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Abstract 

Vertical plasma drift velocities (𝑣𝑧) estimated from peak heights of F2-region (hmF2) was investigated over Ilorin 

(lat. 8.31°N, long. 4.34°E, dip lat. 2.95o N) during a year of Low Solar Activity (LSA), a station sited at the low 

latitudinal dip. The monthly means of vertical plasma drifts, 𝑣𝑧 were estimated from 10-international quiet days 

(IQDs) monthly means of hmF2 computed across each local time hour. Diurnally, 𝑣𝑧 had behavourial patterns of 

pre-noon and post-noon peaks noticed for all seasons, but in hmF2, it had pre-noon and post-sunset peaks occurred 

for all seasons. The 𝑣𝑧 pre-noon peak magnitudes are 1.0, 2.4 and 6.4 m/s for December Solstice, June Solstice 

and Equinox respectively; and 𝑣𝑧 post-noon peak magnitudes are 0.6, 1.7 and 2.2 m/s for December Solstice, 

Equinox and June Solstice respectively. The hmF2 pre-noon peak magnitudes is from 316 to 353 km, and post-

sunset peak magnitudes is from 310 to 392 km for all seasons. Also, 𝑣𝑧 displayed pre-reversal enhancement (PRE) 

night peaks for all seasons. The PRE peak magnitudes are from -0.1 m/s to -1.2 m/s at 2000 LT, from -0.2 m/s to 

-4.0 m/s at 2200 LT, from -0.6 m/s to -3.0 m/s at 0000 LT and from -0.5 m/s to -1.8 m/s between 0300 LT and 

0400 LT respectively for all seasons. The same phenomenal occurrence was noticed in the annual patterns of hmF2 

and 𝑣𝑧. In general, the 𝑣𝑧 and hmF2 magnitudes were highest in equinox (6.4 m/s and 353 km) and lowest in 

solstice (1.0 m/s and 310 km). The 𝑣𝑧 and hmF2 steady and incessant drop shows the rapidly drifting away of 

electrons from the equator caused by solar ionization in the low latitude region for all seasons.  
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1. Introduction 

Morphological studies of the F2-region vertical drift velocities of ionization due to vertical E 

× B drifts had been widely investigated using different observational techniques and measuring 

equipment at different equatorial stations and continents of the world to derive models. Studies 

from Jicamarca Ionospheric Observatory had played the most leading role for the modelling of 

plasma drifts by these various researchers: Fejer et al., 1991; Fejer 1997; Scherliess and Fejer 

1999; Woodman et al., 2006. Furthermore, Fejer et al., 1995; Fejer et al., 2008; Kil et al., 2009; 

Luhr et al., 2008, using observational means of measuring instrument and satellites [e.g. Ions 

Drift Meter (IDM), CHAllenging Minisatellite Payload-SATellite (CHAMP-SAT), and 

Republic Of China SATellite 1 (ROCSAT-1)] to study vertical E × B drifts at equatorial and 

low latitude regions. The two-measuring methods (IDM and SAT) resulted to the emerging 

studies of the universal model for the measurements of F2-region vertical E × B drifts. 

The ionospheric real-time data from Digisondes, as suggested by Reinisch et al., 2005 are 

actually valuable parameters in ionospheric studies. Ionosondes data of the ionospheric F2-

region available can be used to estimate the velocities of vertical E × B drifts. An initial 

apprehension encountered on the worth of data obtained from ionograms during the automatic 

scaling of its echo traces had been described by Reinisch et al., 1998. But an algorithm called 

‘ARTIST’ developed as an auto-scaling program for the ionograms has been inculcated in the 

digisondes, attributed to Reinisch et al., 2005. This is done to ensure that the now scaled-out 

data are dependable and useful for models forecasting in the ionosphere. 

Similar methodology was used by some early researchers at different sectors of the world. 

Batista et al., 1996; Buonsanto and Witasse 1999; Kelley et al., 2009 concentrated their studies 

on the sector of South America; also, Liu et al., 2004; Sastri 1996; Uemoto et al., 2010 carried 

out their investigations in the Indian sector. For the Africa sector, various investigations were 

carried out by numerous researchers, such as, Adebesin et al., 2013a, b; Adeniyi et al., 2014a, 

b; Obrou et al., 2003; Oyekola and Kolawole 2010; Oyekola 2007; Radicella and Adeniyi 1999. 

The datasets used for this our present work were auto-scaled data obtained from Ilorin 

Observatory Station (8.5°N, 4.68°E, dip 2.96°N) of GIRO site for the months of April (Sunspot 

number (SSN), 𝑅𝑧 = 7) representing March equinox, July (Sunspot number (SSN), 𝑅𝑧 = 15) 

stands for June solstice, October (Sunspot number (SSN), 𝑅𝑧 = 21) used for September 

equinox and November (Sunspot number (SSN), 𝑅𝑧 = 21) stands for December solstice during 

year 2010 – a period of low solar activity (LSA).  
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In estimating the plasma drifts pattern over Ilorin, the time-rate of change of F2-region peak 

height, hmF2, were extracted and computed. However, some previous works have revealed an 

improvement by the real height at some particular frequencies (say, 3, 4 or 5 MHz) as well as 

estimating the averages at such designated frequencies (e.g. Abdu et al., 2004); other studies 

have shown the plasma drifts computed from the reflecting height, h’F2 of the F2-region, e.g., 

Araujo-Pradere et al., 2010; Ehinlafa et al., 2023a, b; Lee et al., 2005. Liu et al., 2011 display 

notable latitudinal changes in the real height pattern (hmF2), which controls the effect of solar 

activity in the low latitude regions, and also, the purpose of using it as an estimating parameter 

in this study. Drifts of vertical E × B plasma estimated from hmF2 shows a better statistical 

illustration of the enhanced ionization uplifting with pre-noon/post-noon peaks during the 

daytime, and also, a well representation of the pre-reversal enhancement of vertical plasma 

drifts with night peaks indication between 1900 LT and 0500 LT. Hence, this is the major 

reason for adopting the peak height, hmF2 as a parameter in estimating drifts of vertical E × B 

plasma in this our recent study using the international quiet days (IQDs).  In essence, this recent 

work aimed to study the variation of peak height, hmF2; to estimate the vertical E × B plasma 

drifts from peak height, hmF2; and finally, to investigate the estimated drifts pattern of the F2-

region.  This is carried out as a confirmation to the earlier results obtained by Bittencourt and 

Abdu 1981; Adeniyi et al., 2014a. 

2. Data Analysis 

The main parameter used for this present study is the auto-scaled ionospheric peak height of 

F2-region (hmF2) obtained from the digisonde sited at Ilorin Observatory (Geo. Lat. 8.50°N, 

Long. 4.68°E, dip Lat. 2.95°N) on GIRO’s site, a low latitude station in the sector of West 

Africa. The hourly datasets of peak height (hmF2) of F2-region were extracted from the 

Digisonde Portable Sounder (DPS-Version 4.2) of the GIRO’s web address 

(https://giro.uml.edu/didbase/scaled.php). The software program, designed by Huang and 

Reinisch (1996), known as the Calculated Average Representative Profile (CARP) inversion 

program, was used for auto-scaling of data in the digisonde. The examining data is year 2010, 

a period of low solar activity (Sunspot number (SSN), 𝑅𝑧 = 16; which is also the mean of the 

four-month sunspot numbers used here, and Solar (F10.7) flux (SF), 𝜙𝑧 = 80). The 

international quiet days (IQDs) data from Geoscience Australia 2009 is measured in each one-

hour local time (LT). The peak heights, hmF2 of F2-region data obtained is analysed by the 

computation of monthly average over ten international quiet days (IQDs) for each month 

considered except five international quiet days (IQDs) were used in December Solstice due to 

https://giro.uml.edu/didbase/scaled.php
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the scanty data available. From these values of hourly monthly average, the drift velocities of 

vertical plasma, according to Adeniyi et al., 2014a, were estimated by determining the time-

rate of change of F2-region peak heights:  

𝑣𝑧 =
𝑑(ℎ𝑚𝐹2)

𝑑𝑡
        1 

For the seasonal pattern of variation of vertical plasma drift velocities, 𝑣𝑧 from the peak height, 

hmF2 are computed by estimating the means for the selected months across each local time 

hour. Similarly, the variation of the annual pattern of 𝑣𝑧 is resolved by finding the annual 

average of the four months across each hour for a better interpretation. 

3. Results and Discussion 

3.1 Variation Patterns of Seasonal Real Heights, hmF2 

Figure 1 shows the mean seasonal variation of the peak electron density real height, hmF2 

during low solar activity over Ilorin. 

 

Figure 1: Hourly mean of peak heights, hmF2, for all the seasons during LSA period 
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hmF2 variations display a steady and gradual growth for all the seasons between 0600 LT and 

1000 LT. During the daytime, a pre-noon peak around 1000 LT with magnitudes of (316–353) 

km for all seasons was noticed. The pre-noon peak magnitudes of peak height, hmF2 was 

noticed to be least in June Solstice (316 km), and also, highest in equinox (353 km) around 

1000 LT during the low solar activity period. It is adjudged that the stronger drifting of electron 

density to higher altitudes as noticed in peak height of equinoctial season where the loss rate 

due to recombination becomes much weaker; the electron density found in higher altitudes 

therefore has a longer life, and thereby yielding a higher magnitude in equinox, which is in 

agreement with Chen et al., 2008 and Ehinlafa et al., 2023b. A much broader variation between 

1100 LT and 1600 LT was thereafter noticed and the magnitudes of the peak height, hmF2 is 

(310 –367) km for all seasons. Another steady growth of peak height, hmF2 between 1600 LT 

and 1900 LT for all seasons was witnessed by attaining a second peak (post-sunset peak) except 

during June solstice that experienced steady drop. During the night period, a post-sunset peak 

of peak height, hmF2 between 1800 LT and 1900 LT for the entire season was obtained. 

However, the highest magnitude of peak height, hmF2 around 1800 LT was obtained in 

December Solstice (392 km) and the least magnitude around 1900 LT was noticed in June 

Solstice (310 km) during LSA period. According to Adebesin, et al., 2013a, b; Adeniyi, et al., 

2014a, b; Ehinlafa et al., 2023b, the abrupt movement of electron density triggered by the onset 

and turn-off of solar ionization, as well as the superimposition of Spread-F on the peak height 

of electron density between 1800 LT and 2300 LT may be helpful in symbolizing the post-

sunset peak of the peak height, hmF2 between 1800 LT and 1900 LT here. Instantly after this 

local time, a steady and continuous drop was noticed in the patterns of seasonal variation up 

till the 0500 LT with magnitudes of (245–320) km during the LSA period. The differences 

between the magnitudes of pre-noon peaks and post-sunset peaks for all seasons are 

considerably not distinct except during the December Solstice where highest magnitude (392 

km) of peak height, hmF2 was noticed. 

 

Figure 2 is the hourly annual mean of peak height of F2-region revealed similar to Figure 1. 

The post-sunset peak with mean magnitude of 356 km around 1900 LT, which is higher than 

the pre-noon peak of mean magnitude 343 km around 1000 LT was noticed in Figure 2 for the 

peak height, hmF2 annual plot for the period of LSA. 
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        Figure 2: Hourly annual mean of peak height, hmF2 during period of LSA 
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LT, attaining a shrill (pre-noon) peak of plasma drift around 0700 LT for Solstice seasons and 

0900 LT for equinoctial season. 

 

 

Figure 3: Hourly diurnal average vertical plasma drifts (𝑣𝑧) for all seasons during the LSA period 
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over the low latitudinal dip along the magnetic field lines of the Earth. This is achieved by 

ensuing plasma decrease about the low latitudinal dip creating a-twin distributing latitudinal 

hunched (EIA) on each side of the magnetic equator. The EIA created with the formation of 

crests near the low latitudinal dip between 0700 LT and 0900 LT, and also, improves in strength 

by the plasma movement towards both poles. The sharp growth in peak height, hmF2 which is 

resulted from the consolidating of crests formed, thus building up the drift of vertical plasma 

pre-noon peak between 0700 LT and 0900 LT for all seasons. These noticed observations show 

an agreement with observed occurrences in Adebesin et al., 2013b; Adeniyi et al., 2014b for 

the entire season during the daytime. 

During the nighttime observations, an enhanced uplift of the plasma drift was first noticed 

between 1900 LT and 2300 LT having positive drift peak magnitudes of (0.1–1.2) m/s and 

(0.4–2.4) m/s respectively for the entire season, and also, the second was noticed between 0200 

LT and 0500 LT having positive drift peak with highest magnitudes of (2.0–3.6) m/s occurred 

in Equinoctial, followed by the magnitudes of (2.4–2.7) m/s in June Solstice and the least 

magnitudes of (0.1–0.3) m/s in December Solstice. Thereafter, a downward enhanced reversal 

was noticed. The downward enhanced reversal occurred at two separate periods of local time 

thereby giving pre-reversal enhancement (PRE) occurrence of negative drift peaks: the first 

one occurred at 2000 LT having negative drift peak magnitudes of [(-0.1)–(-1.2)] m/s and, the 

second at 2200 LT recording negative drift peak magnitudes with highest in Equinoctial (-4.0 

m/s), then the June Solstice (-1.5 m/s) and the lowest in the December Solstice (-0.2 m/s). 

Similar occurrence was noticed of night pre-reversal enhancement (PRE) negative drift peaks 

firstly around 0000 LT with magnitudes of [(-0.6)–(-3.0)] m/s for all seasons, and secondly, 

between 0300 LT and 0400 LT having magnitudes recorded with highest in Equinoctial (-1.8 

m/s), followed by the June Solstice (-1.0 m/s) and the least in December Solstice (-0.5 m/s). 

This indicates seasonal dependent of the vertical E × B plasma drift, and also, the observed 

occurrences agreed with the noticed observations of Adebesin et al., 2013a; Adeniyi et al., 

2014a in all seasons during the nighttime. 

Depicted in Figure 4 is the hourly annual mean pattern of the F2-region vertical E × B drifts 

shown similar to Figure 2. During the daytime, the drift shrill peak of pre-noon with mean 

magnitude of 3.5 m/s around 0900 LT after a sudden growth that commenced around 0600 LT 

was noticed. Also, the steady and continuous downward decaying to below zero and a bit above 

zero drifts of the vertical plasma at various local times were noticed respectively with mean 

magnitudes as follows: -1.6 m/s at 1100 LT, 0.2 m/s between 1200 LT and 1500 LT, -0.9 m/s 
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at 1400 LT, and -2.0 m/s at 1600 LT. In addition, a slight-transitory enhanced spikes occurred 

mainly at two local times with drift mean magnitudes of 0.6 m/s at 1300 LT and 1.5 m/s at 

1700 LT. These are the daytime occurrences of the annual plot of vertical plasma drifts 

variation for the period of LSA which conformed with Adebesin et al., 2013b; Adeniyi et al., 

2014a. 

 

Figure 4: Annual mean pattern of Vertical E × B Plasma Drift (𝑣𝑧) for all seasons during LSA period 
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0900 LT here, which is caused by the enhanced uplift of electrons rapidly from the equator in 

F2-region of ionization production due to solar radiation. These noticed occurrences are 

observed in the low latitude ionosphere here (see figure 4), which conformed with Adebesin et 

al., 2013a; Adeniyi et al., 2014b. 

 

4. Summary and Conclusion 

This work has investigated peak height, hmF2 as a parameter in estimating drifts of vertical E 

× B plasma using Ilorin data, a station found at the low latitudinal dip (EIA). The following 

outcomes of this paper were summarily deduced and concluded as:   

A pre-noon and post-sunset peaks in hmF2 with magnitudes of (316–353) km around 1000 LT 

and (310–392) km between 1800 LT and 1900 LT for all seasons occurred respectively during 

the LSA period. The variances in hmF2 magnitudes noticed amidst the pre-noon and the post-

sunset peaks in all seasons are not so pronounced except during the December Solstice. During 

the nighttime, a night enhanced uplift in hmF2 with mean magnitude of 356 km around 1900 

LT noticed after sunset (figure 2) is an indicative that electrons are driven from the equator to 

a region due to solar ionization in the low latitudinal dip. However, a continuous steady drop 

noticed around 1900 LT progresses until a pre-sunrise minimum time around 0600 LT was 

noticed for all seasons. Seasonal peaks in hmF2 noticed here are suspected to be controlled by 

the enhanced vertical E × B ion drifts which conforms with nearly erstwhile outcomes gotten 

at some stations in the West African sector during periods of LSA especially by Adeniyi et al., 

2014a. This is possible because of the strong relation established in estimating vertical plasma 

drifts, 𝑣𝑧 from peak heights, hmF2. As well, it has become essential to demonstrate the mean 

height profile for the entire 24-hour plot of peak height, hmF2 here. In conclusion, there is 

worthy note in a generalized theory that a peak height above 300 km, the superficial velocity 

of plasma drift is nearly similar to the real velocity of vertical plasma drift, which conforms 

with our obtainable values of the mean peak height, hmF2 (Bittencourt and Abdu 1981). Hence, 

our result promoted a fact that the peak height, hmF2 displays quick growth. 

 

A drift Shrill (pre-noon) peaks of vertical plasma were noticed with magnitude range of (1.0 – 

6.4) m/s for all seasons between 0700 LT and 0900 LT for the period of LSA. Two slight-

transitory enhanced spikes occurred having the first spike magnitudes (0.4–1.0) m/s between 

1200 LT and 1300 LT less than the second spike (post-noon peak) magnitudes (0.6–2.2) m/s 
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around 1700 LT for all seasons as confirmed by Adeniyi et al., 2014a. A steady and continuous 

downward drop of vertical plasma drifts to below zero and a bit above zero between 1000 LT 

and 1600 LT in all seasons were noticed, which is due to the progressional drop of vertical 

plasma drifts over the low latitudinal dip along the magnetic field lines of the Earth. An 

enhanced uplift of the plasma positive peak magnitudes of (0.1–1.2) m/s and (0.4–2.4) m/s was 

first noticed between 1900 LT and 2300 LT respectively was found to be less than the second 

noticed plasma positive peak with magnitudes of (0.1–2.4) m/s and (0.3–3.6) m/s between 0200 

LT and 0500 LT respectively in all seasons for the LSA period. A night pre-reversal 

enhancement (PRE) of negative drift peak occurred at first and second periods of local time 

having magnitudes of [(-0.1)–(-1.2)] m/s at 2000 LT and [(-0.2)–(-4.0)] m/s at 2200 LT 

respectively for all seasons, which is higher in similar quantity of night pre-reversal 

enhancement (PRE) negative drift peak firstly around 0000 LT with magnitudes ranging of [(-

0.6)–(-3.0)] m/s and, secondly between 0300 LT and 0400 LT having magnitudes ranging of 

[(-0.5)–(-1.8)] m/s for all seasons as established by Adeniyi et al., 2014a. A gradual reversal of 

drifts during the high periods of peak height, hmF2 noted here depicts that the Pre-Reversal 

Enhancement (PRE) is fundamentally accountable for the huge uplift of the F2-region vertical 

plasma, and in return, the creation of the low latitudinal dip (EIA). 

In conclusion, a solid dependent relation was noticed generally with the hourly mean values 

computed between the corresponding peak heights, hmF2 and the estimating enhanced vertical 

E × B drift velocities in each season mentioned here. 
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