                                                           (10)        

Global Convergence Properties 

The following assumptions and lemma are needed to investigate the global convergence of 

Algorithm 2.1 

Assumption A (Mohamed et al., 2016) 

The level set }()(|{= 0xfxfx n R  is bounded, where 0x  is the starting point. 

Assumption B (Mohamed et al., 2016) 

In some neighborhood N  of  , the objective function is continuously differentiable and its 

gradient is lipschitz continuous, namely there exist a constant 0>L  such that 

||||||)()(|| yxLygxg −−  for any Nyx , . 

We now conclude the proof of global convergence by showing that Algorithm 2.1 satisfies the 

Zoutendijk condition (Zoutendijk, 1970) and that  0||=||lim k
k

g
→

. We achieve these by proving 

Lemma 2.2 and Theorem 2.1 

Lemma 2.2  (Zoutendijk condition) 

Suppose Assumptions A and B hold. Consider any conjugate gradient method of the form  

 kkkk dxx ++ =1  and 




+−

−

− 1.,

0;=,
=

1 kdg

kg
d

kkk
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 , 

where kd  satisfies 0<k

T

k dg  for all k  and k  is obtained by the strong Wolfe-Powell line 

search 
k

T

kkkkkk dgxfdxf  ++ )()(  and 
k

T
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T

kkk dgddxg  + )(  then: 
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Proof: 

From (6)  , 
k
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T

kkk dgddxg  + )( , substracting k

T

k dg  from both sides we obtain:  
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kkk dgdgdgddxg −−+  )( . 
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Therefore: 

 k

T
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T

kkkkkk dgdgdxgdxg −−−+  ||||||)()(|| , 

 k

T

kkkkkk dgdxgdxg 1)(||||||)()(|| +−−+  . 

By Assumption A, we have:  

 k

T

kkkk dgddL 1)(|||||||| +−  , 
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Similarly, from (5)   
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kkkkkk dgxfdxf  ++ )()( , 

therefore 

 )()( kkkkk

T

kk dxfxfdg  +−−  (12) 

 And substituting (11)  for k  in (12)  we have:  
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+
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Summing both sides of (13)  over k , we have:  
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and 
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which Implies that : +


<
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)(
2

2

0= k

k
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k

k d

dg
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This completes the proof.  
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Theorem 2.1 

If assumptions A and B are satisfied and the relative sequences of kx , kd , kg  and k  are 

generated by Algorithm 2.1 , then:  

0||=||lim k
k

g
→

. 

Proof: 

Applying the sufficient descent condition (8) on (14)  we obtain:  

 +−
+
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4
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using (9)  , (15)  becomes  
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which implies that 

 0=||||lim
2

k
k

g
→

. 

Hence 

 0||=||lim k
k

g
→

. 

This ends the proof.  

 

3. Result and Discussion 

Computational Consideration 

The results obtained from the solution of some test problems are presented in this section. 

Codes are written in MATLAB R(2007b) and are run on a Windows 10 Operating System with 

Intel(R) Celeron(R) CPU N3060 GHz@1.60  and GB4.00  RAM.  
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Parameters used are: 0.0001= , 0.9=  and 0.5= . Large Scale dimensions of 5000 and 

10000were used. The algorithm stops if either <||)(|| ixg  or the number of iteration is 

greater than 2000, where 
610= − . The numerical results are presented in tables 3.1 and 3.2, 

where   

    • “ALGORITHM 2.1” refers to A Nonlinear Conjugate Gradient Method (With   

      Strong Wolfe-Powell inexact line search)   

    • “ FR ALGORITHM” means Fletcher Reeves Algorithm  

    • “PROBLEM NO.” is computational experiment problem number  

    • “DIM” (n) is the problem dimension  

    • “NI”(k) is the number of iteration  

    • “F(x)” is the function value at the optimum point  

    • “Alpha” ( )  is the step length at the optimum point  

    • “TIME”(t) is the system computational time in seconds 

    • “GNORM” ( |||| ig ) means the norm of g  at any point i   

The following standard problems from (Neculai, 2008), were used to test the performance of 

our new algorithm (Algorithm 2.1) : 

Problem 1 (Extended Block Diagonal BDI Function) (Neculai, 2008) 

  2

212

22
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2
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2
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)1)(exp(2)(=)( iiii

n

i

xxxxxf −−+−− −−  
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Problem 2 (DiagonaL 4 Function) (Neculai, 2008) 
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Problem 3 (Generalize Rosebrock Function) (Neculai, 2008)  

  22

1

1

1=

)(1)(=)( iii

n

i

xxxcxf −+−+

−

  

 Tx 1.2,1]1.2,1,...,[=0 −−  

 100=c  

Problem 4 (Extended Himmelbau Function) (Neculai, 2008)  

  22

212
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2

2

2

2
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xxxxxf  

 Tx ,1][1,1,...,1=0
 

Problem 5 (Diagonal 5 Function) (Neculai, 2008) 
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ii
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i
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Problem 6 (Extended Rosebrock Function) (Neculai, 2008) 
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Problem 7 (Generalize White and Holst Function) (Neculai, 2008) 

  223

1

1

1=

)(1)(=)( iii

n

i

xxxcxf −+−+

−

  

 Tx 1.2,1]1.2,1,...,[=0 −−  

 100=c  

Problem 8 (Extended Quadratic Penalty QPI Function) (Neculai, 2008) 
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 Tx ,1][1,1,...,1=0
 

Problem 9 (Extended Beale Function) (Neculai, 2008) 
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3.2 Computational Results 
 

Table 3.1: Results obtained with the new algorithm (Algorithm 2.1). 

 ALGORITHM 2.1 

PROBLEM NO. DIM 

(n) 

No. of Iterations 

N I 

Function Value 

)(xF  

Alpha ( ) TIME (t) GNORM ( |||| ig ) 

1 5000 60 1.670471e-13 6.250000e-02 1. 816 7.13e-07 

10000 57 6.506764e-15 6.250000e-02 2. 200 2.28e-07 

2 5000 15 6.658698e-16 3.906250e-03 1.676 7.57e-07 

10000 25 6.198532e-16 3.906250e-03 2.570 7.31e-07 

3 5000 36 3.986624e+00 9.765625e-04 1.710 9.03e-07 

10000 36 3.986624e+00 9.765625e-04 2.296 9.03e-07 

4 5000 27 1.166950e-15 1.562500e-02 1.162 4.34e-07 

10000 27 2.333900e-15 1.562500e-02 1.398 6.13e-07 

5 5000 13 5.000000e+03 1.000000e+00 0.546 6.91e-07 

10000 13 1.000000e+04 1.000000e+00 0.595 9.77e-07 

6 5000 99 2.923226e-16 1.953125e-03 3.826 7.52e-07 

10000 97 3.584847e-17 1.953125e-03 4.626 5.24e-07 

7 5000 215 4.041508e-16 4.882813e-04 10.694 4.49e-07 

10000 215 4.041508e-16 4.882813e-04 17.915 4.49e-07 

8 5000 2000 2.060031e+04 6.938894e-18 241.029 3.15e+00 

10000 2000 4.000010e+04 6.938894e-18 390.136 1.41e+00 

9 5000 102 1.709004e-13 3.125000e-02 9.169 7.29e-07 

10000 130 3.620310e-13 3.125000e-02 20.406 6.54e-07 
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        Table 3.2: Results obtained with Fletcher Reeves Algorithm. 

 Fletcher Reeves (FR)  Algorithm 

PROBLEM NO. DIM 

(n) 

No. of Iterations 

N I 

Function Value 

)(xF  

Alpha ( ) TIME (t) GNORM ( |||| ig ) 

1 5000 2000 5.240000e-02 7.630000e-06 50.062 8.35e-01 

10000 97 5.190021e-14 6.250000e-02 4.157 6.28e-07 

2 5000 25 1.201032e-15 3.906250e-03 1.237 9.73e-07 

10000 27 4.010644e-16 7.806250e-03 0.700 5.64e-07 

3 5000 82 3.986624e+00 2.440025e-04 1.826 5.47e-07 

10000 82 3.986624e+00 2.440025e-04 2.930 5.47e-07 

4 5000 80 1.140343e-14 7.806250e-03 1.657 8.96e-07 

10000 89 8.270451e-15 1.561250e-02 2.675 6.98e-07 

5 5000 97 5.000000e+03 1.000000e+00 6.486 2.50e-07 

10000 97 1.000000e+04 1.000000e+00 10.117 3.53e-07 

6 5000 2000 3.440204e+04 4.241054e-22 71.097 4.04e+04 

10000 2000 6.895641e+04 1.685527e-21 115.703 5.70e+04 

7 5000 2000 7.380303e-05 1.530960e-05 63.883 4.80e-01 

10000 2000 7.380353e-05 1.530960e-05 90.060 4.80e-01 

8 5000 2000 2.023659e+04 6.780418e-21 271.726 2.18e+00 

10000 2000 4.038028e+04 6.780418e-21 418.847 6.07e+00 

9 5000 129 1.709445e-13 1.562500e-02 4.587 3.23e-07 

10000 141 3.670684e-13 6.250000e-02 5.220 7.80e-07 

 

 

3.3 Discussion on Numerical Results 

From the results presented in tables 3.1 and 3.2, it can be observed that the new nonlinear 

conjugate gradient algorithm 2.1 proposed in this work is more effective than the Fletcher-

Reeves algorithm in terms of lower number of iterations and reduced computational time. Also 

table 3.2 shows that the Fletcher-Reeves algorithm did not solve problems 6, 7, and 8 

completely but stopped because it has performed the maximum number of iterations.  
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4. Conclusion  

A nonlinear conjugate gradient algorithm with the strong Wolfe-Powell inexact line search 

technique, for solving large scale optimization problems was presented. The algorithm was 

shown to possess the sufficient descent property and to be globally convergent. Computational 

experiments illustrated that algorithm 2.1 presented in this work is efficient and performs better 

than the Fletcher Reeves algorithm. Hence the new algorithm is recommended for the solution 

of nonlinear large scale optimization problems. 
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