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Abstract 

This article explores the effectiveness of spline regression model in capturing non-linear relationships in data. A 

comparison of spline regression with other techniques, such as linear regression, polynomial regression, 

generalized additive, and log-transformed models, is conducted using simulated data. The performance metrics, 

including AIC, BIC, RMSE, MSE, MAE, and R-squared, are used to assess the goodness of fit for each model. 

The results indicate that the spline regression model outperforms other methods in accurately capturing non-linear 

relationships. The flexibility and smoothness provided by spline regression, through the incorporation of knots, 

result in better-fitted lines that closely match the data. This study recommends the use of spline regression for 

handling non-linear data and highlights its robustness and accuracy. 
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1. Introduction  

In traditional regression models, such as piecewise linear regression, when data exhibits non-

linear patterns or multiple phases, the fitted line may show abrupt changes at the points where 

the segments meet. This sudden change in slope can lead to a discontinuous or jagged 

appearance in the regression line, which may not accurately represent the true underlying 

relationship between the variables. In contrast, spline regression models allow for smooth 

transitions at specific points called knots, ensuring a continuous and flexible fit without such 

abrupt jumps. This property makes spline regression a powerful tool for capturing complex 

non-linear relationships in data. In the context of the article, "jump" refers to a sudden, sharp 

change in the slope of the regression line when transitioning from one segment of the data to 

another. 
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The "jump" in combining the two regression lines is not possible in a spline regression model 

Wood (2003). In another lucid and uncomplicated presentation of spline regression models, 

(Wood, Pya and Säfken, 2016) gave detail information on smoothing parameter and model 

selection. In order to account for the various tax brackets in an income tax application utilizing 

a particular kind of spline, piecewise linear regression was utilized by Strawczynski and Paper 

(1944). As a result, the regression line for the relevant dependent variable (such as approval 

rating) may suddenly change its slope without creating a sharp "jump" in the line. In order to 

do this, a line must be allowed to kink (change in slope) without breaking, Wood (2003). 

Consequently, the slopes of the two distinct regression lines are allowed to differ at the place 

where they join (spline knot), forcing the lines to touch. Relationship "change points" or 

"knots" are places where the dynamic of the relationship shifts. Wood (2003) provides a 

succinct explanation of how to build and apply a basic spline model along with an example that 

shows how to use these techniques in a real-world setting. The straightforward adjustment 

strategy for spline models was created Baty et al. (2015). Numerous methods are described by 

Firth et al. (2020) for determining initial values for nonlinear fitting. When examining 

polynomial, Goldstein, Chatterjee and Price (1979) hypothesized that a second-order model 

may have fitted more effectively. In order to map soil salinity, both linear and nonlinear 

regression models are used, Garcia and Eldeiry (2020). Nonlinear models can handle 

multiphase, spline regressions, and multi-response data, Crosnier and Salmer (1994) whereas 

current nonlinear regression modules lack specialized diagnostic capabilities, Baty et al. (2015) 

offers users an enhanced toolbox of functions enabling a rigorous evaluation of nonlinear 

regression fits. A modification of the linear regression model is suggested by Fox and Weisberg 

(2018) in which the conditional mean of the response variable is not a linear function of the 

parameters. Max et al. (2022) has been working on a number of functions for training and 

visualizing classification and regression models. Wherever necessary, showing regression trees 

and classification and regression models. Kassambara (2021) creates a fantastic, versatile 

program for beautiful data visualization in nonlinear regression and other applications. In 

several instances of nonlinear data, a generalized nonlinear model has been presented Turner 

and Firth (2008). In nonlinear modeling of simulated and observed hydrological time series, 

goodness of fit metrics are required Mauricio and Bigiarini (2010). Implement metrics for 

issues with binary classification, classification, information retrieval, regression, time series, 

and other issues, Frasco et al. (2018). Tools are created to make it simpler for researchers to 

create ordinary least squares regression models, including thorough regression output, 

heteroskedasticity tests, diagnostics for collinearity and residuals, measurements of influence, 
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evaluation of model fit, and methods for variable selection. The nonlinear mixed-effects 

(NLME) model is discussed in Pinheiro and Bates (2000), which also worked on the linear 

mixed-effects (LME) model. Both linear and nonlinear regression can be used to fit models to 

biological data, Motulsky and Christopoulos (2003). There is a comprehensive discussion on 

fitting quadratic models, generalized linear models, and applications, Goldstein et al. (1979). 

According to Spiess and Neumeyer (2010), R-square cannot be used to demonstrate the 

effectiveness or validity of a nonlinear model.  The foundation created by solving the thin plate 

spline smoothing problem, according to Wood (2003), can be easily changed and truncated to 

produce smoothers. According to Wood (2004), GAMs with ridge penalties offer a workable 

solution in such cases. To that end, a method for choosing numerous smoothing parameter 

combinations that works in the presence of such a penalty has been established. 

 

 

Figure 1: A simple flow chart showing how to pick a regression model  
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2. Materials and Methods 

Linear regression model 

Linear regression models the association between two variables when an equation that is linear 

in nature is fitted to the data. In this modeling approach, one variable is referred to as an 

independent variable, while the other is considered the dependent variable (Ruckstuhl, 2017). 

            Y = a + bX,                                                                                                                           (1) 

where X is the explanatory variable and Y is the dependent variable, is the equation of a linear 

regression line. According to Ruckstuhl (2017), b is the line's slope, and a is the intercept (the 

value of y when x = 0). 

Polynomial Regression 

One type of regression technique is polynomial regression that employs a non-linear function 

Wang and Yan (2021). By elevating each of the initial predictors to a power, polynomial 

regression adds additional predictors to the linear model. A cubic regression, for instance is a 

type of regression technique that models the relationship between variables using a cubic 

function, incorporating predictors raised to the power of three, allowing for more flexible and 

curved fits to the data.  

Substituting the linear model with a function of the polynomial is the accepted method for 

broadening linear regression to a non-linear connection between the dependent and 

independent variables. 

          𝑌 = 𝛽0 + 𝛽1𝑋𝑖 + 𝛽2𝑋𝑖
2 + 𝛽3𝑋𝑖

3 + 𝛽𝑝𝑋𝑖
𝑝
                                                                    (2) 

Strong oscillations may be seen in the resulting curve when we increase the value of power, 

which will produce overly flexible geometries. These curves cause over fitting. Over fitting in 

polynomial regression occurs when the model fits the data too closely, resulting in an overly 

complex polynomial function that perfectly matches the data points. As the degree of the 

polynomial increases, the model becomes increasingly flexible and capable of capturing even 

small fluctuations in the data. The problem with over fitting in polynomial regression is that 

the model may not generalize well to new data, leading to poor predictive performance. The 

excessively complex polynomial function might be overly sensitive to noise in the data, leading 

to inaccurate predictions on new data points. 
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Spline Regression Model 

We can utilize an improved regression strategy that splits the information into many forms and 

fit each group (form) with a different model in order to overcome problem of over-fitting, 

which is a significant drawback of polynomial regression. Regression spline is a term used to 

describe such a method Marsh (2011); Wood et al. (2016). Knots are the locations where the 

division takes place. Piecewise functions are those that can be used to model each piece or bin. 

These individual bins can be fitted using a variety of piecewise functions. Compared to 

polynomial regression, regression splines frequently produce better results.  This is due to the 

fact that splines introduce flexibility by increasing the number of knots while maintaining a 

fixed degree of order 3, unlike polynomials, which require a high degree polynomial to produce 

flexible fits (Wood, 2004). 

The individual cubic spline equation with just one knot at a location g has the following 

shape: 

         𝑦𝑖 = {
𝛽01 + 𝛽11𝑧𝑖 + 𝛽21𝑧𝑖

2 + 𝛽31𝑧𝑖
3 + 𝜖𝑖     if 𝑧𝑖 < 𝑔

𝛽02 + 𝛽12𝑧𝑖 + 𝛽22𝑧𝑖
2 + 𝛽32𝑧𝑖

3 + 𝜖𝑖     if 𝑧𝑖 ≥ 𝑔
                              (3) 

In other words, we used the component of the observations with zi ≥ g and the component of 

the observations with zi ≥ g to fit two separate polynomial functions to the data. The 

coefficients for the first polynomial function are β01,..,β31; for the second, they are β02,…,β32. 

By applying least squares to the straightforward functions of the real regressor, each of these 

polynomial functions may be fitted. 

 

Generalized Additive model: Univariate smooth functions 

A generalized additive model is a generalized linear model with a predictor having a linearity 

property admitting the sum of smooth functions of variables (Hastie & Tibshirani, 1990). A 

standard polynomial regression can be used as a starting point for a generalized additive model, 

and it might work out adequately (Wood, 2004). We must first think about a basis to utilize, a 

space in which f is an element. In doing so, one selects a collection of bases functions bj with 

parameters j that are integrated to form f(x): 

        𝑓(𝑥) = ∑ 𝑏𝑗(𝑥)𝛾𝑗
𝑞
𝑗=1                                  (4) 

The cubic polynomial can be used to express this better 

        𝑏1(𝑥) = 1,  𝑏2(𝑥) = 𝑥,  𝑏3(𝑥) = 𝑥2,  𝑏4(𝑥) = 𝑥3                        (5) 
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which leads to  

        𝑓(𝑥) = 𝛾1 + 𝛾2𝑥 + 𝛾3𝑥2 + 𝛾4𝑥3                                                                               (6) 

3. Data Analysis and Results 

This data used in this study was obtained through simulation. R 4.1.3 was used for all 

analyses (R Core Team, 2022). 

Simulation procedure 

In R, skewed data are simulated using various probability distributions that exhibit skewness. 

One common distribution used for simulating skewed data is the gamma distribution. A 

specific function in R is utilized to generate random numbers from the gamma distribution with 

specified shape and scale parameters, allowing for control over the skewness of the data. To 

simulate positively skewed data, a gamma distribution with a shape parameter greater than 1 is 

used. On the other hand, for negatively skewed data, a gamma distribution with a shape 

parameter less than 1 is employed. 

The following scatterplot is from the simulated non-linear dataset, it will be used throughout 

this paper 

 

Figure 2:  Scatter plot of the nonlinear relationship between y and x 

Whenever reliability margins are really large, the fit is not likely to be helpful. 
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Table 1: Parameter estimate of the Linear regression fitted model 

 Term  Estimate Std. error P-Value 

Intercept 1.3248 0.0132 0.0002 

x -1.9501 0.0455 0.0001 

 

Forming the simple linear model, 

𝑦 = 1.32 − 1.95𝑥                                                                                                            

 

 

Figure 3:  Non-linear relationship with linear regression fitted line  

This fitted line in Figure 3 does not capture the actual data points, therefore linearity should 

not be assumed here. 
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Figure 4: Model diagnostic for Linear regression model 

Table 2: Parameter estimates of the Spline regression fitted model 

Term  Estimate Std. error P-Value 

Intercept 1.7509 0.1587 0.0001 

bs(x, knots = knots)1 -0.4030 0.2162 0.0626 

bs(x, knots = knots)2 0.0252 0.1510 0.8677 

bs(x, knots = knots)3  -1.0027 0.1669 0.0001 

bs(x, knots = knots)4  -1.6698 0.1701 0.0002 

bs(x, knots = knots)5  -1.5890 0.1976 0.0001 

bs(x, knots = knots)6  -1.7682 0.1750 0.0002 

Which produces the following model: 

)),((77.1)),((59.1)),((67.1

)),((1)),((03.0)),((4.075.1

654

321

knotsknotsxbsknotsknotsxbsknotsknotsxbs

knotsknotsxbsknotsknotsxbsknotsknotsxbsy

=−=−=−

=−=+=−=
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Figure 5:  Non-linear relationship with Spline regression  

 

Figure 6: Model diagnostics for Spline model 
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Table 3: Parameter of the estimates of the Polynomial regression fitted model at fourth order 

Term Estimate Std. error P-Value 

Intercept 1.48448 0.0121 0.0002 

poly(x, 4, raw = TRUE)1  -5.64981 0.2814 0.0001 

poly(x, 4, raw = TRUE)2  7.23395 1.6386 0.0011 

poly(x, 4, raw = TRUE)3 -1.56802 3.0766 0.6100 

poly(x, 4, raw = TRUE)4 -1.59548 1.7695 0.3670 

From the output above, it can be seen that polynomial terms beyond the second order are not 

significant. So, a second polynomial regression model as follows: 

Table 4: Parameter of the estimates of the Polynomial regression fitted model at second order 

Term Estimate Std. error P-Value 

Intercept 1.4532 0.01187 0.0002 

poly(x, 4, raw = TRUE)1  -4.39671 0.10887 0.0001 

poly(x, 4, raw = TRUE)2  3.29459 0.13821 0.0001 

 

The visualization of the second polynomial regression line as follow: 

 

Figure 7:  Non-linear relationship with Polynomial regression  
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Figure 8: Model diagnostic for Polynomial  

 
Table 5: Fitted Generalized Additive Model (GAM) 

Term Estimate Std. error P-Value 

Intercept 1.0000 0.0080 0.0002 

 

Table 6: Rough smooth terms significance 

Term edf Ref.df F P-Value 

s(x) 8.631 8.961 480.4 0.0001 

 

 

Figure 9:  Non-linear relationship with GAM  
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Figure 10:  Model diagnostics for GAM 

 
Table 7: Log-transformed fitted model 

Term Estimate Std. error P-Value 

Intercept 0.0880 0.0132 0.0003 

log(x) -0.3337 0.0070 0.0001 

 

Figure 11:  Non-linear relationship with Log-transformation  
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Figure 12: Model diagnostic for Log-transformation 

Goodness of fit 

The R-square is typically poor indicator of the goodness of fit in non-linear models Spiess and 

Neumeyer (2010). The standard deviation of the residuals can be generally understood as the 

RMSE ('approximately' because it is slightly adjusted for the number of fitted components). 

 

Table 8: Model selection 

Model AIC BIC 

Linear 704.4970 719.2200 

Spline 82.6670 121.9290 

GAM 87.6756 139.8760 

Polynomial 255.4550 275.0860 

Log-Transformed 300.2970 314.4470 

 

The minimum values of information criteria according to Table 8 are achieved in regression 

spline model, which suggest it’s robustness and sensitivity to non-linear data. 



Ajao et al.                                                      ILORIN JOURNAL OF SCIENCE 

41 
 

Table 9: Summary of models performance 

Model RMSE MSE MAE R2 

Linear 0.3431 0.1177 0.2970 0.6481 

Spline 0.2502 0.0626 0.1815 0.8129 

GAM 0.2501 0.0625 0.1818 0.8131 

Polynomial 0.2738 0.0750 0.2196 0.7758 

Log-Transformed 0.2892 0.0836 0.1995 0.7314 

     
Table 8 shows that Regression Spline model and GAM have the minimum values of the error 

metrics, this means GAM also performs well in term of model performance. 

 

4. Summary of findings 

None of the fitted lines in Figures 3, 7, 9, and 11 capture the actual values of the non-linear 

dataset accurately as the Regression spline fitted line in Figure 5. It is also obvious from the 

residual diagnostics as shown in Figures 4, 6, 8, 10, and 12  carried out on linear, spline, 

polynomial, GAM, and log-transformed models respectively that residual and qq-plots did not 

show the features of good models in any of the methods as that of the spline regression model. 

Tables 1 – 7 show the parameter estimates in each model which produced the various model 

equations, while the values of the information criteria and model performance in Tables 8 and 

9 respectively establish the robustness of the regression spline model.  

 

5. Conclusion and Recommendation 

The results from the Tables and figures in this paper have proved that the regression spline 

model outperforms the other models considered. It is therefore recommended that the model 

be employed when dealing non-linear data. 
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