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Abstract 

In this study, perturbation method is applied to obtain the solution of dynamical system which does not involve 

periodic solution. Perturbation method, being a semi analytical method, presents results in series approximation 

form, thus, the degree of accuracies with retention of different number of terms are studied. Nonlinearities of 

various forms are considered, with the level of agreements of their solutions presented in tabular form to facilitate 

ease of comparison. In all the problems selected from the literature, numerical results obtained revealed that 

retention of one or two terms in the solution suffices for a reasonable level of accuracy for dynamical system. 

Keywords: Nonperiodic Solution, Dynamical, Perturbation Term, Asymptotic Expansion, Nonlinear Terms, 

Bending Moment  

1. Introduction 

Many dynamical systems, when modeled result into differential equations, mostly nonlinear ordinary 

differential equations [1]. Dynamical system such as simple pendulum, conservative and non-

conservative oscillators, and so on, belong to the dynamical systems with periodic solutions. Many 

researchers have worked on the solution of this category of problems and proffer reliable solutions to 

both conservative and non-conservative oscillators. Prominent among the methods of solution are 

modified differential transform method for solution of excited nonlinear oscillators under damping 

effects by [2], nonlinear oscillator with discontinuity was discussed by [3], where He’s energy balance 

method was adopted, [4] used analytical approximation technique to solve strongly nonlinear oscillator 

problems, just to mention a few. While on the other hand, there is another category of dynamical 

systems that do not involve periodic solutions.  

Such problems work mainly on the principles of moment, where loads are placed on static beams fixed 

at both ends, is a good example of dynamical system that does not involve periodic solution. A beam is 

a structural item with a length that is considerably longer than its width and thickness [5]. Solution to 

such problems were considered in [1,5,6,7]. While perturbation and modified perturbation methods 

were employed in [5] to solve dynamical problems with no periodic solution and nonlinear oscillators 

respectively, [7] on the other hand used modified perturbation theory for anharmonic oscillator. 

In the present work, the approach proposed in [5] is adopted while using perturbation theory to handle 

dynamical problems with no periodic solution, but with varying degrees of nonlinearities. It has been 
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shown here too, that after injecting the results of asymptotic expansion in the given problem and 

resulting system of nonlinear initial value problems solved, retention of few terms in the final series 

solution suffices for an appreciable level of accuracy 

2. Materials and Methods 

2.1 Perturbation Method 

Perturbation method (PM) involves the introduction of a perturbation term into the nonlinear term that 

occurs in the given differential equation if it does not come with the problem. The perturbation term, 

which depends on a small parameter, 𝜀, that is added to the system to bring about corrections [5,8]. 

These corrections, which are mostly smaller compared to the size of the other quantities, are now 

calculated using asymptotic series. This method gives the best results when applied to non-dynamical 

system problems with a non-periodic solution (static systems). To illustrate the method, we shall use 

the nonlinear initial value problem 

                       𝑦′′(𝑥) + 𝑦(𝑥) = 𝑦′(𝑥)2,    𝑦(0) = 𝐴,    𝑦′(0) = 0                         (1) 

To solve (1) by PM, a small nonnegative perturbation term 𝜀 is introduced to the nonlinear term 

𝑦′(𝑥)2. Thus, the IVP in (1) becomes. 

                   𝑦′′(𝑥) + 𝑦(𝑥) = 𝜀𝑦′(𝑥)2,     𝑦(0) = 𝐴,   𝑦′(0) = 0                           (2) 

The asymptotic expansion of 𝑦(𝑥, 𝜀) is given as  

                  𝑦(𝑥, 𝜀) = ∑ 𝜀𝑘𝑦𝑘(𝑥) + 𝑂(𝜀𝑛+1)

𝑛

𝑘=0

                                                          (3) 

The equivalent form of (3) is 

𝑦(𝑥, 𝜀) = 𝑦0(𝑥) + 𝜀𝑦1(𝑥) + 𝜀2𝑦2(𝑥) + ⋯ + 𝜀𝑛𝑦𝑛(𝑥) + 𝑂(𝜀𝑛+1)                       (4) 

Either (3) or (4) is substituted into (2), to get 

𝑦0
′′(𝑥) + 𝜀𝑦1

′′(𝑥) + 𝜀2𝑦2
′′(𝑥) + 𝑂(𝜀3)

= 𝜀(𝑦0
′ (𝑥) + 𝜀𝑦1

′ (𝑥) + 𝜀2𝑦2
′ (𝑥) + 𝑂(𝜀3))

2
− 𝑦0(𝑥) − 𝜀𝑦1(𝑥) − 𝜀2𝑦2(𝑥)

+ 𝑂(𝜀3)                                                                                                                               (5) 

𝑦0
′′(𝑥) + 𝜀𝑦1

′′(𝑥) + 𝜀2𝑦2
′′(𝑥) + ⋯

= 𝜀(𝑦0
′ (𝑥)2 + 2𝜀𝑦0

′ (𝑥)𝑦1
′ (𝑥) + 2𝜀2𝑦1′(𝑥)2 + 2𝜀2𝑦0′(𝑥)𝑦2′(𝑥) + ⋯ ) − 𝑦0(𝑥)

− 𝜀𝑦1(𝑥) − 𝜀2𝑦2(𝑥) …                                                           (6) 

𝑦0
′′(𝑥) + 𝜀𝑦1

′′(𝑥) + 𝜀2𝑦2
′′(𝑥) + ⋯

= −𝑦0(𝑥) − 𝜀(𝑦1(𝑥) − 𝑦0′(𝑥)2) − 𝜀2(𝑦2(𝑥) − 2𝑦0
′ (𝑥)𝑦1

′ (𝑥))

− 𝜀3(𝑦3(𝑥) − 2𝑦0
′ (𝑥)𝑦2

′ (𝑥) − 𝑦1′(𝑥)2) + ⋯                                 (7) 

Comparing the coefficients of various power 𝜀, the IVPs are obtained: 

𝜀0:     𝑦0
′′(𝑥) + 𝑦0(𝑥) = 0,      𝑦(0) = 𝐴,      𝑦′(0) = 0                                            (8) 

𝜀1:     𝑦1
′′(𝑥) + 𝑦1(𝑥) = 𝑦0′(𝑥)2,      𝑦1(0) = 0,    𝑦1′(0) = 0                                (9) 
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𝜀2:     𝑦2
′′(𝑥) + 𝑦2(𝑥) = 2𝑦0

′ (𝑥)𝑦1
′ (𝑥),      𝑦2(0) = 0,     𝑦2

′ (0) = 0                      (10) 

𝜀3:     𝑦3
′′(𝑥) + 𝑦3(𝑥) = 2𝑦0

′ (𝑥)𝑦2
′ (𝑥) + 𝑦1′(𝑥)2,        𝑦3(0) = 0,    𝑦3

′ (0) = 0   (11) 

What follows is the solution of the system of equations (8), (9), (10) and (11) using any of the known 

methods. We therefore obtain 𝑦0(𝑥), 𝑦1(𝑥), 𝑦2(𝑥), … and substitute them in (4) to get 𝑦(𝑥) as 

                  𝑦(𝑥) = 𝑦0(𝑥) + 𝜀𝑦1(𝑥) + 𝜀2𝑦2(𝑥) + ⋯                                                                           (12) 

Sometimes, solving for 𝑦0(𝑥), 𝑦1(𝑥) and 𝑦2(𝑥) suffices, and some other times, solving for the first 

two may suffice. As stated earlier, if the problem being solved is a dynamical system that does not 

involve periodic solutions, then solving for 𝑦0(𝑥) alone or at most solving for 𝑦0(𝑥) and 𝑦1(𝑥) 

suffices. 

3. Numerical Experiments 

To illustrate the implementation of Perturbation Method (PM) described in the earlier sections of this 

paper, we consider a static system that does not have periodic solutions, since this where PM gives 

optima results, [5]. 

Problem 1 [5] 

Consider the structural beam with two hinged ends under a concentrated load at the middle of the 

span. The governing equation for this system is given by the following IVP: 

             𝑦′′(𝑥) −  
𝐹𝑥

2𝐸𝐼
(1 +  𝑦′(𝑥)2)

3
2 = 0,                                                                           (13) 

together with the initial conditions 

          𝑦(0) = 0,   𝑦′(0) =  
𝐹𝐿2

16𝐸𝐼
,                                                                                          (14) 

where 𝑦(𝑥) is the beam deflection (vertical displacement), 𝑦′(𝑥) is the corresponding slope and 𝑥 is 

the time. The constants E and I are the modulus of elasticity and the moment of inertia of the cross 

section about its axis, respectively. L is the length of the beam and F is the load which is concentrated 

at the middle of the span. 

Solution 

In this case the problem did not come with the required small parameter, so it shall be introduced by 

adding it to the nonlinear term as follows: 

         𝑦′′(𝑥) −  
𝐹𝑥

2𝐸𝐼
 (1 +  𝜀𝑦′(𝑥)2)

3
2 = 0,                                                                            (15) 

With the conditions: 𝑦(0) = 0 and 𝑦′(0) =  
𝐹𝐿2

2𝐸𝐼
 using the expansion: 

         𝑦(𝑥, 𝜀) =  ∑ 𝜀𝑘𝑦𝑘(𝑥)

𝑛

𝑘=0

+ 𝑂(𝜀𝑛+1)                                                                               (16) 

In (3), when (3) is written in the form 
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          (𝑦′′(𝑥))2 =  
𝐹2𝑥2

4𝐸2𝐼2  (1 +  𝜀𝑦2(𝑥)2)3,                                                                                 (17) 

We have 

(∑ 𝜀𝑘

𝑛

𝑘=0

𝑦𝑘
′′(𝑥) + 𝑂(𝜀𝑛+1))

2

=  
𝐹2𝑥2

4𝐸2𝐼2 [1 +  𝜀 (∑ 𝜀𝑘𝑦𝑘
′′(𝑥)

𝑛

𝑘=0

+ 𝑂(𝜀𝑛+1))

2

]

3

              (18) 

[𝑦0
′′(𝑥) + 𝜀𝑦1

′′(𝑥) + 𝜀2𝑦2
′′(𝑥) + 𝑂(𝜀3)]2

=
𝐹2𝑥2

4𝐸2𝐼2
[1 + 𝜀(𝑦0

′ (𝑥) + 𝜀𝑦1
′ (𝑥) + 𝜀2𝑦2

′ (𝑥) + ⋯ )2]3                               (19) 

(𝑦0
′′(𝑥))

2
+ 2𝜀𝑦0

′′(𝑥)𝑦1
′′(𝑥) + 𝜀2(𝑦1

′′(𝑥))2 + 2𝑦0
′′(𝑥)𝑦2

′′(𝑥)) + ⋯

=
𝐹2𝑥2

4𝐸2𝐼2 [1 + 3𝜀(𝑦0
′ (𝑥))

2
+ 𝜀2 (3(𝑦0

′ (𝑥))
4

+ 6𝑦0
′ (𝑥)𝑦1

′ (𝑥))

+ 𝜀3 ((𝑦0
′ (𝑥))

6
+ 12(𝑦0

′ (𝑥))
3

𝑦′
1

(𝑥) + 3(𝑦1
′ (𝑥))

2
+ 6𝑦0

′ (𝑥)𝑦2
′ (𝑥))

+ ⋯ ]                                                                                                                   (20) 

Equating the coefficient of 𝜀0, 𝜀1 and 𝜀2 in (8) gives: 

𝜀0: (𝑦0
′ (𝑥))

2
=  

𝐹2𝑥2

4𝐸2𝐼2
,     𝑦(0) = 0, 𝑦0

′ (0) =
𝐹𝐿2

16𝐸𝐼
                                                  (21) 

 

𝜀1: 2𝑦0
′′(𝑥)𝑦1

′′(𝑥) =
3𝐹2𝑥2

4𝐸2𝐼2 (𝑦0
′ (𝑥))

2
,      𝑦1(0) = 0,   𝑦′0 = 0                                         (22) 

𝜀2: (𝑦1
′′(𝑥))

2
+ 2𝑦0

′′(𝑥)𝑦2
′′(𝑥) =

3𝐹2𝑥2

4𝐸2𝐼2
(3(𝑦0

′ (𝑥))
4

+ 2𝑦0
′ (𝑥)𝑦1

′ (𝑥)) ,   𝑦2(0) = 𝑦′
2

(0)

= 0                                                                                                                        (23) 

Solving (21) and (22) shall suffice, as the solution to the (23) will be cumbersome and may therefore 

not be necessary. 

From (21), 

𝑦0
′′(𝑥) =

𝐹𝑥

2𝐸𝐼
  ,       𝑦0(0) = 0, 𝑦′

0
(0) =

𝐹𝐿2

16𝐸𝐼
                                                         (24) 

𝑦0
′ (𝑥) =

𝐹𝑥2

4𝐸𝐼
+ 𝑐1,                                                                                                                    (25) 

Using the associated condition, we have                                                                                          𝑐1 =
𝐹𝐿2

16𝐸𝐼
 . 

Substituting for 𝑐1 in (25), we get 

𝑦0
′ (𝑥) =

𝐹𝑥2

4𝐸𝐼
+

𝐹𝐿2

16𝐸𝐼
                                                                                                            (26) 
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𝑦0(𝑥) =
𝐹𝑥3

12𝐸𝐼
+

𝐹𝐿2𝑥

16𝐸𝐼
+ 𝑐2                                                                                                 (27) 

Using the condition 𝑦0 = 0, we have                                                                                                        

   𝑐2 = 0. 

Thus, (27) becomes 

𝑦0(𝑥) =
𝐹𝑥3

12𝐸𝐼
+

𝐹𝐿2𝑥

16𝐸𝐼
                                                                                                        (28) 

(28) is taken as the solution of (21), not losing focus on the fact that (21) will have two answers that 

only differs in sign. Since (28) satisfies the subsidiary conditions in (21), it is accepted as the solution. 

We now proceed with the solution of (10) as follows: 

𝑦1
′′(𝑥) =

3𝐹2𝑥2

4𝐸2𝐼2 (𝑦′
0(22))

2
,       𝑦1(0) = 𝑦′

1
(0) = 0                                                                 

2 (
𝐹𝑥

2𝐸𝐼
) 𝑦1

′′(𝑥) =
3𝐹2𝑥2

4𝐸2𝐼2 (
𝐹𝑥2

4𝐸𝐼
+

𝐹𝐿2

16𝐸𝐼
)                                                                                                

𝑦1
′′(𝑥) =

3𝐹2𝑥2

4𝐸2𝐼2
  .

𝐸𝐼

𝐹𝑥
(

𝐹𝑥2

4𝐸𝐼
+

𝐹𝐿2

16𝐸𝐼
)                                                                                                     

𝑦1
′′(𝑥) =

3𝐹𝑥

4𝐸𝐼
(

𝐹𝑥2

4𝐸𝐼
+

𝐹𝐿2

16𝐸𝐼
)                                                                                                                   

𝑦1
′ (𝑥) =

3𝐹2𝑥4

64𝐸2𝐼2
+

3𝐹2𝐿2𝑥2

128𝐸2𝐼2
+ 𝑐3                                                                                                 (29) 

Using the associated conditions, (22) gives                                                                                    𝑐3 =

0. 

Thus, 

𝑦1
′ (𝑥) =

3𝐹2𝑥4

64𝐸2𝐼2
+

3𝐹2𝐿2𝑥2

128𝐸2𝐼2
                                                                                                                           

And 

𝑦1(𝑥) =
3𝐹2𝑥5

320𝐸2𝐼2
+

𝐹2𝐿2𝑥3

128𝐸2𝐼2
+ 𝑐4                                                                                             (30) 

Using 𝑦1(0) = 0, (30) gives                                                                                                                 

  𝑐4 = 0. 

Thus, 

  𝑦1(𝑥) =
3𝐹2𝑥5

320𝐸2𝐼2
+

3𝐹2𝐿2𝑥3

128𝐸2𝐼2
                                                                                               (31) 

Hence, the solution of (15) is given by 



Yisa,                                                                       ILORIN JOURNAL OF SCIENCE 

 

77 
 
 

 𝑦(𝑥) =  𝑦0(𝑥) + 𝜀𝑦1(𝑥) + ⋯                                                                                            (32)  

As 

𝑦(𝑥) =
𝐹𝐿2𝑥

16𝐸𝐼
+

𝐹𝑥3

12𝐸𝐼
+ 𝜀 (

3𝐹2𝐿2𝑥3

128𝐸2𝐼2
+

3𝐹2𝑥5

320𝐸2𝐼2) + ⋯                                             (33) 

 

Since 𝜀 is a very small nonnegative constant, taking 𝜀 = 1 in this case yields 

𝑦(𝑥) =
𝐹𝐿2𝑥

16𝐸𝐼
+

𝐹𝑥3

12𝐸𝐼
+

3𝐹2𝐿2𝑥3

128𝐸2𝐼2
+

3𝐹2𝑥5

320𝐸2𝐼2
 .                                                                                      

 

Problem 2 [5] 

Solve the BVP in Problem 1 by setting  

(1 + 𝑦′(𝑥)2)
3
2 ≈ 1 +

3

2
𝑦′(𝑥)2

.                                                                                                  (34) 

And compare your results with these obtained in Problem 1. 

Solution 

The new problem is  

𝑦′′(𝑥) −
𝐹𝑥

2𝐸𝐼
(1 +

3

2
𝑦′(𝑥)2) = 0,                                                                                    (35) 

with the conditions 

𝑦(0) = 0      𝑎𝑛𝑑   𝑦′(0) =
𝐹𝐿2

16𝐸𝐼
                                                                                      (36) 

To solve this problem by permutation method, the small positive parameter 𝜀 is introduced to the 

nonlinear term in (35). Thus, we have 

𝑦′′(𝑥) −
𝐹𝑥

2𝐸𝐼
(1 +

3

2
𝜀𝑦′(𝑥)2) = 0                                                                                  (37) 

Using 

𝑦(𝑥, 𝜀) = ∑ 𝜀𝑘𝑦𝑘(𝑥) + 𝑂(𝜀𝑛+1)

𝑛

𝑘=0

                                                                                   (38) 

in (35), we have 

∑ 𝜀𝑘𝑦𝑘
′′(𝑥) + 𝑂(𝜀𝑛+1)

𝑛

𝑘=0

=
𝐹𝑥

2𝐸𝐼
[1 +

3

2
𝜀 (∑ 𝜀𝑘𝑦𝑘

′ (𝑥) + 𝑂(𝜀𝑛+1)

𝑛

𝑘=0

)

2

]                  (39) 
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𝑦0
′′(𝑥) + 𝜀𝑦1

′′(𝑥) + 𝜀2𝑦2
′′(𝑥) + 𝑂(𝜀)2

=
𝐹𝑥

2𝐸𝐼
[1 +

3

2
𝜀(𝑦0

′ (𝑥) + 𝜀𝑦1
′ (𝑥) + 𝜀2𝑦2

′ (𝑥) + 𝑂(𝜀)3)2]                    (40) 

𝑦0
′′(𝑥) + 𝜀𝑦1

′′(𝑥) + 𝜀2𝑦2
′′(𝑥) + ⋯ =

𝐹𝑥

2𝐸𝐼
(1 +

3𝜀(𝑦0
′ (𝑥))

2

2
+ 3𝜀2𝑦0

′ (𝑥)𝑦1
′ (𝑥) + ⋯ ) (41)   

Taking the coefficients of various powers of  𝜀, we have 

𝜀0:    𝑦′0
′ (𝑥) =

𝐹𝑥

2𝐸𝐼
,      𝑦0(0) = 0, 𝑦0

′ (0) =
𝐹𝐿2

16𝐸𝐼
                                                    (42) 

𝜀1:    𝑦′1
′ (𝑥) =

3𝐹𝑥

4𝐸𝐼
𝑦0

′ (𝑥)2,   𝑦1(0) = 0,    𝑦1
′ (0) = 0                                                       (43) 

𝜀2:   𝑦′2
′ (𝑥) =

3𝐹𝑥

2𝐸𝐼
𝑦0

′ (𝑥)𝑦1
′ (𝑥),    𝑦2(0) = 0, 𝑦2

′ (0) = 0                                         (44) 

Solving (42), (43) and (44) successively, we have 

                                             𝑦0
′′(𝑥) =

𝐹𝑥

2𝐸𝐼
                                                                                (45) 

                                              𝑦′0
′ (𝑥) =

𝐹𝑥2

4𝐸𝐼
+ 𝑐1                                                    (46) 

Using the associated conditions, we get 

                                                  𝑐1 =
𝐹𝐿2

16𝐸𝐼
                                                                (47) 

Hence (46) becomes 

                                       𝑦0
′ (𝑥) =

𝐹𝑥2

4𝐸𝐼
+

𝐹𝐿2

16𝐸𝐼
                                                      (48) 

                                       𝑦𝑜(𝑥) =
𝐹𝑥3

12𝐸𝐼
+

𝐹𝐿2𝑥

16𝐸𝐼
+ 𝑐2                                             (49) 

Using 𝑦0(0) = 0, we have 

                                                        𝑐2 = 0,                                                                         

hence (49) becomes 

                                               𝑦0(𝑥) =
𝐹𝑥3

12𝐸𝐼
+

𝐹𝐿2𝑥

16𝐸𝐼
.                                            (50) 

For the solution of (43), we proceed as follows: 

                                     𝑦′1
′ (𝑥) =

3𝐹𝑥

4𝐸𝐼
(

𝐹𝑥2

4𝐸𝐼
+

𝐹𝐿2

16𝐸𝐼
)

2

,                                                                     
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                                          𝑦′1
′ (𝑥) =

3𝐹2𝑥3

16𝐸2𝐼2
+

3𝐹3𝑥3𝐿2

128𝐸3𝐼3
+

3𝐹3𝐿4𝑥

64𝐸3𝐼3
                  (51) 

                                            𝑦1
′ (𝑥) =

3𝐹2𝑥4

64𝐸2𝐼2
+

3𝐹3𝑥4𝐿2

512𝐸3𝐼3
+

3𝐹3𝐿3𝑥2

128𝐸3𝐼3
+ 𝑐3      (52) 

Using the attached conditions, we have 

                                                        𝑐3 = 0.                                                                    

Thus (52) reduces to 

                                           𝑦1
′ (𝑥) =

3𝐹2𝑥4

64𝐸2𝐼2
+

3𝐹3𝑥4𝐿2

512𝐸3𝐼3
+

3𝐹3𝐿3𝑥2

128𝐸3𝐼3
                  (53) 

                                            𝑦1(𝑥) =
3𝐹2𝑥5

320𝐸2𝐼2
+

3𝐹3𝑥5𝐿2

3060𝐸3𝐼3
+

𝐹3𝐿3𝑥3

128𝐸3𝐼3
+ 𝑐4   (54) 

Using the associated condition here again gives 

                                                 𝑐4 = 0.                                                                                  

Hence, 

                                            𝑦1(𝑥) =
3𝐹2𝑥5

320𝐸2𝐼2
+

3𝐹3𝑥5𝐿2

3060𝐸3𝐼3
+

𝐹3𝐿3𝑥3

128𝐸3𝐼3
                  (43) 

Solving (44) becomes cumbersome, hence the first two results shall suffice here again. Therefore, 

        𝑦(𝑥) = 𝑦0(𝑥) + 𝜀𝑦1(𝑥) + ⋯                                                                               (44) 

      𝑦(𝑥) =
𝐹𝑥3

12𝐸𝐼
+

𝐹𝐿2𝑥

16𝐸𝐼
+ 𝜀 (

3𝐹2𝑥5

320𝐸2𝐼2
+

3𝐹3𝑥5𝐿2

3060𝐸3𝐼3
+

𝐹3𝐿3𝑥3

128𝐸3𝐼3) + ⋯        (45) 

Using 𝜀 = 1, we have 

     𝑦(𝑥) =
𝐹𝑥3

12𝐸𝐼
+

𝐹𝐿2𝑥

16𝐸𝐼
+

3𝐹2𝑥5

320𝐸2𝐼2
+

3𝐹3𝑥5𝐿2

3060𝐸3𝐼3
+

𝐹3𝐿3𝑥3

128𝐸3𝐼3
.                          (46) 

3. Result and Discussion 

3.1.  Result 

Table 1: Results for 𝒚(𝒙) = 𝒚𝟎(𝒙) for Problems 1 and 2 

𝒙 L EI F Problem 1 Problem 2 

1 1 500 100 0.029166710 0.029166710 

2 1 500 100 0.15833310 0.158333100 

3 1 500 100 0.48751000 0.48751000 

4 1 500 100 1.11667100 1.11667100 

5 1 500 100 2.145583100 2.14583100 
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Table 2: Results for 𝒚(𝒙) = 𝒚𝟎(𝒙) + 𝒚𝟏(𝒙) for Problems 1 and 2  

 

 

 

 

Table 3: Results for 𝒚(𝒙) = 𝒚𝟎(𝒙) for Problems 1 and 2 

𝒙 L EI F Problem 1 Problem 2 

1.0 3 500 100 0.12916710 0.12916710 

2.0 3 500 100 0.35833310 0.35833310 

3.0 3 500 100 0.7875100 0.78751000 

4.0 3 500 100 1.51667100 1.51667100 

5.0 3 500 100 2.64583100 2.64583100 

 

Table 4: Results for 𝒚(𝒙) = 𝒚𝟎(𝒙) + 𝒚𝟏(𝒙) for Problems 1 and 2 

𝒙 L EI F Problem 1 Problem 2 

1 3 500 100 0.13235410 0.1313100 

2 3 500 100 0.39283310 0.38609210 

3 3 500 100 0.95456310 0.94134100 

4 3 500 100 2.08067100 2.08095100 

5s 3 500 100 4.16927100 4.24923100 

 

Table 5: Results for 𝒚(𝒙) = 𝒚𝟎(𝒙) for Problems 1 and 2 

𝒙 L EI F Problem 1 Problem 2 

1 5 500 100 0.32916710 0.32916710 

2 5 500 100 0.75833310 0.75833310 

3 5 500 100 1.38751000 1.38751000 

4 5 500 100 2.31667100 2.316671000 

5 5 500 100 3.6458310 3.64583100 

 

Table 6: Results for 𝒚(𝒙) = 𝒚𝟎(𝒙) + 𝒚𝟏(𝒙) for Problems 1 and 2 

𝒙 L EI F Problem 1 Problem 2 

1 5 500 100 0.33735410 0.33755100 

2 5 500 100 0.83283310 0.83910810 

3 5 500 100 1.68956100 1.7372110 

4 5 500 100 3.20067100 3.40145100 

5 5 500 100 5.79427100 5.40702100 

 

3.2. Discussion 

The two problems considered are different only in the nonlinearity parts as indicated in Problem 2. 

The problems were solved by perturbation method with the usual introduction of the perturbation 

parameter, 𝜀, to nonlinear terms. The solutions are presented by retaining the first term if the series 

𝒙 L EI F Problem 1 Problem 2 

1 1 500 100 0.029854210 0.02961210 

2 1 500 100 0.172833100 0.17108410 

3 1 500 100 0.587063100 0.58221810 

4 1 500 100 1.52067100 1.51271000 

5 1 500 100 3.35677100 3.35003100 
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only for the two problems, and also by retaining the first two terms of the series. Solving for the third 

term in the two cases presented very cumbersome situations and were therefore abandoned. Tables 1 

and 2, 3 and 4, and 5 and 6 presents the numerical results obtained using the same set of values 

assigned to the terms and L taken three values respectively. All the values assigned to the constants 

are adopted from [5]. It is easily seen in the tables that the solutions with only 𝑦0(𝑥) retained 

produced the same results for the two problems, as we have them in Tables 1, 3, and 5. On the other 

hand, with 𝑦0(𝑥) and 𝑦1(𝑥) retained the results are still close, but not completely the same. 

As stated earlier, retaining one or two terms in the series suffices, since there are no significant 

differences in the results with one term and two terms retained. 
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