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Abstract 

In any investigation where numerical values are obtained, it is always desirable to have a typical value for all the 

observations, and the mean as a measure of central tendency is commonly used. Reliability of the value of the 

mean is strengthened when a corresponding measure of variation (also known as dispersion) for the data is 

obtained. This paper therefore, presents a study of robustness of some measures of dispersion namely, the 

variance, standard deviation, absolute mean deviation with divisor ‘n’ (AMD(n)), and absolute mean deviation 

with divisor ‘n-1’ (AMD(n-1)). The level of robustness of the measures of dispersion in this paper was facilitated 

by the adoption of simulation technique that utilized the following: small sample sizes; and large sample sizes, 

for both normal and non-normal data sets of different specifications. Overall, the results obtained showed that 

AMD (n-1) gave values that were closest in magnitude to standard deviation. The implication of the findings 

herein is that all the three measures of spread proved to be robust, however AMD (n-1) is a better substitute for 

the standard deviation. 

 

Keyword: Mean; Standard Deviation; Absolute Mean Deviation; Normal and Non-Normal Data; Data 

Simulation.  

 

1. Introduction 

Several situations exist in life, that as a matter of necessity have to be investigated. Meanwhile 

in the course of conducting an investigation, data are collected and subsequently analysed, for 

the purpose of eliciting useful information on human existence for the purpose of charting a 

rewarding course of action to mitigate existing challenges or to sustain the existing level of 

comfort or satisfaction. Data can be obtained from several sources, few of which are Official 

Research, Business Activity Records, census statistical survey and planned experiment. 
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Therefore, for any set of data collected in respect of an investigation, it is paramount to obtain 

a numerical value that utilizes all the available data points in terms of the average or the centre 

of the data. As much as it is desirable to have a measure of the average of the entire data set, it 

is also paramount to have a measure of dispersion or spread of the observations that are 

collected on the basis of the effort of the investigator. This is expected to be a desirable 

indicator of establishing whether or not the resulting measure of average gives a value around 

which all values are closely clustered or otherwise.  

One of the most commonly used measures of spread is the variance. This is due to the fact that 

the variance, unlike several other methods of spread utilizes all the data points. Meanwhile, 

standard deviation, which is also commonly used, is the positive radical of the variance 

(McDonald, 2014; Rodrigues, 2017). Two other measures of spread that possess the property 

of utilizing all the data points are considered in this study for the purpose of evaluating them 

in different standard settings that are expressed to satisfy the following: normality and non-

normality; and small and large sample sizes. Several other measures of spread failed to possess 

this unique feature (Berry et al., 2019). 

Absolute mean deviation is a measure of dispersion that utilises all the observations for its 

computation, and commonly used equation uses the divisor ‘n’, see for example Berry et al. 

(2019), Johnson et al. (2007) and Keller et al. (2003). However, Adeleke (2006) gave the 

formula for calculating absolute mean deviation with the divisor ‘n-1’. Meanwhile, Adegboye 

(2009) asserted that the formula for calculating absolute mean deviation should have the 

median as the reference statistic in contrast to the mean see also Hana et al. (2017) and Nahmias 

and Olsen (2015). The foregoing varied assertions by different authors may be unarguably due 

to the fact that absolute mean deviation utilises all observations, in contrast to several other 

measures of dispersion that are either of the absolute or relative type. 

 

2. Materials and Methods 

The work focuses on the assessment of three measures of variation that are commonly used in 

statistics to describe data. These measures are variance, standard deviation and mean absolute 

deviation, see for example El-Amir (2012), Sharma (2007) and Wasserman (2017). These three 

measures were evaluated via simulation studies, using R software, by varying the sample sizes 

with the imposition of the normality and non-normality conditions (Horton et al., 2015; R Core 

Team, 2019). The three measures considered were computed using the formulae given below.  
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The variance is computed using the definition form, which is expressed as follows: 

 
1

𝑛−1
∑ (𝑥𝑖 − �̅�)2𝑛

𝑖=1 . (1) 

The standard deviation is computed as:  

 √
1

𝑛−1
∑ (𝑥𝑖 − �̅�)2𝑛

𝑖=1  . (2) 

The mean absolute deviation is: 

 
1

𝑛
∑ |𝑥𝑖 − �̅�|𝑛

𝑖=1 . (3) 

Finally, the mean absolute deviation, with divisor ‘n-1’ is computed as follows: 

 
1

𝑛−1
∑ |𝑥𝑖 − �̅�|𝑛

𝑖=1 . (4) 

Samples with respectively, small and large sample sizes were considered in the study, with the 

focus of investigating the performance as well as reliability of the different scaled forms of the 

deviation of each of the observations from the mean value, in preference to the standard 

deviation. The scaling factor of concern in this study, have two distinct forms, which are, ‘n’, 

and ‘n-1’. In statistical theory, when the sample size is quite large, the difference between any 

two statistics that are with the divisors ‘n’ and ‘n-1’ approaches zero. 

It is of note that the scaling factor n-1, when ‘n-1’ is used as the denominator term in equation 

(4) above, gives one form of the absolute mean deviation, while the second form of the absolute 

mean deviation has the divisor ‘n’ as in equation (3) 

Further, the denominator term of equation (1) above, provides an estimate that is unbiased of 

the population variance in contrast to the use of ̀ n` as the denominator which results in a biased 

estimator. 

Preference for denominator “n-1” for the variance instead of ‘n’ is premised on the statistical 

property of unbiasedness. In fact, further justification of the denominator “n-1” is also anchored 

on the theory associated with the determination of degrees of freedom. The theory in the 

foregoing concerns the fact that the sample mean is obtained and utilized in the computation 

of the measures of variation that are considered in this paper. The fact that the mean has to be 

obtained prior to the calculation of a statistic will attract a penalty of a single degree of freedom.  
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Definition: Unbiased Estimator  

Suppose a parameter 𝜃 has an estimator 𝑇, then 𝑇 is said to be unbiased if E(𝑇) = 𝜃. On the 

other hand, if the estimator 𝑇 for a parameter 𝜃 is biased, the expression E(𝑇) − 𝜃 will be non-

zero (Calonico et al., 2018). Overall or be that as it may, there are several other properties that 

an estimator should satisfy to be preferred to the other. 

Standard deviation is more amenable to rigorous or rather higher statistical treatment. Ease of 

computation has received less attention with the unhindered availability of standard statistical 

packages that can execute complex statistical computations faster than ever imagined. 

However, it might be s problematic estimator for skewed data where few observations are 

extreme (Leys et al., 2013). 

 

3. Result and Discussion 

Data simulation was executed with the use of R-Statistical package. Samples of different sizes 

and under different configurations of normality and non-normality were specified and 

subsequently implemented 1000 times, in each of the cases.  

3.1 Experimental Results obtained from Simulated Data 

Tables 1 through 8 presented the summary, with the criteria of mean, minimum and maximum 

values for each of the 1000 trials of each measure of dispersion in this paper, with the different 

sample sizes. The mean gives an insight about how close the estimated value are to the true 

value of the measures. In addition, a measure of the precision of the four measure is examined 

using the range. The entries in the tables are indeed the summary of massive results of the 

simulation experiments. In particular, standard normal, that is Normal (0, 1), Normal (2, 4), 

Exponential (1) and Exponential (0.5) distributions were considered. 

The true values of the variance for the non-normal distributions are 1 and 4 for the Exponential 

(1) and Exponential (0.5) respectively. These non-normal distributions are positively skewed 

and therefore, will have large extreme observations. As a result, measures, such as variance 

and standard error is often not useful as it is highly influenced by the extreme observations 

(Aslam et al., 2019; Gorard, 2015; Mohini and Prajakt, 2012; Zhang, 2016). 
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Table 1: Small sample size using a standard normal distribution. 

 

Measures 

Sample size 

5 10 15 20 25 

 

Variance 

Mean 0.9794 0.9902 0.991 0.9897 1.0054 

Min 0.0338 0.246 0.0807 0.3077 0.3514 

Max 5.3496 3.165 2.6558 2.3966 2.1221 

Standard 

Deviation 

Mean 0.9293 0.9701 0.9775 0.9823 0.9919 

Min 0.184 0.496 0.284 0.5547 0.5928 

Max 2.3129 1.7791 1.6297 1.5481 1.4567 

Mean 

absolute 

deviation 

Mean 0.7037 0.7566 0.7665 0.7757 0.7836 

Min 0.1371 0.3158 0.2355 0.4239 0.4361 

Max 1.8348 1.5233 1.2958 1.2315 1.1614 

Mean 

absolute 

dev (n-1) 

Mean 0.8796 0.8407 0.8213 0.8166 0.8162 

Min 0.1714 0.3509 0.2523 0.4462 0.4543 

Max 2.2935 1.6926 1.3884 1.2964 1.2098 

 

Evaluation of measures of spread for standard normal distributed data sets with varying sample 

sizes of 5, 10, 15, 20, and 25 and keeping track of the summary values, using mean, minimum 

and maximum values. 

Table 2: Large sample size using a standard normal distribution. 

 

Measures 

Sample size 

30 40 50 60 70 80 90 100 

 

Variance 

Mean 1.0028 0.9922 0.9918 1.0028 1.0027 0.9971 0.9912 0.9921 

Min 0.3467 0.392 0.4599 0.5552 0.5525 0.6195 0.5757 0.6104 

Max 2.0877 1.7868 1.8217 1.6242 1.5601 1.4896 1.504 1.4493 

Standard 

Deviation 

Mean 0.993 0.9897 0.9904 0.9973 0.9978 0.9954 0.9928 0.9935 

Min 0.5888 0.6261 0.6782 0.7451 0.7433 0.7871 0.7588 0.7813 

Max 1.4449 1.3367 1.3497 1.2744 1.2491 1.2205 1.2264 1.2039 

Mean 

absolute 

deviation 

Mean 0.7866 0.7857 0.7868 0.7921 0.7949 0.7918 0.7895 0.7909 

Min 0.4778 0.4745 0.5004 0.5664 0.5714 0.6206 0.5975 0.6299 

Max 1.2409 1.0809 1.063 1.0627 1.0406 0.9896 0.9815 0.9939 

Mean 

absolute 

dev (n-1) 

Mean 0.8137 0.8059 0.8028 0.8055 0.8064 0.8018 0.7984 0.7989 

Min 0.4943 0.4867 0.5106 0.576 0.5797 0.6285 0.6042 0.6362 

Max 1.2836 1.1086 1.0847 1.0808 1.0557 1.0022 0.9925 1.004 

 

Evaluation of measures of spread for standard normal distributed data sets with varying sample 

sizes of 30, 40, 50, 60, 70, 80, 90, and 100 and keeping track of the summary values, using 

mean, minimum and maximum values. 
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Table 3: Small sample size using an Exponential (1) distribution. 

 

Measures 

Sample size 

5 10 15 20 25 

 

Variance 

Mean 0.9252 1.0182 0.9859 1.0509 0.9968 

Min 0.0048 0.0577 0.0826 0.1311 0.1787 

Max 16.2239 11.0199 5.4426 6.4412 3.9689 

Standard 

Deviation 

Mean 0.8372 0.9313 0.942 0.9835 0.964 

Min 0.0694 0.2403 0.2873 0.3621 0.4227 

Max 4.0279 3.3196 2.3329 2.5379 1.9922 

Mean 

absolute 

deviation 

Mean 0.6323 0.7036 0.7094 0.7322 0.7203 

Min 0.0582 0.1689 0.1991 0.2791 0.3168 

Max 3.5036 2.0494 1.7429 1.5637 1.445 

Mean 

absolute 

dev (n-1) 

Mean 0.7903 0.7818 0.7601 0.7707 0.7503 

Min 0.0728 0.1876 0.2133 0.2938 0.33 

Max 4.3796 2.2771 1.8674 1.646 1.5052 

 

Evaluation of measures of spread for exponential (1) distributed data sets with varying sample 

sizes of 5, 10, 15, 20, and 25 and keeping track of the summary values, using mean, minimum 

and maximum values. 

 

Table 4: Large sample size using an Exponential (1) distribution. 

 

Measures 

Sample size 

30 40 50 60 70 80 90 100 

 

Variance 

Mean 0.9961 0.997 0.9836 1.006 1.0012 1.02 1.005 0.9949 

Min 0.2134 0.2187 0.317 0.3636 0.2535 0.3068 0.3507 0.4503 

Max 4.6852 4.1661 3.475 2.4265 3.0528 2.5295 2.7839 2.551 

Standard 

Deviation 

Mean 0.9695 0.977 0.9735 0.989 0.986 0.9978 0.9922 0.9881 

Min 0.462 0.4677 0.563 0.603 0.5035 0.5539 0.5922 0.671 

Max 2.1645 2.0411 1.8641 1.5577 1.7472 1.5904 1.6685 1.5972 

Mean 

absolute 

deviation 

Mean 0.7224 0.7271 0.7246 0.7325 0.7297 0.7368 0.7335 0.7313 

Min 0.369 0.3606 0.4081 0.4042 0.4077 0.4477 0.4746 0.5148 

Max 1.3092 1.4932 1.2324 1.1143 1.2814 1.0821 1.0626 1.1446 

Mean 

absolute 

dev (n-1) 

Mean 0.7473 0.7457 0.7394 0.7449 0.7403 0.7461 0.7418 0.7387 

Min 0.3817 0.3699 0.4165 0.411 0.4136 0.4533 0.4799 0.52 

Max 1.3543 1.5315 1.2576 1.1332 1.3 1.0958 1.0745 1.1561 

 

Evaluation of measures of spread for exponential (1) distributed data sets with varying sample 

sizes of 30, 40, 50, 60, 70, 80, 90, and 100 and keeping track of the summary values, using 

mean, minimum and maximum values. 

 

 



Adeleke et al.                              ILORIN JOURNAL OF SCIENCE 

7 
 

 

 

Table 5: Small sample size using a Normal (1, 4) distribution. 

 

Measures 

Sample size 

5 10 15 20 25 

 

Variance 

Mean 4.0826 4.0189 3.9985 4.0447 4.028 

Min 0.019 0.249 0.9689 1.1985 1.1913 

Max 19.3846 12.7059 11.6355 9.4195 9.3713 

Standard 

Deviation 

Mean 1.9003 1.9503 1.9663 1.9851 1.9854 

Min 0.138 0.499 0.9843 1.0948 1.0915 

Max 4.4028 3.5645 3.4111 3.0691 3.0613 

Mean 

absolute 

deviation 

Mean 1.4402 1.5175 1.5428 1.5667 1.5691 

Min 0.1179 0.3931 0.8164 0.8014 0.7515 

Max 3.055 2.9475 2.4821 2.4916 2.5185 

Mean 

absolute 

dev (n-1) 

Mean 1.8003 1.6861 1.653 1.6492 1.6344 

Min 0.1473 0.4368 0.8747 0.8436 0.7828 

Max 3.8187 3.275 2.6594 2.6227 2.6234 

 

Evaluation of measures of spread for normal (1, 4) distributed data sets with varying sample 

sizes of 5, 10, 15, 20, and 25 and keeping track of the summary values, using mean, minimum 

and maximum values. 

 

Table 6: Large sample size using a Normal (1, 4) distribution. 

 

Measures 

Sample size 

30 40 50 60 70 80 90 100 

 

Variance 

Mean 4.0362 3.9911 3.9867 4.017 3.9441 4.0024 3.998 3.9891 

Min 1.2938 1.6372 1.9494 2.0453 1.9714 2.2732 2.6117 2.2936 

Max 8.6679 7.208 7.5413 6.7388 6.8742 6.2846 6.7128 5.9889 

Standard 

Deviation 

Mean 1.9928 1.9858 1.9864 1.9957 1.9784 1.9941 1.9939 1.9922 

Min 1.1375 1.2795 1.3962 1.4302 1.4041 1.5077 1.6161 1.5145 

Max 2.9441 2.6848 2.7461 2.5959 2.6219 2.5069 2.5909 2.4472 

Mean 

absolute 

deviation 

Mean 1.5779 1.5767 1.579 1.5846 1.5718 1.586 1.5855 1.5843 

Min 0.906 1.0316 1.1009 1.0477 1.1019 1.172 1.2127 1.221 

Max 2.3729 2.1429 2.1981 2.1521 2.158 2.0324 2.1194 1.9932 

Mean 

absolute 

dev (n-1) 

Mean 1.6324 1.6171 1.6112 1.6115 1.5946 1.606 1.6033 1.6003 

Min 0.9373 1.058 1.1234 1.0655 1.1178 1.1869 1.2263 1.2334 

Max 2.4547 2.1979 2.243 2.1886 2.1893 2.0581 2.1433 2.0133 

 

Evaluation of measures of spread for  normal (1, 4) distributed data sets varying sample sizes 

of  30, 40, 50, 60, 70, 80, 90, and 100 and keeping track of the summary values, using mean, 

minimum and maximum values. 

 

 



Adeleke et al.                              ILORIN JOURNAL OF SCIENCE 

8 
 

Table 7: Small sample size using an Exponential (0.5) distribution. 

 

Measures 

Sample size 

5 10 15 20 25 

 

Variance 

Mean 4.2063 3.7769 4.0152 3.903 3.9957 

Min 0.0123 0.2009 0.3298 0.565 0.6466 

Max 53.6765 41.8969 23.1786 22.1632 32.5796 

Standard 

deviation 

Mean 1.7618 1.7955 1.8993 1.888 1.928 

Min 0.1111 0.4482 0.5743 0.7517 0.8041 

Max 7.3264 6.4728 4.8144 4.7078 5.7079 

Mean 

absolute 

deviation 

Mean 1.3338 1.3561 1.4222 1.4173 1.4515 

Min 0.0818 0.294 0.4662 0.5128 0.654 

Max 5.1178 4.717 3.4867 2.8583 2.9348 

Mean 

absolute 

dev (n-1) 

Mean 1.6672 1.5068 1.5238 1.4919 1.512 

Min 0.1022 0.3266 0.4995 0.5398 0.6812 

Max 6.3972 5.2411 3.7357 3.0088 3.0571 

 

Evaluation of measures of spread for exponential (0.5) distributed data sets varying sample 

sizes of 5, 10, 15, 20, and 25 and keeping track of the summary values, using mean, minimum 

and maximum values. 

 

Table 8: Large sample size using an Exponential (0.5) distribution. 

 

Measures 

Sample size 

30 40 50 60 70 80 90 100 

 

Variance 

Mean 3.9261 4.1234 4.0488 4.0447 3.9621 3.9673 4.0117 3.958 

Min 0.4797 0.7889 0.9667 1.3309 1.5155 1.3625 1.6394 1.5873 

Max 13.5184 19.545 15.725 10.631 10.935 10.599 8.6996 11.136 

Standard 

Deviation 

Mean 1.9276 1.9784 1.978 1.9801 1.9645 1.9682 1.981 1.9706 

Min 0.6926 0.8882 0.9832 1.1536 1.2311 1.1672 1.2804 1.2599 

Max 3.6767 4.421 3.9655 3.2605 3.3068 3.2556 2.9495 3.337 

Mean 

absolute 

deviation 

Mean 1.4346 1.4679 1.4645 1.4654 1.4581 1.4554 1.4639 1.4609 

Min 0.5697 0.7027 0.8022 0.9049 0.9354 0.9108 0.9738 0.99 

Max 2.8423 2.7744 2.249 2.2119 2.2666 2.4418 2.1385 2.0318 

Mean 

absolute 

dev (n-1) 

Mean 1.4841 1.5055 1.4943 1.4903 1.4792 1.4738 1.4803 1.4757 

Min 0.5893 0.7207 0.8186 0.9203 0.949 0.9223 0.9847 1.0000 

Max 2.9403 2.8455 2.2949 2.2494 2.2995 2.4728 2.1625 2.0523 

 

Evaluation of measures of spread for exponential (0.5) distributed data sets varying sample 

sizes of 30, 40, 50, 60, 70, 80, 90, and 100 and keeping track of the summary values, using 

mean, minimum and maximum values. 
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3.2 Discussion of Results 

The results obtained in this paper covered the following settings: small sample size with 

standard normal, Exponential (1), Normal (1, 4), and Exponential (0.5); and large sample size 

with standard normal, Exponential (1), Normal (1, 4), and Exponential (0.5). 

Results in column 1 of Table 1 indicate the following, for 1000 samples of size 5;  the mean of 

the variances was 0.9794, while the minimum and maximum variances were 0.0338 and 

5.3496; the mean of the standard deviation was 0.9293, while the minimum and maximum 

standard deviation were 0.184 and 2.3129; the mean of the mean deviation with the divisor ‘n’ 

was 0.7037, while the corresponding minimum and maximum values  were 0.1371 and 1.8348; 

and the mean of the mean absolute deviation was 0.8796, while the corresponding minimum 

and maximum values  were 0.1714 and 2.2935. All other entries in Table 1, as well as the 

entries in Tables 2 through 8, have similar interpretations.  

In all the tables, it was observed that the mean estimate of variances and the corresponding 

standard deviations were close to the true value. Moreover, the values were closer to the true 

values and more precise as the sample size increases. 

For the non-normal distributions, the variability of the estimates is higher compared to the 

normal distributions, as evident from the range, which is the difference between minimum and 

maximum values. This is in line with the knowledge that for skewed distribution, the standard 

deviation might not be a valid measure of dispersion. However, this did not alter the trend of 

the highest value, for the standard deviation followed by AMD(n-1), with the least value for 

AMD(n). 

The implication of the foregoing interpretations is that the values obtained for the standard 

deviation, each of which was obtained as a positive radical of the variance, had the 

corresponding values obtained in respect of the absolute mean deviation with the divisor ‘n-1’ 

as the next lower values in each of the three categories of the mean, minimum and maximum 

values. Hence, the absolute mean deviation with the divisor ‘n-1’ is preferable to the absolute 

mean deviation with the divisor ‘n’ as a valid substitute of the standard deviation. 

 

4. Conclusion 

This paper concluded that, with all the configurations considered in respect of sample size, 

normality and non-normality of data sets, the performance of the three measures of dispersion 
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were found to be consistent, in the magnitude recorded by each of them. Absolute mean 

deviation with the divisor ‘n-1’, that is AMD (n-1), is therefore recommended as a valid 

substitute for the standard deviation in preference to the AMD (n) even for non-normal 

distribution where the standard deviation is highly affected by extreme observations. 
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