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Abstract 

This work presents an experimental implementation of a nonlinear chaotic system using Multisim simulation 

software and off-the-shelve components. The three-dimensional nonlinear differential equations of Sprott, 

Rossler, and two-dimensional van der Pol systems were transformed into an electronic circuit. We derived the 

differential equations for the systems using Kirchoff’s Laws. An Op-amp is used as an integrator and inverter in 

the circuits while a multiplier is used for deriving the nonlinear terms in the systems. The transformation of the 

system from periodic to chaotic oscillation was observed. Two identical systems were coupled using bidirectional 

and cyclic coupling schemes, synchronization, and the advantages of cyclic coupling configuration over the 

convectional bidirectional schemes of the new systems are reported. 

 
Keywords: Cyclic Coupling, Diffusive Coupling, Synchronization, Coupling Strength and Electronics 

Implementation 

 

1. Introduction 

Experimental investigation of chaos synchronization involves practically implementing and 

observing chaotic systems under different coupling schemes. The key steps in such an 

investigation include System Selection, Coupling Implementation, Data Collection, and 

Analysis. Since the discovery of chaos by Lorenz to describe the simplified Rayleigh–Benard 

problem, unpredictable dynamical behaviour has been found in many other natural and 

artificial systems and has great potential usage in technological development, such as in 

communication systems, philosophy and complexity science, psychology and neuroscience, 

information security, engineering and control systems, finance and economics, biological 

systems, weather forecasting, and climate science (Somayeh et al., 2020; Alexey, 2023; Bowen 

and Lingfeng, 2023; Li et al., 2023; Sundarapandian et al., 2018). 

The use of different coupling schemes to achieve synchronization and stability criteria in 

dynamic systems has been of great interest to researchers for the past two decades. The 
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unidirectional and bidirectional linear couplings were mainly explored in two or many 

oscillators (Yeldesbay et al., 2014). Synchronization in two or more dynamical systems occurs 

when the chaotic systems, driven by similar dynamics, achieve a correlated behaviour. In an 

unpredictable system, adjustment of initial conditions leads to vastly different changes in the 

system dynamics as time changes (Massimo et al., 2010).  

The trajectories of chaotic systems can become identical under certain conditions, such as: 

identical dynamics, coupling strength, coupling mechanism, and so on. The general idea of this 

phenomenon is to exploit the inherent unpredictability and sensitivity to initial conditions in 

chaotic systems for secure communication, data encryption (Alvarez and Li, 2006), Secure Key 

Distribution (Atsushi et al., 2008), Neural Networks and Chaos Synchronization (Pathak et al., 

2018), Biomedical Signal Processing (Marwan et al., 2007), Optical Communication (Larger 

et al., 2015).  

Chua, 1983 implemented a simple electronic circuit that exhibited chaotic behaviour, it is the 

earliest circuit experiment of chaotic systems, and it played a vital role in demonstrating the 

feasibility of chaos in physical systems (Chua, 2006). The electronic coupling of chaos systems 

has been important to understanding some basic applications of chaos. For unidirectional 

coupling, commonly called master-slave coupling, the systems are connected through the 

resistor and a unity-gain operational amplifier (OP Amp) (Larger et al., 2015).  

On the other hand, for master-master or slave-slave coupling, also referred to as bidirectional 

or diffusive coupling, the systems are coupled through the same variables, this can be found 

mostly in many natural systems (Pikovsky et al., 2001), for example, in gap junction of neurons 

(Skinner et al., 1999). The coupling is realized by joining the same points of indistinguishable 

circuits through a resistor, it leads to reciprocal interaction between the two systems then 

synchronization takes place. The major task in the study of synchronization in chaotic systems 

is determining the critical coupling for which a synchronized system is stable. The coupling 

configuration and topology are vital in achieving synchronization stability (Christophe et al., 

2010).  

Motivated by the numerous applications of chaotic systems, we reported the experimental 

investigation of bidirectional and cyclic coupling on the synchronization of identical chaotic 

systems such as autonomous Rössler and Sprott systems, and non-autonomous van der Pol 

systems, to develop a clear understanding of the principles of chaos synchronization, to explore 

various coupling schemes and analyze how these different schemes affect the synchronization 

of chaotic systems. In Sect. 2, we describe the coupling methods adopted. Sect. 3, systems 

implementation. In sect. 4, bidirectional and cyclic coupling implementation. Finally, section 

5, provides the conclusion of this work. 
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2. Description of the Method 

2.1.  Bidirectional Coupling: 

  ẋ1 = −x2 −x3 

      ẋ2 = x1 + bx2                           (1) 

               ẋ3= c + x3(x1 − d), 

 

where b, c, and d are system parameters with the following values b = c = 0.2 and d = 5.7 for 

chaotic behaviour. Equation (1) represents the Rossler system chosen to elaborate on 

bidirectional coupling. Oscillators 1 & 2 are the first and second systems coupled bi-

directionally into each other. 

Oscillator-1: 

  ẏ1 = −y2 −y3 + Uy1
 

      ẏ2 = y1 + by2+ Uy2
                             (2) 

               ẏ3= c + y3(y1 − d)+ Uy3
, 

Oscillator-2: 

  z1 = −z2 − z3+ Uz1
 

      ż2 = z1 + bz2+ Uz2
                           (3) 

               ż3= c + z3(z1 − d)+ Uz3
, 

where Uy = [Uy1
 Uy2

 Uy3
]T and Uz = [Uz1

 Uz2
 Uz3

]T are the system controllers. The controllers 

are added to equations 1 and 2 to set up the mutual interactions between the two systems. The 

error function is defined by equation (4) 

e(t) = βy – αx,                    (4) 

where β and α are constant. 

 

2.2.   Cyclic coupling 

Cyclic coupling is similar to mutual coupling. It is a situation whereby an oscillator is coupled 

to another oscillator via a particular state variable and the first system receives a feedback 

signal from the second oscillator through another state variable leading to mutual interaction 

between the systems (Olusola et al., 2013), the phenomenon is illustrated in Figure 1. 
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Figure 1:   Schematics of two identical systems (B1 and B2) interacting via cyclic coupling with different  

                     topologies. 

 

There are six topologies of cyclic coupling possible for 3D systems, three are independent 

while the other three are symmetric for identical oscillators. Considering two pairs of variables, 

the three independent options are (i) y1 → z1, y2 ← z2, (ii) y1 → z1, y3 ← z3, and (iii) y2 → z2, 

y3 ← z3 as illustrated in Figure 1. Using Equation (1), we present an example of two identical 

cyclic coupled Rossler systems in equations (5 and 6). 

 

Oscillator-A: 

  ẏ1 = −y2 −y3 

      ẏ2 = y1 + by2 + k (z2 – y2)                                  (5) 

               ẏ3= c + y3(y1 − d). 

 

Oscillator-B: 

  z1 = −z2 − z3 + k (y1 – z1) 

  ż2 = z1 + bz2                                    (6) 

               ż3= c + z3(z1 − d). 
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Figure 2: Schematic diagram of Rossler circuit (Ranjib et al., 2012). 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: MultiSim oscilloscope pictures of Rossler oscillator showing transits from periodic 

to chaotic signal, 2D projection of the attractors on the left panel and time series on 

the right panel for period two R11 = 41.5 kΩ, and for chaotic signal 0 <R11≤35.1 

kΩ.  
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Figure 4: Experimental oscilloscope pictures of the Rossler oscillator showing transits from 

periodic to chaotic signals. The first row shows oscillation for periods one and two 

for R11 = 62.1 kΩ and R11 = 55.0 kΩ. The second row shows oscillations for 

period four and chaotic signal at R11 = 46.7 kΩ and 0 <R11≤ 41.2 kΩ 

respectively. 

 

 

3. Systems Implementation 

Figure 2 represents the circuit diagram for the Rossler oscillator. The circuit consists of 

resistors R1 – R13, capacitors C1 – C3, potentiometer, Op-amps UA741CD (U1 - U5) powered 

by ±12 V, and voltage supply V1 which represents parameter c. The circuit was built using 

MultiSim simulation software and in the laboratory using off-the-shelf components on the 

breadboard. The 741 serves as an integrator and inverter for the input signals. The following 

relation relates the variable resistor R11 in Figure 2 to the parameter 𝑏 in equation (1); 𝑏 = 

𝑅
𝑅11⁄ , where the value of R = 10 Ω. Figure 3 shows the MultiSim pictures of the system as it 

transits from periodic and chaotic attractors as the plot of x vs y takes the output from U1 and 

U4.  
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Figure 5: Schematic diagram of Sprott circuit (Ioan et al., 2008; Sprott 1994). 

The experimental results shown in Figure 4 are found to be in good agreement with the 

computer simulation results as the attractor was observed to change from periodic to chaotic 

signal as the value of R11 reduces from 60.1 kΩ to 41.2 kΩ. Following the same procedure, 

the dynamic behaviours of Sprott and van der Pol systems were also studied, the time series 

and the corresponding phase portrait are depicted in Figures (5 –10). The MultiSim and 

experimental results are in agreement with each other.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: MultiSim oscilloscope pictures of Sprott oscillator showing transits from periodic to 

chaotic signal, 2D projection of the attractors on the left panel, and time series on 

the right panel. For period two R11 = 55.0 kΩ, and chaotic signal R11≤ 41.2 kΩ. 
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Figure 7: Experimental oscilloscope pictures of Sprott oscillator showing transits from 

periodic to chaotic signal. The first row shows oscillation for periods one and two 

for R2 = 71.5 kΩ and R2 = 69.9 kΩ. The second row shows oscillation for period 

four and chaotic signal at R11 = 66.9 kΩ and 0 <R11 ≤ 61.9 kΩ respectively. 

 

 

Figure 8: Schematic diagram of van der Pol circuit (Makouo and Woafo, 2017; Sourav et al., 

2011) 
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Figure 9: MultiSim oscilloscope pictures of van der Pol oscillator showing transits from 

periodic to chaotic signal, 2D projection of the attractors on the left panel, and time 

series on the right panel. For the limit cycle, R8 is 74.4 kΩ, and for the chaotic signal 

0 <R8 ≤ 49 kΩ. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10: Experimental oscilloscope pictures of van der Pol oscillator showing transits from 

limit cycle to chaotic signal. The first two rows show the time series and the third 

row shows the attractors. For the limit cycle, R8 is 67.4 kΩ, and for the chaotic 

signal 0 <R8 ≤ 47.7 kΩ.  

 

4. Bidirectional and Cyclic Coupling Implementation 

Our purpose is to describe how we use electronic circuits to implement bidirectional and cyclic 

coupling of two identical autonomous and non-autonomous systems. This was carried out using 

MultiSim simulation software and off-the-shelve components. Figures (11 and 12) show the 

coupling forms using the Sprott system as a case study, R2 and R10 represent the potentiometer 
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for each of the oscillators (B1 and B2) and have fixed values for the systems to be identical. k1 

and k2, which are functions of R17 and R18, represent the coupling strength of the system. The 

oscillators were constructed independently and tested to confirm chaotic dynamics. In other to 

achieve ‘identical’ systems, the same type of electronic components was used in both circuits. 

The first oscillator B1 uses four integrators (U1, U2, U5, and U6) to simulate the output 

voltages, and a multiplier A1 to simulate the square nonlinearity in the system. In contrast, the 

second oscillator B2 uses integrator (U3, U4, U7, and U8) with multiplier A2.  

 

Table 1: Threshold couplings based on MultiSim simulation for mutual coupling and cyclic coupling  

    indifferent circuits 

 

Table 2: Threshold couplings based on experiments for mutual coupling and cyclic coupling in     

    different circuits 

 

                                                               Diffusive coupling 

                                    y1↔ 𝑧1                                           y2↔ 𝑧2                                  y3↔ 𝑧3                    

Sprott                0 < Rc ≤123.50 kΩ           0 < Rc ≤ 197 kΩ                No CS               

Rossler              3.08k <Rc ≤ 50 kΩ           0 < Rc ≤ 67 kΩ                  No CS                

van der Pol        0 < Rc ≤ 220 kΩ               0 < Rc ≤ 152 kΩ             

                                                                 Cyclic coupling  

                           y1→z1, y2←z2                                y1→z1, y3← 𝑧3                            y2→z2, y3← 𝑧3 

Sprott                 0 < Rc ≤ 249.70 kΩ         0 <Rc≤ 56.20 kΩ           0 <Rc≤ 49.50 kΩ 

Rossler               0 < Rc ≤ 84.50 kΩ          1.21k<Rc≤41.3 kΩ         1.21k<Rc≤ 48.50 kΩ 

van der Pol        0 < Rc ≤ 122.7 kΩ               

                                                               Diffusive Coupling 

                                  y1↔ 𝑧1                                           y2↔ 𝑧2                                  y3↔ 𝑧3                      

Sprott                0 < Rc ≤125 kΩ                0 < Rc ≤ 200 kΩ                No CS               

Rossler              4.10 < Rc ≤ 55 kΩ           0 < Rc ≤ 66.67 kΩ              No CS                

van der Pol        0 < Rc ≤ 229 kΩ               0 < Rc ≤ 157 kΩ             

                                                                 Cyclic Coupling  

                            y1→z1, y2←z2                                y1→z1, y3← 𝑧3                            y2→z2, y3← 𝑧3 

Sprott                 0 < Rc ≤ 251 kΩ              0 <Rc≤ 58.82 kΩ             0 <Rc≤ 50kΩ 

Rossler               0 < Rc ≤ 84.50 kΩ         1.21k<Rc≤41.3 kΩ          1.21k<Rc≤ 48.50 kΩ 

Van der Pol        0 < Rc ≤ 125 kΩ               
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Figures (13 and 14) show that complete synchronization (CS) (left panel) occurred only on 

(x1 ↔ y1) and (x2 ↔ y2). The results in Figures (15 and 16) obtained for the cyclic coupling 

formation show that CS occurred on (x1 ↔ y1), (x2 ↔ y2) and (x3 ↔ y3). This implies that the 

coupled nonlinear oscillators evolve in CS when the conventional bidirectional coupling fails 

to produce synchronous behaviour. Tables 1 and 2 summarize the result obtained for threshold 

couplings for the three systems considered using the two methods adopted. Complete 

synchronization occurred at different coupling strengths as shown in the Tables. The simulation 

and experiment results show that the systems synchronize well. We presented the experimental 

setup for coupled and uncoupled systems in Figure 17. 

 

 

Figure 11: Schematic diagram of bidirectional coupled Sprott System 
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Figure 12: Schematic diagram of cyclic coupled Sprott System 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13: MultiSim oscilloscope pictures of mutually coupled Sprott oscillator. The left side 

shows no CS and the right side shows CS. First row (y1↔ 𝑧1) CS occurred at 0 < 

Rc ≤ 123.50 kΩ, second row (y2↔ 𝑧2) CS occurred at 0 < Rc ≤ 197 kΩ, and third 

row (y3↔ 𝑧3) no CS. 
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Figure 14: Experiment with oscilloscope pictures of a mutually coupled Sprott oscillator. The 

left side shows no CS and the right side shows CS. First row (y1↔ 𝑧1) CS occurred 

at 0 < Rc ≤ 125 kΩ, second row (y2↔ 𝑧2) CS occurred at 0 < Rc ≤ 200 kΩ, and 

third row (y3↔ 𝑧3) no CS. 

 

                

 

 

 

 

 

 

 

Figure 15: MultiSim oscilloscope pictures of cyclic coupled Sprott oscillator. The left panel 

shows no complete synchrony (CS) and the right panel shows CS. First row (y1→z1, 

y2←z2) CS occurred at 0 < Rc ≤ 249.70 kΩ, second row (y1→z1, y3← 𝑧3) CS 

occurred at 0 < Rc ≤ 56.20 kΩ, and third row (y2→z2, y3← 𝑧3) CS occurred at 0 < 

Rc ≤ 49.50 kΩ. 
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Figure 16: Experiment oscilloscope pictures of cyclic coupled Sprott oscillator. The left panel 

shows no complete synchrony (CS) and the right panel shows CS. First row (y1→z1, 

y2←z2) CS occurred at 0 < Rc ≤ 251 kΩ, second row (y1→z1, y3← 𝑧3) CS occurred 

at 0 < Rc ≤ 58.82 kΩ, and third row (y2→z2, y3← 𝑧3) CS occurred at 0 < Rc ≤ 50 

kΩ. 

 

 

 

Figure 17: Experiment setup for uncoupled and coupled Sprott systems 
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5. Conclusions 

Experimental investigation of chaos synchronization under different coupling schemes is a rich 

and evolving field. It combines theoretical insights with practical experimentation, offering 

deep understanding and innovative applications in science and engineering. Its applications 

include Secure Communications, Neuroscience, Biology, and so on. The choice of coupling 

scheme and system, along with rigorous experimental methodology, are critical for uncovering 

the nuanced behaviour of synchronized chaotic systems. In summary, the exciting and 

interesting dynamical behaviour of the autonomous Sprott oscillator, Rossler oscillator, and 

non-autonomous forced van der Pol oscillator have been studied.  

The system dynamics as it transits from periodic to chaotic motion have been established 

numerically using MultiSim electronic simulation software and experimentally using off-the-

shelve electronic components. Components used for implementation include operational 

amplifiers, multipliers, resistors, capacitors, diodes, and Arduino UNO microcontroller among 

others. The system models differential equations were integrated using Op-amp 741; this Op-

amp was also used for inverting input signals. For simplicity, the designed circuits were first 

implemented on MultiSim 12.0 circuit design software.  

The possibility of synchronizing two identical systems via bidirectional and cyclic coupling 

using off-the-shelve components is a subject of interest and can be useful for scientific and 

engineering purposes. Synchronization behaviour of identical nonlinear oscillators such as 

Sprott, Rossler, and van der Pol have been studied using diffusive coupling and cyclic coupling. 

First, the numerical determination of threshold coupling was carried out using MultiSim 

software. The numerical results were confirmed through experimental study via the use of off-

the-shelve electronic components on the breadboard and it was found that both approaches 

were in good agreement. Furthermore, it was established that applying cyclic coupling on some 

variables led coupled nonlinear oscillators to evolve into CS where the conventional 

bidirectional coupling was unable to produce synchronous behaviour. Thus, we propose that a 

cyclic coupling configuration may be a good replacement for the conventional diffusive 

coupling formation in the study of synchronization behaviour in coupled nonlinear oscillators. 
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