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Abstract 

This article presents a transmission dynamics model and management of avian influenza.  In order to analyze the 

effectiveness of this viral disease, that do occur from animal to human, vaccine, treatment and quarantine were 

used as intervention strategies. The qualitative properties of the model were examined with appropriate 

techniques using the Jacobian determinant, and the effective and basic reproductive ratios were computed using 

the next generation matrix. The bird population was classified into four groups, whereas there were seven 

divisions for people. To comprehend pandemic phenomena and how to regulate them, the dynamics of the model 

were examined. When effectively 𝑅𝑐
𝑏,ℎ < 1, the local stability analysis findings revealed that the DFE is locally 

asymptotically stable. The model, when simulated on different sets of parameter values, demonstrates that using 

the three controls together reduces the infection better    than using either one or a pair of the controls.  
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1. Introduction 

A highly infectious viral infection that mostly affects the respiratory system is avian influenza, generally 
known as the flu. Thousands of people perish worldwide because of this seasonal sickness, which has annual 
outbreaks. There are four different varieties of avian influenza viruses: P, Q, R, and S. P and Q are the ones 
that cause the seasonal flu epidemics in humans; R is extremely uncommon, and produces a mild respiratory 
disease, and is not known to generate epidemics; and S mostly affects cattle. As a result of its extreme 
severity, avian influenza infection has a mortality rate of around 60%, caused a great deal of hospitalizations, 
fatalities, and economic damage. Depending on the kind, the flu in birds might start showing signs and 
symptoms anywhere between two and seven days after infection. 
In humans, influenza virus can cause mild to severe diseases and, in some cases, can result to death, according 
to 2012 report from the CDCP. All or part of the following symptoms are frequently experienced by those who 
have the flu, body pains, headaches, exhaustion (tiredness), and shortness of breath. The isolation and quarantine 
of infected individuals, as well as pharmacological treatments such as the injection of antivirals and vaccinations, 
can be used to prevent or suppress infection [1, 2]. Avoiding the causes of flu exposure is the greatest form of 
defense. Treatments may change depending on the type of avian flu present and the symptoms it produces. Avian 
influenza is a contagious illness that has caused severe problems for both bird and human life all over the world. 
Through the use of a mathematical model, [1, 2] investigate the dynamics of influenza transmission on the 
impacts of receiving vaccination effectively. 
 
A key element in shaping the dynamics of influenza transmission is the recruitment of affected people. Their  
study revealed the situation in which the population does not accept additional infected people and the case in  
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which the population does accept the inflow of infective individuals. The model takes into account immunizations 
that have been proven to be effective in preventing influenza from spreading across the population. 
[1,2,5,13] considered Susceptible - Vaccinated - Infected - Treatment - Recovered (S − V − I − T − R) model. 

Using six classes for the human population and three classes for the bird population, [8] developed a model of avian 

influenza on both people and birds. The 𝑅ℎ and 𝑅𝑏 reproduction ratios and control measures for both humans and birds 

were calculated. In particular, the more the infectious population is confined, the better the recovery, according 

to their study's findings, which also noted that the impacts of vaccination and quarantine played critical roles in 

the disease's early recovery. The history, transmission, and methods for controlling the avian influenza epidemic 

must thus be further researched. In order to have a more reliable categorization, a larger range of classes is taken 

into account for avian influenza infection in this research. Additionally, by expanding the class of the current S 

I R in an open population to 𝑆𝑏 − 𝑉𝑏 −  𝐸 𝑏 − 𝐼𝑏 and 𝑆ℎ − 𝑉ℎ − 𝐸ℎ − 𝐼ℎ − 𝑄 − 𝑇 − 𝑅, analytical and numerical 

techniques are used to address transmission dynamics and control of the flu transferred from bird populations to 

human populations with a deterministic model. 

2. Mathematical Formulation of the Model 

The dynamics and transmission of the avian influenza infection from birds to the human population are 
described in this section using a mathematical model. Incorporating the epidemiological characteristics that 
take into account both birds and humans, i.e., (𝑆𝑏  −  𝑉𝑏  −  𝐸 𝑏 − 𝐼𝑏) and (𝑆ℎ  − 𝑉ℎ  −  𝐸ℎ  −  𝐼ℎ  −  𝑄 −
 𝑇 −  𝑅). 
The core S, I, and R model from Kermack (1927) is maintained, but the open population is 
taken into account by introducing recruitment into both human and avian species with extra 
classes like immunized, exposed, quarantined, and treated subclasses. Then, the model 
includes three controls (vaccination, isolation, and therapy). 𝑁ℎ(𝑡) =  𝑆ℎ  −  𝑉ℎ  −  𝐸ℎ  − 𝐼ℎ  −
 𝑄 −  𝑇 −  𝑅 and  𝑁𝑏(𝑡) =  𝑆𝑏  −  𝑉𝑏  −  𝐸 𝑏 − 𝐼𝑏 are used to signify the populations of both humans and 

birds at any given period (t). Keeping in mind that when a person comes into touch with an infected bird or 
consumes undercooked bird, the virus starts to grow within the cells of the affected area of the bird.  
Figure 1 depicts the suggested avian influenza model's schematic flow diagram while taking the 
aforementioned factors into account.  
 
 
 
 
 
 
 
 
 
 
 

Figure 1: Flowchart of Avian Influenza transmission model with intervention 

The shattered line between the infected bird class, 𝐼𝑏 and the susceptible human population, 𝑆ℎ, shows that 
the avian viral infection was transferred from the sick bird population to susceptible people. The dynamics 
of an avian influenza infection with a variety of treatments, under the assumptions and descriptions shown 
in the flowchart in Figure 1 and is the new deterministic model: 
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𝑑𝑆ℎ

𝑑𝑡
= Λℎ  −  𝛽𝑆ℎ𝐼𝑏 − 𝛽ℎ𝑆ℎ𝐼ℎ  −  (µℎ  +  𝜌 +  𝜀 +  𝑢1)𝑆ℎ  +  𝛼𝑅 + 𝜓ℎ𝑉ℎ,

𝑑𝑉ℎ

𝑑𝑡
= 𝜌𝑆ℎ − (𝜓ℎ + µℎ)𝑉ℎ,

𝑑𝐸ℎ

𝑑𝑡
=  𝛽𝑆ℎ𝐼𝑏 + 𝛽ℎ𝑆ℎ𝐼ℎ  −  (µℎ +  𝜎ℎ)𝐸ℎ,

𝑑𝐼ℎ

𝑑𝑡
=  𝜎ℎ𝐸ℎ  −  (𝑘 + 𝑢2  +  𝛾1 +  𝜂 + µℎ +  𝜙ℎ)𝐼ℎ

𝑑𝑄

𝑑𝑡
= (𝑘 + 𝑢2)𝐼ℎ  −  (𝛿 + µℎ  +  𝜙)𝑄,

𝑑𝑇

𝑑𝑡
=  𝜂𝐼ℎ +  𝛿𝑄 − (µℎ  + 𝛾2  +  𝑢3)𝑇,

𝑑𝑅

𝑑𝑡
= (𝛾2  +  𝑢3)𝑇 + 𝛾1𝐼 ℎ + (𝜀 +  𝑢1)𝑆ℎ − (µℎ +  𝛼)𝑅

𝑑𝑆𝑏

𝑑𝑡
=  ∧𝑏  − 𝛽𝑏𝑆𝑏𝐼𝑏  −  (µ𝑏 + 𝜌𝑏)𝑆𝑏  +  𝜓𝑏𝑉𝑏,

𝑑𝑉𝑏

𝑑𝑡
= 𝜌𝑏𝑆𝑏 − (𝜓𝑏 + µ𝑏)𝑉𝑏,

𝑑𝐸𝑏

𝑑𝑡
= 𝛽𝑏𝑆𝑏𝐼𝑏  −  (𝜎𝑏 + µ𝑏)𝐸𝑏 ,

𝑑𝐼𝑏

𝑑𝑡
= 𝜎𝑏𝐸𝑏  −  (µ𝑏 +  𝜙𝑏)𝐼𝑏. }

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

                (2.1) 

 

3. Qualitative Analysis of the Model 

The autonomous model approach is given below:  

3.1 Dynamics of populations N(t) 

In order to define the human population (𝑁ℎ), 

                                  𝑁ℎ(𝑡) =   𝑆ℎ  −  𝑉ℎ  − 𝐸ℎ  −  𝐼ℎ  −  𝑄 −  𝑇 –  𝑅,             (3.1) 

Additionally, the definition of the bird population 𝑁𝑏(𝑡) is  

 𝑁𝑏(𝑡) =  𝑆𝑏  −  𝑉𝑏  −  𝐸 𝑏 − 𝐼𝑏                                                        (3.2) 

where the letters 𝑆𝑏, 𝑉𝑏, 𝐸𝑏and 𝐼𝑏 stand for susceptible, immunized, exposed and infected birds, 

respectively. 

Derivatives of (3.1) and (3.2) result in 

 
𝑑𝑁ℎ

𝑑𝑡
= 

𝑑𝑆ℎ

𝑑𝑡
+ 

𝑑𝑉ℎ

𝑑𝑡
+ 

𝑑𝐸ℎ

𝑑𝑡
+ 

𝑑𝐼ℎ

𝑑𝑡
+ 

𝑑𝑄

𝑑𝑡
+ 

𝑑𝑇

𝑑𝑡
+ 

𝑑𝑅

𝑑𝑡
,                                  (3.3) 

and  

  
𝑑𝑁𝑏

𝑑𝑡
= 

𝑑𝑆𝑏

𝑑𝑡
+ 

𝑑𝑉𝑏

𝑑𝑡
+ 

𝑑𝐸𝑏

𝑑𝑡
+ 

𝑑𝐼𝑏

𝑑𝑡
.                                                     (3.4) 

Substituting (2.1) into (3.3) after simplification, we have 

                   
𝑑𝑁ℎ

𝑑𝑡
= Λℎ  − µℎ( 𝑆ℎ  − 𝑉ℎ  −  𝐸ℎ  −  𝐼ℎ  −  𝑄 −  𝑇 –  𝑅) −  𝜙ℎ𝐼ℎ −  𝜙𝑄                  (3.5) 

and on substituting (2.1) into (3.4), yields 

                            
𝑑𝑁𝑏

𝑑𝑡
= Λ𝑏  − µ𝑏( 𝑆𝑏  −  𝑉𝑏  −  𝐸𝑏  −  𝐼𝑏 ) −  𝜙𝑏𝐼𝑏.                                            (3.6) 

Finally, (3.5) and (3.6) can be expressed respectively in the form of population dynamics: 

   
𝑑𝑁ℎ

𝑑𝑡
= Λℎ  − µℎ𝑁ℎ −  𝜙ℎ𝐼ℎ −  𝜙𝑄,                                 (3.7) 

and 

   
𝑑𝑁𝑏

𝑑𝑡
= Λ𝑏  − µ𝑏𝑁𝑏 −  𝜙𝑏𝐼𝑏 .                                      (3.8) 

 

 

  The Model's Solutions' Boundedness and Positivity  
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To generate the standard for the positivity of solutions and the well-posedness of the system, the fundamental 

characteristics of the model system (2.1) are used in this section. 

3.1.1 Boundedness of the model 

The model's viability, which represents the area where the model's solution (2.1) is examined due to its 

biological significance. 

Theorem 3.1 Let the solution Ω of the model (2.1) with starting conditions in ℜ+
11  (set of vectors with eleven non-

negative components), for which (3.7) and (3.8) hold, approach and remain in the solution’s domain as 𝑡 →  ∞. A 

positively invariant set provided is thus the model's workable solution. 

 Ω = Ωℎ × Ω𝑏 = {(𝑆ℎ, 𝑉ℎ , 𝐸ℎ  , 𝐼ℎ , 𝑄 , 𝑇, 𝑅, 𝑆𝑏 , 𝑉𝑏 , 𝐸𝑏 , 𝐼𝑏) ∈   ℜ+
11 ∶  𝑁ℎ(𝑡)  ≤  

Λℎ

µℎ
, 𝑁𝑏(𝑡)  ≤  

Λ𝑏

µ𝑏
}. 

Proof.   

In the absence of the disease (i.e.,  𝜙ℎ =  𝜙 = 0), (3.7) reduces to 

  
𝑑𝑁ℎ

𝑑𝑡
= Λℎ  − µℎ𝑁ℎ .           (3.9) 

Applying Lemma 2 in Birkhoff and Rota (1989; pg. 27) on (3.9), leads to 

  
𝑑𝑁ℎ

𝑑𝑡
= Λℎ  − µℎ𝑁ℎ(t) −  𝜙ℎ𝐼ℎ −  𝜙𝑄 ≤  Λℎ  − µℎ𝑁ℎ(𝑡)                (3.10) 

Thus, 

         
𝑑𝑁ℎ

𝑑𝑡
≤ Λℎ  − µℎ𝑁ℎ(𝑡),                          (3.11) 

Solving inequality (3.11) by integrating factor (IF) approach, yields 

  𝑁ℎ(𝑡)  ≤  𝑁ℎ(0)𝑒
−µℎ𝑡 + 

Λℎ

µℎ
(1 − 𝑒−µℎ𝑡).                                       (3.12) 

As 𝑡 𝑎𝑝𝑝𝑟𝑜𝑎𝑐ℎ𝑒𝑠 𝑖𝑛𝑓𝑖𝑛𝑖𝑡𝑦, approach 
Λℎ

µℎ
  

    𝑁ℎ(𝑡)  ≤  
Λℎ

µℎ
 .                 (3.13) 

This means that 0 ≤  𝑁ℎ ≤ 
Λℎ

µℎ
, which denotes that the model (2.1) trajectories are limited. 

As a result, the region receives all practical solutions for the human population of the model system (2.1). 

Ωℎ = {(𝑆ℎ, 𝑉ℎ , 𝐸ℎ  , 𝐼ℎ , 𝑄 , 𝑇, 𝑅) ∈   ℜ+
7 ∶  𝑁ℎ(𝑡) ≤  

Λℎ
µℎ
}. 

Similarly, the case of the bird population in (2.1) is bounded as 0 ≤  𝑁𝑏 ≤ 
Λ𝑏

µ𝑏
. 

Thus, the feasible solutions of the bird population only enters the region 

        Ω𝑏 = {(𝑆𝑏 , 𝑉𝑏 , 𝐸𝑏 , 𝐼𝑏) ∈ ℜ+
4 ∶  𝑁𝑏(𝑡) ≤  

Λ𝑏

µ𝑏
}, 

Hence, the feasible solution set for the system (2.1) is given by 

Ω = {(𝑆ℎ, 𝑉ℎ , 𝐸ℎ  , 𝐼ℎ , 𝑄 , 𝑇, 𝑅, 𝑆𝑏 , 𝑉𝑏 , 𝐸𝑏 , 𝐼𝑏) ∈   ℜ+
11 ∶  𝑁ℎ(𝑡)  ≤  

Λℎ
µℎ
, 𝑁𝑏(𝑡)  ≤  

Λ𝑏
µ𝑏
}. 

Furthermore, whenever 𝑁ℎ > 
Λℎ

µℎ
, then by (3.9), 

𝑑𝑁ℎ

𝑑𝑡
< 0. Similarly, whenever 𝑁𝑏 >

Λ𝑏

µ𝑏
 , then 

𝑑𝑁𝑏

𝑑𝑡
<  0.  The host 

population is asymptotically stable.  Thus, ℜ+
11  in the region Ω for  𝑡 >  0, and its positively invariant. Hence, 

the system of equation (2.1) is epidemiologically meaningful and mathematically well-posed in the domain, Ω. 

 

3.1.2 Positivity of solutions 

Definition 3.1:  If all of the state variables in the model assume non-negative values, the solution to 
model (2.1) is said to be positive. The model in (2.1) must be shown to have non-negative state 
variables for all time t in order for it to have epidemiological significance. It must be demonstrated 
that model (2.1) solutions with positive beginning data continue to be positive for all times t > 0. The 
outcome is displayed below. 

Theorem 3.2 : Let the initial value of the system in (2.1) be 

{(𝑆ℎ(0), 𝑉ℎ(0) , 𝐸ℎ(0) , 𝐼ℎ(0) , 𝑄(0) , 𝑇(0), 𝑅(0), 𝑆𝑏(0), 𝑉𝑏(0), 𝐸𝑏(0), 𝐼𝑏(0))} ∈ Ω. 
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Then, the solution set {𝑆ℎ(𝑡), 𝑉ℎ(𝑡) , 𝐸ℎ(𝑡) , 𝐼ℎ(𝑡) , 𝑄(𝑡) , 𝑇(𝑡), 𝑅(𝑡), 𝑆𝑏(𝑡), 𝑉𝑏(𝑡), 𝐸𝑏(𝑡), 𝐼𝑏(𝑡)} of  (2.1) is positive for 

all 𝑡 >  0. 

Proof. The first equation in (2.1), that is, 
𝑑𝑆ℎ
𝑑𝑡

=  Λℎ  −  𝛽𝑆ℎ𝐼𝑏 − 𝛽ℎ𝑆ℎ𝐼ℎ  − (µℎ  +  𝜌 +  𝜀 + 𝑢1)𝑆ℎ  +  𝛼𝑅 + 𝜓ℎ𝑉ℎ. 

                                                                         for 𝛽 ∈ [0,1] and 𝛽ℎ ≤ 
Λℎ

𝑆ℎ𝐼ℎ
  

Thus, 

∫
1

𝑆ℎ
𝑑𝑆ℎ ≥ −(µℎ  +  𝜌 +  𝜀 + 𝑢1)𝑑𝑡, 

 𝑆ℎ(𝑡) ≥  𝐴𝑒
−(µℎ + 𝜌 + 𝜀 + 𝑢1)𝑡,  where A is a constant 

Setting t = 0 and applying the initial conditions, yield 

𝑆ℎ(𝑡) ≥  𝑆ℎ(0)𝑒
−(µℎ + 𝜌 + 𝜀 + 𝑢1)𝑡 ≥ 0, since (µℎ  +  𝜌 +  𝜀 + 𝑢1) > 0.                                   (3.14) 

Hence, 𝑆ℎ is always positive for 𝑡 >  0. 

Other state variables in (2.1) are obtained as above 

This shows that all the state variables are positive for all 𝑡 >  0. Hence, the proof of Theorem 3.2 is completed. 

3.3.  Disease-free equilibrium state 

When no one is infected or the illness has been completely eradicated, the situation is known as the 

disease-free stability. After solving system (2.1) simultaneously, we obtained 

𝔼𝑏,ℎ
+ (𝑆ℎ

+, 𝑉ℎ
+, 𝐸ℎ

+, 𝐼ℎ
+, 𝑄+, 𝑇+, 𝑅+, 𝑆𝑏

+, 𝑉𝑏
+, 𝐸𝑏

+, 𝐼𝑏
+) =

 {

(𝜓ℎ + µℎ)(µℎ+ 𝛼)Λℎ

𝜇ℎ[(𝜇ℎ+ 𝛼+ 𝜀+ 𝑢1)(𝜇ℎ+ 𝜓ℎ)+𝜌(𝜇+ 𝛼)]
,

Λℎ(µℎ+ 𝛼)

𝜇ℎ[(𝜇ℎ+ 𝛼+ 𝜀+ 𝑢1)(𝜇ℎ+ 𝜓ℎ)+𝜌(𝜇+ 𝛼)]
, 0,0,0,

, 0,
Λℎ(𝜀+𝑢1)(𝜓ℎ+ 𝜇ℎ)

𝜇ℎ[(𝜇ℎ+ 𝛼+ 𝜀+ 𝑢1)(𝜇ℎ+ 𝜓ℎ)+𝜌(𝜇+ 𝛼)]
,

Λℎ(𝜓𝑏+ 𝜇𝑏)

𝜇𝑏(𝜓𝑏+ 𝜇𝑏+ 𝜌𝑏)
,

Λ𝑏𝜌𝑏

𝜇𝑏(𝜓𝑏+ 𝜇𝑏+ 𝜌𝑏)
, 0,0   

}  .   (3.15) 

3.4.  Basic Reproductive Number 

This study employs the next generation approach, and the (𝑅0) which is basic reproductive number, that is, the 

average number of secondary infections lifespan.  The differential equations related to the compartments 

𝐸ℎ  , 𝐼ℎ , 𝑄 , 𝑇, 𝐸𝑏 and  𝐼𝑏 given below are used to derive the effective reproduction number 𝑅𝑐
𝑏,ℎ. Figure 1 shows 

the rate of new infection function (ℱ𝑖), and the transfer rate (𝑉𝑖). The system (2.1) starting with the infected 

compartments 𝐸ℎ  , 𝐼ℎ , 𝑄 , 𝑇, 𝐸𝑏 and 𝐼𝑏, then the uninfected classes 𝑆ℎ  , 𝑉ℎ , 𝑅, 𝑆𝑏 and  𝑉𝑏. The next generation 

matrix method is employed to determine the rate of emergence of a new infection in compartments 𝐸ℎ and 

𝐸𝑏 . 

 ℱ𝑖 =

(

  
 

𝛽𝑆ℎ𝐼𝑏 + 𝛽ℎ𝑆ℎ𝐼ℎ
0
0
0

 𝛽𝑏𝑆𝑏𝐼𝑏
0 )

  
 

,       𝐹 =

(

  
 

0
0
0
0
 0
0

 

 𝛽ℎ𝑆ℎ
0
0
0
 0
0

0
0
0 
0
 0
0

0
0
0
0
 0
0

 

0
0
0
0
 0
0

 

𝛽𝑆𝑏
0
0
0

 𝛽𝑏𝑆𝑏
0 )

  
 

 .  (3.16) 

𝑉𝑖 =

(

 
 
 
 

(µℎ +  𝜎ℎ)𝐸ℎ
 − 𝜎ℎ𝐸ℎ + (𝑘 + 𝑢2  + 𝛾1 +  𝜂 + µℎ +  𝜙ℎ)𝐼ℎ

−(𝑘 + 𝑢2)𝐼ℎ + (𝛿 + µℎ  +  𝜙)𝑄

−𝜂𝐼ℎ −  𝛿𝑄 + (µℎ  + 𝛾2  +  𝑢3)𝑇
(𝜎𝑏 + µ𝑏)𝐸𝑏

−𝜎𝑏𝐸𝑏 + (µ𝑏 +  𝜙𝑏)𝐼𝑏 )

 
 
 
 

, 
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𝑉 =

(

 
 
 

(µℎ +  𝜎ℎ)
− 𝜎ℎ
0
0
0
0

  

0
(𝑘 + 𝑢2  + 𝛾1 +  𝜂 + µℎ +  𝜙ℎ)

−(𝑘 + 𝑢2)
−𝜂
0
0

  

0
0

(𝛿 + µℎ  +  𝜙)

− 𝛿
0
0

  

0
0
0

(µℎ  +  𝛾2  +  𝑢3)
0
0

  

0
0
0
0

(𝜎𝑏 + µ𝑏)
−𝜎𝑏

  

0
0
0
0
0

(µ𝑏 +  𝜙𝑏))

 
 
 

    

Solving 𝐹𝑉−1, the effective reproductive number for bird and human population are obtained as 

𝑅𝑐
𝑏 = 

𝛽𝑏Λ𝑏𝜎𝑏(𝜓𝑏+ 𝜇𝑏)

𝜇𝑏(𝜓𝑏+ 𝜇𝑏+ 𝜌𝑏)(𝜇𝑏+ 𝜙𝑏)(𝜎𝑏+ 𝜇𝑏)
  and  𝑅𝑐

ℎ =
𝛽ℎΛℎ𝜎ℎ(𝜓ℎ + µℎ)(µℎ+ 𝛼)

𝜇ℎ[(𝜇ℎ+ 𝛼+ 𝜀+ 𝑢1)(𝜇ℎ+ 𝜓ℎ)+𝜌(𝜇+ 𝛼)]𝜇ℎ(𝜇ℎ+ 𝜎ℎ)(𝑘+ 𝑢2+ 𝛾1+ 𝜂+ 𝜇ℎ+ 𝜙ℎ)
 

Hence, the interface of effective reproductive number for both bird and human population is obtained as 

𝑅𝑐
𝑏,ℎ  =  𝑅𝑐

𝑏 . 𝑅𝑐
ℎ, 

where,   𝑅𝑐
𝑏,ℎ  =  

𝛽𝑏Λ𝑏𝜎𝑏𝛽ℎΛℎ𝜎ℎ(𝜓𝑏+ 𝜇𝑏)(𝜓ℎ + µℎ)(µℎ+ 𝛼)

𝜇𝑏(𝜓𝑏+ 𝜇𝑏+ 𝜌𝑏)(𝜇𝑏+ 𝜙𝑏)(𝜎𝑏+ 𝜇𝑏)𝐷
                              (3.17) 

and 

𝐷 = 𝜇ℎ[(𝜇ℎ +  𝛼 +  𝜀 + 𝑢1)(𝜇ℎ + 𝜓ℎ) + 𝜌(𝜇 +  𝛼)]𝜇ℎ(𝜇ℎ + 𝜎ℎ)(𝑘 + 𝑢2 + 𝛾1 +  𝜂 + 𝜇ℎ + 𝜙ℎ). 

From (3.17), the basic reproduction number when there is no control, implies that c = 0, is obtained 

below 

  𝑅0
𝑏,ℎ  =  

𝛽𝑏Λ𝑏𝜎𝑏𝛽ℎΛℎ𝜎ℎ(𝜓𝑏+ 𝜇𝑏)(𝜓ℎ + µℎ)(µℎ+ 𝛼)

𝜇𝑏(𝜓𝑏+ 𝜇𝑏+ 𝜌𝑏)(𝜇𝑏+ 𝜙𝑏)(𝜎𝑏+ 𝜇𝑏)𝜇ℎ[(𝜇ℎ+ 𝛼+ 𝜀)(𝜇ℎ+ 𝜓ℎ)+𝜌(𝜇+ 𝛼)]𝜇ℎ(𝜇ℎ+ 𝜎ℎ)(𝑘+ 𝛾1+ 𝜂+ 𝜇ℎ+ 𝜙ℎ)
     (3.18) 

Remarks 3.3.1:  Epidemiologically, 

(i) if 𝑅0  <  1, the disease's prevalence will decline and ultimately vanish; 

(ii) if 𝑅0 =  1, there will always be cases of the sickness; 

(iii) if 𝑅0 >  1, the sickness will continue to spread frequently. 

3.4.2 Endemic-equilibrium state  

When a disease cannot be completely eliminated but still exists in the population, it is said to be in an 

endemic equilibrium. Then, none of the state variables in (2.1) may disappear, i.e. 

  𝔼𝑏,ℎ
∗ = (𝑆ℎ

∗, 𝑉ℎ
∗, 𝐸ℎ

∗ , 𝐼ℎ
∗ , 𝑄∗, 𝑇∗, 𝑅∗, 𝑆𝑏

∗, 𝑉𝑏
∗, 𝐸𝑏

∗, 𝐼𝑏
∗)Ω𝑏,ℎ

∗  ≠  (0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0). 

The solution to (2.1) at EE is obtained in terms of reproductive ratio. 

With,      𝑆𝑏
∗ = 

𝑆𝑏
+

𝑅𝑐
𝑏 and 𝑆ℎ

∗ = 
𝑆ℎ
+

𝑅𝑐
ℎ, where, 𝑆𝑏

+ = 
Λ𝑏(𝜓𝑏+ 𝜇𝑏)

𝜇𝑏(𝜓𝑏+ 𝜇𝑏+ 𝜌𝑏)
,   𝑅𝑐

𝑏 = 
𝛽𝑏Λ𝑏𝜎𝑏(𝜓𝑏+ 𝜇𝑏)

𝜇𝑏(𝜓𝑏+ 𝜇𝑏+ 𝜌𝑏)(𝜇𝑏+ 𝜙𝑏)(𝜎𝑏+ 𝜇𝑏)
, 𝑆ℎ

+ =

(𝜓ℎ + µℎ)(µℎ+ 𝛼)Λℎ

𝜇ℎ[(𝜇ℎ+ 𝛼+ 𝜀+ 𝑢1)(𝜇ℎ+ 𝜓ℎ)+𝜌(𝜇+ 𝛼)]
,  and 𝑅𝑐

ℎ = 
𝛽ℎΛℎ𝜎ℎ(𝜓ℎ + µℎ)(µℎ+ 𝛼)

𝜇ℎ[(𝜇ℎ+ 𝛼+ 𝜀+ 𝑢1)(𝜇ℎ+ 𝜓ℎ)+𝜌(𝜇+ 𝛼)]𝜇ℎ(𝜇ℎ+ 𝜎ℎ)(𝑘+ 𝑢2+ 𝛾1+ 𝜂+ 𝜇ℎ+ 𝜙ℎ)
 

After solving the system (3.34) simultaneously, the result obtained is given as: 
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{
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 𝑆ℎ

∗ = 
Λℎ(𝜓ℎ+ 𝜇ℎ)(𝜇ℎ+ 𝛼)

𝜇ℎ[(𝜇ℎ+𝛼+𝜀+ 𝑢1)(𝜇ℎ+ 𝜓ℎ)+ 𝜌𝑏(𝜇ℎ+ 𝛼)]𝑅𝑐
ℎ ,

𝑉ℎ
∗ = 

Λℎ𝜌(𝜇ℎ+ 𝛼)

𝜇ℎ[(𝜇ℎ+𝛼+𝜀+ 𝑢1)(𝜇ℎ+ 𝜓ℎ)+ 𝜌𝑏(𝜇ℎ+ 𝛼)]𝑅𝑐
ℎ ,

           𝐸ℎ
∗ =

𝛽Λℎ𝜇𝑏(𝜓ℎ+ 𝜇ℎ)(𝜇ℎ+ 𝛼)(𝜓𝑏+ 𝜇𝑏+ 𝜌𝑏)〖[𝑅〗𝑐
𝑏−1][𝐴+ 𝛽ℎ𝜎ℎΛℎ(𝜓ℎ+ 𝜇ℎ)(𝜇ℎ+ 𝛼)]

𝛽𝑏(𝜓𝑏+ 𝜇𝑏)(𝜇ℎ+ 𝜎ℎ)𝐵𝐴

𝐼ℎ
∗ =

𝜎ℎ𝛽Λℎ𝜇𝑏(𝜓ℎ+ 𝜇ℎ)(𝜇ℎ+ 𝛼)(𝜓𝑏+ 𝜇𝑏+ 𝜌𝑏)〖[𝑅〗𝑐
𝑏−1]

𝛽𝑏(𝜓𝑏+ 𝜇𝑏)[𝐴𝑅𝑐
ℎ− Λℎ𝜎ℎ𝛽ℎ(𝜓ℎ+ 𝜇ℎ)(𝜇ℎ+ 𝛼)]

𝑇∗ =
𝜎ℎ𝛽Λℎ𝜇𝑏(𝜓ℎ+ 𝜇ℎ)(𝜇ℎ+ 𝛼)(𝜓𝑏+ 𝜇𝑏+ 𝜌𝑏)〖[𝑅〗𝑐

𝑏−1][𝜂(𝛿+ 𝜇ℎ+ 𝜙)+𝛿(𝑘+  𝑢2)]

𝛽𝑏(𝜇ℎ + 𝛾2+ 𝑢3)(𝛿+ 𝜇ℎ+ 𝜙)(𝜓𝑏+ 𝜇𝑏)[𝐴𝑅𝑐
ℎ− Λℎ𝜎ℎ𝛽ℎ(𝜓ℎ+ 𝜇ℎ)(𝜇ℎ+ 𝛼)]

,

𝑄∗ =
𝜎ℎ𝛽Λℎ𝜇𝑏(𝑘+ 𝑢2)(𝜓ℎ+ 𝜇ℎ)(𝜇ℎ+ 𝛼)(𝜓𝑏+ 𝜇𝑏+ 𝜌𝑏)〖[𝑅〗𝑐

𝑏−1]

𝛽𝑏(𝛿+ 𝜇ℎ+ 𝜙)(𝜓𝑏+ 𝜇𝑏)[𝐴𝑅𝑐
ℎ− Λℎ𝜎ℎ𝛽ℎ(𝜓ℎ+ 𝜇ℎ)(𝜇ℎ+ 𝛼)]

,

𝑅∗ = 
𝐵(𝛾2+ 𝑢3)𝜎ℎ𝛽Λℎ𝜇𝑏(𝜓ℎ+ 𝜇ℎ)(𝜓𝑏+ 𝜇𝑏+ 𝜌𝑏)〖[𝑅〗𝑐

𝑏−1]𝐶+ (𝜇ℎ + 𝛾2+ 𝑢3)(𝛿+ 𝜇ℎ+ 𝜙) 𝐴[𝐵+ (𝜓𝑏+ 𝜇𝑏)]

𝛽𝑏(𝜇ℎ + 𝛾2+ 𝑢3)(𝛿+ 𝜇ℎ+ 𝜙)(𝜓𝑏+ 𝜇𝑏)𝐴Λℎ(𝜀+𝑢1)(𝜓ℎ+ 𝜇ℎ)
,

𝑆𝑏
∗ = 

Λ𝑏(𝜓𝑏+ 𝜇𝑏)

𝜇𝑏(𝜓𝑏+ 𝜇𝑏+ 𝜌𝑏)𝑅𝑐
𝑏 ,

𝑉𝑏
∗ = 

𝜌𝑏Λ𝑏

𝜇𝑏(𝜓𝑏+ 𝜇𝑏+ 𝜌𝑏)𝑅𝑐
𝑏 ,

𝐸𝑏
∗ = 

𝜇𝑏(𝜇𝑏+ 𝜙𝑏)(𝜓𝑏+ 𝜇𝑏+ 𝜌𝑏)[𝑅𝑐
𝑏−1]

𝛽𝑏𝜎𝑏(𝜓𝑏+ 𝜇𝑏)
,

𝐼𝑏
∗ = 

𝜇𝑏(𝜓𝑏+ 𝜇𝑏+ 𝜌𝑏)[𝑅𝑐
𝑏−1]

𝛽𝑏(𝜓𝑏+ 𝜇𝑏)
,

(3.19) 

Where, 𝐴 = [𝜇ℎ(𝜇ℎ + 𝜎ℎ)(𝑘 + 𝑢2 + 𝛾1 +  𝜂 + 𝜇ℎ + 𝜙ℎ)[(𝜇ℎ +  𝛼 +  𝜀 + 𝑢1)(𝜇ℎ + 𝜓ℎ) +

 𝜌(𝜇ℎ +  𝛼)]𝑅𝑐
ℎ − Λℎ𝜎ℎ𝛽ℎ(𝜓ℎ + 𝜇ℎ)(𝜇ℎ +  𝛼)], 

𝐵 = 𝜇ℎ[(𝜇ℎ +  𝛼 +  𝜀 + 𝑢1)(𝜇ℎ + 𝜓ℎ) +  𝜌(𝜇ℎ +  𝛼)]𝑅𝑐
ℎ,     𝐶 = [𝜂(𝛿 + 𝜇ℎ +  𝜙) +  𝛿(𝑘 + 𝑢2)]. 

Thus, if 𝑅𝑐
𝑏  > 1 and 𝑅𝑐

ℎ  >  1, then 𝐼ℎ
∗  >  0 and 𝐼𝑏

∗ > 0,  then the model (2.1) has a unique endemic-equilibrium 

point given by 𝔼∗ = (𝑆ℎ
∗, 𝑉ℎ

∗, 𝐸ℎ
∗ , 𝐼ℎ

∗ , 𝑄∗, 𝑇∗, 𝑅∗, 𝑆𝑏
∗, 𝑉𝑏

∗, 𝐸𝑏
∗, 𝐼𝑏

∗), where in the presence of infection (𝐼ℎ ≠ 0). 

Therefore, to ensure the existence of a positive endemic-equilibrium, it suffice that 𝑅𝑐
𝑏,ℎ  >  1. 

Since 𝑆ℎ
∗, 𝑉ℎ

∗, 𝐸ℎ
∗ , 𝐼ℎ

∗ , 𝑄∗, 𝑇∗, 𝑅∗, 𝑆𝑏
∗, 𝑉𝑏

∗, 𝐸𝑏
∗, 𝐼𝑏

∗  >  0 (when 𝑅𝑐
𝑏,ℎ  >  1), the endemic-equilibrium 𝔼∗ is positive and 

𝐼𝑏,ℎ
∗ > 0. This complete the proof of equation (2.1). 

3.5 Local Stability of DFE State 

The behaviour of the model population close to the equilibrium point is examined to ascertain whether or not the 
conditions necessary for the disease-free equilibrium state to be stable and, the disease to be completely eradicated 
from the entire population. 

To determine the stability or otherwise of the system (2.1) at the disease-free equilibrium point 𝔼+, the behaviour of the 

model population near the equilibrium point is examined to determine the satisfaction of the conditions that must be met 

for the disease-free equilibrium state to be stable and at the same time for the disease to be totally eradicated from the 

population. 

Theorem 3.3 : The disease-free equilibrium point 𝔼+ is locally asymptotically stable if  𝑅𝑐
𝑏,ℎ < 1  for  𝑡𝑟(𝐽𝔼+) < 0 and 

𝑑𝑒𝑡(𝐽𝔼+) > 0, and unstable if  𝑅𝑐
𝑏,ℎ > 1 for 𝑡𝑟(𝐽𝔼+) ≥ 0 and 𝑑𝑒𝑡(𝐽𝔼+) < 0.  

Proof. Following equation (2.1) and assessing the model at the DFE point 𝔼+.  At the disease-free equilibrium 

point 𝔼+, the Jacobian matrix 
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𝐽𝔼+ = 

(

 
 
 
 
 
 
 
 

−A1
𝜌
0
0
0
0
A8
0
0
0
0

   

𝜓ℎ
−A2
0
0
0
0
0
0
0
0
0

   

0
0
−A3
𝜎ℎ
0
0
0
0
0
0
0

   

−𝐿
0
𝐿
−A4
A5
𝜂
𝛾1
0
0
0
0

   

0
0
0
0
−A6
𝛿
0
0
0
0
0

   

0
0
0
0
0
−A7
A9
0
0
0
0

   

𝛼
0
0
0
0
0

−A10
0
0
0
0

  

0
0
0
0
0
0
0
−B1
ρ𝑏
0
0

  

0
0
0
0
0
0
0
ψ𝑏
−B2
0
0

  

0
0
0
0
0
0
0
0
0
−B3
𝜎𝑏

  

−𝑃
0
𝑃
0
0
0
0
−𝑀
0
𝑀
−B4)

 
 
 
 
 
 
 
 

,                          (3.20) 

where, A1 = (𝜇ℎ +  𝜌 +  𝜀 + 𝑢1),  A2 = (𝜓ℎ + 𝜇ℎ), A3 = (𝜇ℎ + 𝜎ℎ) , A4 = (𝑘 + 𝑢2 + 𝛾1 +  𝜂 + 𝜇ℎ +

 𝜙ℎ),  A5 = (𝑘 + 𝑢2) , A6 = (𝛿 + 𝜇ℎ +  𝜙) , A7 = (𝜇ℎ + 𝛾2 + 𝑢3)  , A8 = (𝜀 + 𝑢1) ,  A9 = (𝛾2 + 𝑢3)  , 

A10 = (𝜇ℎ +  𝛼) , B1 = (𝜇𝑏 + 𝜌𝑏) , B2 =  (𝜓𝑏 + 𝜇𝑏), B3 = (𝜎𝑏 + 𝜇𝑏) , 𝐵4 = (𝜇𝑏 + 𝜙𝑏),  𝐿 =  
𝐶1

𝐶2
 , 𝑃 =  

𝐶3

𝐶2
, 

M =  
𝑑1

𝑑2
, 𝐶1 = βℎΛℎ(𝜓ℎ + µℎ)(µℎ +  𝛼) , 𝐶2 = 𝜇ℎ[(𝜇ℎ +  𝛼 +  𝜀 + 𝑢1)(𝜇ℎ + 𝜓ℎ) + 𝜌(𝜇 +  𝛼)] , 𝐶3 =

 βΛℎ(𝜓ℎ + µℎ)(µℎ +  𝛼) , 𝑑1 = β𝑏Λ𝑏(𝜓𝑏 + 𝜇𝑏), 𝑑2 = 𝜇𝑏(𝜓𝑏 + 𝜇𝑏 + 𝜌𝑏). 

Matrix 𝐽𝔼+ in (3.20) is stable if  𝑡𝑟(𝐽𝔼+) < 0 and 𝑑𝑒𝑡(𝐽𝔼+) ≥ 0. The trace of matrix 𝐽𝔼+ is 
obtained as: 

𝑡𝑟(𝐽𝔼+) =  −(A1 + A2 + A3 + A4 + A6 + A7 + A10 + B1 + B2 + B3 + B4) 

∴  𝑡𝑟(𝐽𝔼+) < 0 

Also, the determinant of matrix 𝐽𝔼+ is generated as 

𝑑𝑒𝑡𝐽𝔼+ = 𝐴6𝐴7𝐴3𝐴4𝐵2𝐵1 (𝐵2𝐵1 −  𝜌𝑏𝜓𝑏)(𝐴10𝜌 𝜓ℎ +𝐴2𝐴8𝛼 −𝐴10𝐴2𝐴1)(1+ 𝑅𝑐
ℎ)(1− 𝑅𝑐

𝑏) 

Thus, 𝑑𝑒𝑡𝐽𝔼+ > 0 provided 𝐵2𝐵1 >  𝜌𝑏𝜓𝑏, 𝐴10𝐴2𝐴1 < (𝐴10𝜌 𝜓ℎ  + 𝐴2𝐴8𝛼), and 𝑅𝑐
𝑏.ℎ < 1. 

Consequently, the outcome implies that the sickness will eventually disappear biologically. 

 

4. Numerical Simulation and Analysis 

Maple, Matlab, and Julia software of a fourth-order Runge − Kutta scheme were employed for the analysis of the 

results. The objective of the work is to numerically validate the analytical findings previously made for the model 

(2.1). 

The validation were carried out in Table 1. The value of 𝑅𝑐
𝑏.ℎ is calculated using the values of the 

vaccination control (𝑢1), quarantine control (𝑢2), and treatment control (𝑢3). The simulation graphs, which 

are shown for different values of the three critical parameters 𝑢1, 𝑢2, and 𝑢3, are shown in Figures 2 to 6. 

 

Table 1: Parameter values of new avian influenza model 

Symbol Description Estimated Value  

∧ℎ Rate of recruiting individuals 1000  

∧𝑏 Rate of bird recruitment 30  

𝛽ℎ Efficacy of human-to-human interaction 0.1025  

𝛽𝑏 Effective contact rate between birds 0.012  

β Effective human-bird contact rate 0.2  

ε gain in immunity 0.7  

𝜎ℎ Rate of transformation from exposed human compartment 0.05  

𝜎𝑏 Rate of transition from the exposed bird compartment 0.85  

𝛾1 Natural recovery rate of infected people 0.3  

𝛾2 Human recovery rate as a result of therapy 0.7  
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𝜙ℎ Avian influenza mortality rate in humans 0.05  

𝜙𝑏 A bird's chance of dying from avian influenza 0.5  

ϕ Death rate as a result of quarantining sick people 0.01  

µℎ Humans from each class's rate of mortality due to natural causes 0.1  

µ𝑏 Ratio of birds from each class that die naturally 0.033  

α Loss of immunity frequency 0.08333  

ρ Percentage of vulnerable people who must get immunized                 0.8  

𝜌𝑏 Proportion of birds to be vaccinated 0.95  

𝜓ℎ Rate of decline of human vaccine-based immunity 0.002  

𝜓𝑏 Progression rate from the infectious class to the quarantine  0.003  

k Vaccination effectiveness rate                 0.6  

𝑢1 Vaccination effectiveness rate [0 - 1.0]  

𝑢2 Quarantine effectiveness [0 - 1.0]  

    

 

 

 
 
 
Figure 2: Graph of the state variables with time using controls u1 = 0.0, u2 = 0.0 and u3 = 0.0; R0 = 2.4507 > 
1. Figure 2 shows that if none of the controls is applied against the spread of avian influenza, the 
disease will persists. 

 

 

 

                       

   (a)      (b)                                                                    

(c)  

Figure 3: Graph of state variables with time using controls: (a) u1 = 0.75, u2 = 0.0 and u3 = 
0.0; R0 = 1.3852 > 1, (b) u1 = 0.0, u2 = 0.75 and u3 = 0.0; R0 = 1.3058 > 1 and (c) u1 = 
0.0, u2 = 0.0 and u3 = 0.75; R0 = 1.7699 > 1. 

Figure 3 (a), (b) and (c) show that if the rate of applying only one of the controls is at 75%, 

the disease will still continue to spread. 

 

(a) 

   (b)    (c) 

 

 Figure 4: Plot showing variation in the state variables with time using controls: (a) u1 = 
0.75,u2= 1.0 and u3 = 1.0;R0 = 0.9398 < 1, (b) u1 = 1.0, u2 = 0.75 and u3 = 1.0;R0 = 0.9529 
< 1 and (c) u1 = 1.0, u2 = 1.0 and u3 = 1.0; R0 = 0.8763 < 1 

Figure 4 (a), (b) and (c) show that the disease will be eradicated totally from the population if 
one of the three controls is applied for a minimum of 75% rate and the  

remaining at 100%. 

5. conclusion 
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In the present study, a deterministic human-bird avian influenza model in an open population 

is developed and evaluated to understand the dynamics of the disease's transmission from birds 

to people while taking infection controls like vaccination, isolation, and treatment into account. 

The model took into account by adding new members to the vulnerable class through birth and 

immigration, and those newcomers who are exposed to the disease can be added to the exposed 

class. In order to evaluate the possible effects of these techniques on the dynamics of the 

disease's transmission, the preventative strategies (such as immunization, quarantine, and 

therapy) are incorporated in the model. 

It was determined that if all the controls are put in place, the infection will decline and the 

disease will disappear. To help with comprehension of the scenarios, the numerical outcomes 

are graphically depicted. According to the findings, combining vaccination and quarantine 

measures is the most efficient way to cut down on disease-related issues. Therefore, a lot of focus 

needs to be placed on the previously outlined ways to totally eradicate illness, and then therapy should 

come next to take care of the affected individuals. 
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