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Abstract 

Based on the defects in the two existing metrics, namely, the performance profiling, and a device which adapted the 

descent condition to the Cauchy-Schwartz inequality, another metric, the coefficient in the sufficient descent 

condition, is proposed for utilization. The proposed metric can be obtained by the use of practical computations with 

the CG algorithms.   
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1. Introduction 

Advances in science and technology has given rise to integrated or large-scale systems for the enhancement 

of human life. An important class of these systems evolve as large-scale nonlinear optimization problems 

which do arise in many sectors such as the telecommunication, energy and manufacturing segments, just to 

name a few. As a result of the dominant position occupied by these sectors in the modern society, there is 

an intensive search for accurate, reliable and fast methods of solving the problems arising therefrom.   

The Conjugate Gradient Method (CGM) is preferred to other methods in solving large-scale nonlinear 

optimization problems as a result of the simplicity of its iterations and its very low memory requirements, 

Wei et al. (2006), Shi and Guo (2008) and Dong et al. (2015a). Even with the CGM, the quest for improved 

methods is unabated as a result of rapid evolution of more sophisticated systems. As a result, the CGM has 

been a subject of intensive study in an attempt to develop methods that are very efficient. Thus, there is a 

need for appropriate tools to assess efficiency of CGMs, especially the new ones. 

There are in use two efficiency measures for CGMs, namely, the performance profiling software due to 

Dolan and More (2002), and a metric devised by Hager and Zhang (2005) adapting the descent condition 

to the Cauchy-Schwartz inequality.  

Assessing computational performance of CGMs by profiling and the Cauchy-Schwartz inequality-based 

techniques are fraught with some anomalies. The former suffers from being dependent on some features of 

the test problems, see Bamigbola (2020). In the same vein, the latter lacks the desired consistency and 

reliability, as it can yield different efficiency metric values even for the same CGM, see Okundalaye (2015). 

There is an efficiency metric in-built in the CGM known as the sufficient descent condition. This device 

is designed to determine the degree of reduction in the value of an objective function, see Babaie-Kafaki 

and Reza (2014), and as well measure the convergence of the method. In order to take care of the 

deficiencies associated with performance profiling and the analytical device of Hager and Zhang, the 

coefficient in the sufficient descent condition is proposed as a metric for assessment of computational 

performance of CGMs. The parameter in the sufficient descent condition is the most appropriate metric 

for efficiency of CGMs, because the CGM itself is an iterative procedure for which convergence is of 

utmost concern. Furthermore, the parameter in the sufficient descent condition can easily be determined 

by using the practical computations obtained through the use of the algorithm of the CGM. 

 

2. Conjugate Gradient Method 

The CG method is a computational scheme for solving the unconstrained minimization problem:   

 Minimize 𝑓(𝑥), 𝑥 ∈ 𝑅n,   …     (1)  

where Rn is an n-dimensional Euclidean space and f: Rn  → R is assumed to be in 𝐶1(ℝ𝑛).  

The CGM was originally devised by Hestenes and Stiefel (1952) for the iterative solution of linear 

algebraic equations. An extension into the Hilbert space setting was given in Hayes (1954). A new 

dimension was introduced by Fletcher and Reeves (1964) by its application to nonlinear equations. The 

doctoral thesis of Daniel (1965) threw more light into further theoretical applicability of the method. 

Shamamskii (1962) 
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considered some of the basic convergence theorems for the method.  Presently, the method has become an 

area of intense research.     The following publications are cited to illustrate the significant contributions 

made in the area: Guoyin et al. (2007), Andrei (2008a, 2013), Dong et al. (2015b) and Baluch (2017).  

When the CGM is used for minimizing non-quadratic objective functions, the method is known as a 

nonlinear CGM (Sanmitias and Vercher, 1988). A nonlinear CGM generates a sequence {𝑥𝑘} using an 

iterative scheme:  

𝑥𝑘+1 = 𝑥𝑘 + 𝛼𝑘 𝑑𝑘, 𝑘 = 0, 1, 2, …    …    (2)  

where 𝑥0∈ 𝑅𝑛 is an initial point, αk, the step size at iteration k, is such that  

𝛼𝑘  =  𝑎𝑟𝑔𝑚𝑖𝑛 𝑓(𝑥𝑘 +  𝛼𝑑𝑘),              𝛼 ≥  0  …                                      (3)  

dk is the search direction given by  

𝑑𝑘 {
−𝑔𝑘                      if 𝑘 =  0 

−𝑔𝑘  +  𝛽𝑘d𝑘−1  if 𝑘 ≥  1 
   …                  (4)  

in which gk = ∇fk and 𝛽𝑘 is a scalar known as the CG update parameter. Different choices of the update 

parameter result in different CG algorithms (Zhang and Zhou, 2008). 

In a survey of the CG method, Andrei (2008b) identified as many as 40 CG algorithms defined by 

different expressions of  that are used for nonlinear optimization. With new variants of the classical and 

hybrid CG algorithms appearing very frequently in literature, the number of CG algorithms available by 

now may have quadrupled the initial figure. 

 

3. CGM Efficiency Metrics 

 From the available literature, there are two major approaches used for assessing the efficiency of CGMs. 

These are as discussed below. 

3.1 Performance Profile 

The only approach appearing in the literature in the context of the ensuing discussion is the performance 

profiling devised by Dolan and More (2002) as a tool for benchmarking and comparing optimization 

software using distribution functions. However, the tool finds ready use in assessing performance of 

computational methods using the number of test problems a computational method can solve for the metric. 

The performance profiling procedure is specified as follows: Given a set 𝒫 of np problems and a set S of ns 

methods, denote by tp,s, the number of iterations, function/gradient evaluations or CPU time required to 

solve problem p ∈ P by method s ∈ S. With this, a performance between the methods is defined based on 

the ratio  

𝑟𝑝,𝑠 =
𝑡𝑝,𝑠

min {𝑡𝑝,𝑖 :1≤𝑖≤ 𝑛𝑠}
, and a performance profile for each method s is defined by the probability 

 𝜔𝑠(𝜏) =
1

𝑛𝑝
𝑠𝑖𝑧𝑒{𝑝: 1 ≤ 𝑝 ≤ 𝑛𝑝, ln(𝑟𝑝,𝑠) ≤ 𝜏, 𝜏 ≥ 0}. 

   For each method, the fraction P(𝑟𝑝,𝑠 ≤ 𝜏 ) of the problems for which the method is within a factor 𝜏 of the 

best time was plotted. The left side of the profile (figure) gives the percentage of the test problems for which 

a method is the fastest; the right side gives the percentage of the test problems successfully solved by each 

of the methods. The top curve is the method that solved the most problems in a time that is within a factor 

𝜏 of the best time. 

Dolan and More’s performance profiling is dependent on a number of extraneous factors such as the number 

and level of difficulty of the test problems used, as well as the tolerance level set for convergence of the 

problems, see Table 1 in the Appendix. 

Ideally, all available problems on an aspect of the computation should be in the set of test problems. But 

this is not so most of the times, as the sample of the test problems utilized for the computational exercise is 

often not representative of the population of all the problems. In this case, the outcome of the efficiency 

assessment could be said to be not statistically valid. 

The efficiency measures provided by the Dolan and More’s software can be a true measure of computational 

performance if the sampling procedure for the test problems is statistically valid, and the generated 

performance profile can as well offer useful information for convergence analysis of the method. 

 

3.2 Analytical Measure of CGM Efficiency 

The means of efficiency determination proposed in Hager and Zhang (2005, pg. 172) through the use of the 

Cauchy-Schwartz inequality is herein referred to as an analytical measuring device. Precisely, this 

efficiency metric is determined from the expression for the descent property, i.e.,  

𝑔𝑘
𝑇𝑑𝑘 = −‖𝑔𝑘‖2 + 𝛽𝑘𝑔𝑘

𝑇𝑑𝑘−1,   …     (5)  

(with 𝛽𝑘 being the update parameter), using the Cauchy-Schwartz inequality 

𝑢𝑇𝑣 ≤
1

2
(‖𝑢‖2 + ‖𝑣‖2),     …    (6)  

where u and v are vectors. 
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This measure could have been the most preferred metric for assessing efficiency of CGMs, but for its 

defects, in that different values are obtainable even for the same CGM, see Okundalaye (2015, pp. 30-31). 

In addition, the values of the efficiency metric do not tally with the proportion of test problems solved as 

indicated in the performance profile of the CGM.  

 

3.3 Sufficient Descent Condition 

A CGM is said to satisfy the descent condition if 

𝑔𝑘
𝑇𝑑𝑘 < 0, ∀ 𝑘 = 1, 2, …     …     (7) 

This property assures of reduction in the value of the objective function as the computation progresses. A 

feature more beneficial is that of sufficient descent condition, i.e., 

𝑔𝑘
𝑇𝑑𝑘 ≤ −𝑐𝑔𝑘

𝑇𝑔𝑘, 𝑐 > 0.     …     (8) 

Equation (8) does not only determine the degree of reduction in the value of the objective function, but is 

an indicator of convergence of the CGM. This accounts for why (8) is very fundamental in the proof of 

global convergence of CGMs, see Ahmed and Taher (2021), Masmali, Salleh and Alhawarat (2021) and 

Dehmiry and Kargarfard (2024). 

The coefficient c, in particular, is a measure of the rate of convergence of the CGM. Thus, the coefficient 

in the sufficient descent condition is a good metric for efficiency, and it can be determined from practical 

computations obtained during the implementation of CG algorithms. The efficiency measure obtained this 

way will be useful for analysis and qualitative comparison of CGMs. 

 

4. Concluding Remarks 

The essence of this publication is to expose researchers in the area of CGMs to an important aspect of 

ensuring the need to assess the efficiency of their new methods, as well as to keep them inform of possible 

enhancements in the prescription of another device for carrying out performance evaluation and validation. 

The following are remarks on the essence of the discussion so far: 

i. In addition to the two existing devices for measuring performance of CGMs, namely, the performance 

profiling software of Donlan & More, and Hager and Zhang’s Cauchy-Schwartz inequality-based approach, 

another efficiency metric is being proposed with the use of the coefficient in the sufficient descent 

condition. As far as we know from the available literature, this is the first time the coefficient in the 

sufficient descent condition is being suggested for use as a CGM efficiency measure.  

ii. Both performance profiling and parameter in the sufficient descent condition, which make use of 

practical computations, are more suitable for the CGM, which is computational in nature, than Hager & 

Zhang device which presents itself as an analytical tool. 

iii. The major drawback in the use of performance profiling as an efficiency metric is difficult to overcome 

as the population of test problems keeps increasing with the inclusion of sophisticated and complex 

problems characteristics of the challenges of technology are unabated. 

iv. As a way of correcting the defects in the analytical metric of Hager & Zhang, the existing procedure 

should be reviewed to bring about uniqueness in the coefficients of vectors u and v. 

v. The format for the output of the three (3) metrics can be unified for ease of comparison by normalizing 

the sufficient condition as  

𝑔𝑖
𝑇𝑑𝑖 ≤ −𝑐̅𝑔𝑖

𝑇𝑔𝑖, 0 <  𝑐̅ =
𝑐

max
∀𝑖

𝑐
≤ 1.    …    (9) 
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APPENDIX 

Table 1: Sample of convergence status at the end of computations for selected CGMs 

T
P 

Selected CGMs  
T
P 

Selected CGMs  
T
P 

Selected CGMs 

Dim 
BA
N 

F
R 

P
R 

H
S 

C
D 

D
Y 

L
S 

H
Z 

MM
W DL Dim 

BA
N 

F
R 

P
R 

H
S 

C
D 

D
Y 

L
S 

H
Z 

MM
W 

D
L  Dim 

BA
N 

F
R 

P
R 

H
S 

C
D 

D
Y 

L
S 

H
Z 

MM
W 

D
L 

1 

50 Y D C Y Y D Y D Y D  

1
5 

50 C C C C D C C C D C  

2
9 

50 C C Y C D C C Y D C 

100 Y D C Y Y D Y D Y D  100 C Y C C D Y C Y D C  100 D C Y D D C C Y D C 

500 C D Y C Y D D D D D  500 Y C C Y D C C Y D C  500 D C Y D D C C Y D D 

1000 C D Y C D D D D D D  1000 Y C C Y D C C C D C  1000 D C Y D D Y C Y D C 

5000 Y D Y Y D D D D D D  5000 Y C C Y D C C Y D C  5000 Y D Y D D Y Y Y D D 
1000

0 Y D C Y D D D D D D  

1000
0 Y C C Y D C C Y D C  

1000
0 Y D Y D D Y Y Y D D 

2 

50 D D D D D D D D D D  

1
6 

60 C C C C Y C C C D C  

3
0 

50 D D D D D D D D D D 

100 D D D D D D D D D D  120 C C C C Y C C C D C  100 D D Y D D D D D D D 

500 D D D D D D D D D D  600 C C C C D C C C D C  500 D D D D D D D D D D 

1000 D D D D D D D D D D  1200 C C C C D C C C D C  1000 D D D D D D D D D D 

5000 D D D D D D D D D D  6000 C C C C D C C C D C  5000 D D D D D D D D D D 
1000

0 D C D D D D D D D D  

1200
0 C C C C D C C C D C  

1000
0 D D D D D D D D D D 

3 

50 D D D D D D D D D D  

1
7 

60 D C C C Y C C C D C  

3
1 

50 D C C D Y C C C D D 

100 D D D D D D D D D D  120 C C C C Y D C C D C  100 D C C D Y C C C Y C 

500 D D D D D D D D D D  600 C C C C Y C C C D C  500 C C C D Y C C C D D 

1000 D D D D D D D D D D  1200 C C C C Y C C C D C  1000 D C C D Y C C C D C 

5000 D D D D D D D D D D  6000 C D C C Y C C C Y C  5000 D C C C D C C C D D 
1000

0 D D D D D D D D D D  

1200
0 D D C C D D C C D C  

1000
0 C C C D D C C C D C 

4 

50 C C C C D C C C D C  

1
8 

50 C Y C C D C C C C C  

3
2 

50 D C C C D C C C D D 

100 C C C C Y C C C Y C  100 C Y C C D C C C C C  100 D C C C D C C C D C 

500 C C C C D C C C Y C  500 C Y C C D Y C C C C  500 D C C C D C C Y D C 

1000 C C C C D C C C Y C  1000 C Y C C D Y C C C C  1000 D C C Y D Y C Y D C 

5000 C C C C Y C C C D C  5000 C Y C C D Y C C Y C  5000 D Y Y D D Y C Y D C 
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1000
0 Y C C C D C C C Y C  

1000
0 C Y C C D Y C C D C  

1000
0 D Y Y D D Y Y Y D C 

5 

50 C D D C C C D D D C  

1
9 

50 D D D D D D D D D D  

3
3 

50 D C D D D Y D D D D 

100 C D D C C C D D D C  100 D D D D D D D D D D  100 D C D D D Y D D D D 

500 C D D C C C D D D C  500 D D D D D D D D D D  500 D D D D D D D D D D 

1000 C D D C C C D D D C  1000 D D D D D D D D D D  1000 D D D D D D D D D D 

5000 D D D D C D D D D D  5000 D D D D D D D D D D  5000 D D D D D D D D D D 
1000

0 D D D D C D D D D D  

1000
0 D D D D D D D D D D  

1000
0 D D D D D D D D D D 

6 

50 D D D Y D D Y Y D D  

2
0 

50 D D D D D D D D D D  

3
4 

50 D C C C D C C Y D C 

100 D D Y Y D D Y Y D D  100 D D D D D D D D D D  100 Y C C C D C C Y D D 

500 Y D Y D D D D Y D D  500 D D D D D D D D D D  500 Y C C C D C C C D D 

1000 D D D D D D D D D D  1000 D D D D D D D D D D  1000 Y C C D D C C Y D D 

5000 D D Y D D D Y D D Y  5000 D D D D D D D D D D  5000 Y C C D D C C Y D C 
1000

0 D D Y D D D Y D D D  

1000
0 D D D D D D D D D D  

1000
0 C Y C C D C C Y D D 

7 

50 D D D D D D D D D D  

2
1 

50 C D Y C D C C C D D  

3
5 

50 C C C C Y C C C D C 

100 D D D D D D D D D D  100 C D C D Y C C C D D  100 C C C C Y C C C D C 

500 D D D D D D D D D D  500 C D C C Y C C C D C  500 C C C C D C C C D C 

1000 D D D D D D D D D D  1000 C D C C D D C C D C  1000 D Y C C D C C C D C 

5000 D D D D D D D D D D  5000 C D C C D C C Y D C  5000 Y Y Y C D Y C Y D C 
1000

0 D D D D D D D D D D  

1000
0 C D C C D Y C Y D C  

1000
0 Y Y Y C D Y C C D C 

8 

50 D C C D C C C C D C  

2
2 

50 D C C D Y C C C D D  

3
6 

50 D D D D Y Y D D D C 

100 D C C D C C C C D D  100 D C C D Y C C C D D  100 D D D D Y Y D D D C 

500 D C C D C C C C D C  500 D C C D Y C C C D D  500 D D D D Y Y D D D C 

1000 D C C D C C C C Y C  1000 D C C D Y C C C D D  1000 D D D D Y Y D D D C 

5000 D C Y D C C Y C Y C  5000 D C C D Y C C C D D  5000 D D D D Y Y D D D C 
1000

0 D C Y D Y C Y Y Y C  

1000
0 D C C D Y C C C D D  

1000
0 D D D D Y D D D D C 

9 

50 D Y Y Y D Y Y Y D Y  

2
3 

50 D C C D D C C C D C  

3
7 

50 C C C C Y C C C D C 

100 Y Y Y Y D Y Y Y D Y  100 D D C C D D C C D C  100 C C C C D C C C Y C 

500 D Y Y Y D Y Y Y D Y  500 D D C C D D C C D C  500 D C C C D C C C Y C 
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1000 Y Y Y Y D Y Y Y D Y  1000 D D C C D C C C D C  1000 C C C C Y C C C D C 

5000 Y Y Y Y D Y Y Y D Y  5000 D C C C D C C D D C  5000 Y Y C C Y Y C C Y C 
1000

0 D Y Y Y D Y Y Y D Y  

1000
0 D C C D D D C C D C  

1000
0 Y D C C Y Y C C Y C 

1
0 

50 C C C D C C C C C D  

2
4 

50 D D D D D D D D D D  

3
8 

50 D D C C D C C C D D 

100 C C C D C C C C C D  100 D D D D D D D D D D  100 D C C D D C C C D D 

500 C C C D C C C C C D  500 D D D D D D D D D D  500 Y D C C Y D C C Y D 

1000 C C C D C C C C C D  1000 D D D D D D D D D D  1000 D D C D D D C C D C 

5000 C C C D C C C C C D  5000 D D D D D D D D D D  5000 D D C C D D C C D C 
1000

0 C C C D C C C C C D  

1000
0 D D D D D D D D D D  

1000
0 D D C C D D C C D D 

1
1 

50 D C C D C C C Y D C  

2
5 

50 D D D D D D D D D D  

3
9 

50 D D C D D D D D D D 

100 C C C D C C C Y D C  100 D D D D D D D D D D  100 D D C D D D D D D D 

500 C C C D C C C Y D C  500 D D D D D D D D D D  500 D D C D D D D C D D 

1000 C C C D C C C Y D C  1000 D D D D D D D D D D  1000 D D C D D D D D D D 

5000 C C C D C C C Y D C  5000 D D D D D D D D D D  5000 D D C D D D D C D D 
1000

0 C C C D C C C Y D C  

1000
0 D D D D D D D D D D  

1000
0 D D D D D D D C D D 

1
2 

50 D D D D D D D D D D  

2
6 

60 D D D D D D D D D D  

4
0 

50 C C C C D C Y C D C 

100 D D D D D D D D D D  120 D D D D D D D D D D  100 C C C C D C C C D C 

500 D D D D D D D D D D  600 D D D D D D D D D D  500 C C C C D C C C D C 

1000 D D D D D D D D D D  1200 D D D D D D D D D D  1000 Y C C Y D C C Y D C 

5000 D D D D D D D D D D  6000 D D D D D D D D D D  5000 Y C Y Y D C C Y D C 
1000

0 D D D D D D D D D D  

1200
0 D D D D D D D D D D  

1000
0 Y Y Y Y D Y C Y D C 

1
3 

50 D C C D C C C C Y C  

2
7 

50 D D D D D D D D D C  

4
1 

50 C C C C Y C C C D C 

100 D C C D C C C C D C  100 D D D D D D D D D D  100 C C C C Y C C C D C 

500 D C C D C C C C D C  500 D D D D D D D D D D  500 C C C C Y C C C Y C 

1000 D C C D C C C C D C  1000 D D D D D D D D D C  1000 C Y C C Y C C C Y C 

5000 D C C D C C C Y D C  5000 D D D D D D D D D D  5000 C Y C C Y C C Y Y C 
1000

0 D C C D C C C Y D C  

1000
0 D D D D D D D D D D  

1000
0 C Y C C Y C C Y Y C 

NB: C denotes Convergence D represents Divergence Y stands for Yet to converge. 


