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Abstract 

In Time Series Analysis, the Autoregressive Integrated Moving Average model, has been applied to model 

different phenomena. Financial budget performance and classification of functions of government performance 

have not been modeled simultaneously in literature. In this study, a class of statistical time series models was 

examined in analyzing and forecasting the budget performance of Lagos State for the period under study (1968–

2018). Also, it examined the trend of the Classification of Functions of Government (COFOG) in Lagos State 

(2008–2018). Box-Jenkins’ ARIMA and ARMA models’ approaches were used in this study. The financial budget 

performance was differenced to obtain stationarity. The best model chosen based on the selection criteria, Akaike 

Information Criterion (AIC) is ARIMA (1,1,1). The series presented for the classification of functions of 

government was stationary over time and the pattern indicated the volatility nature of their performance.  A unit 

root test was conducted to ascertain the degree of stationarity. The forecast results suggested that the financial 

budget would continuously increase at the rate of approximately 3% on the average yearly for next ten years; and 

an increment of approximately 0.24% within the classification of functions of government for the next ten years. 
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1. Introduction 

In Applied Statistics, time series, as a tool, has been used for making predictions since ARIMA 

model was developed. The ARIMA model was first proposed by Box and Jenkins in 1970. The 

fact that this model simply has few parameters makes it superior to other time series models. 

The classical ARIMA model uses backshift operators and the dth difference to operate in time 

series. It is usually of order p, q. The complete ARIMA approach, including how to handle 

seasonal time series within a generalized ARIMA, has been described in detail (see Box & 

Jenkins, 1970). However, the benefits of using the models have been summarized and proved 

by the application of ARIMA in many fields (see Adebayo et al., 2014; Carlson et al., 1970; 

McKerchar & Delleur, 1974; McMichael & Hunter, 1972; Padhan, 2012).  
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In order to represent the monthly sequences of flow, McKerchar and Delleur (1974) applied 

the seasonal ARIMA model to 16 series of monthly flows for rivers that are tributaries to the 

lower Ohio river in the United States. The multiplicative seasonal ARIMA model fitted was in 

the order of (2,0,0) (0,l,l). The ARIMA model fitted for the series required 27 parameters and 

the latter required only four parameters. Majority of quantitative forecasting at the local 

government level is probably done using trend analysis or simple moving averages (Frank and 

Zhao, 2009). The objective of the study will follow the ARIMA modelling. ARIMA model has 

been a very effective tool in the study or analysis of budget for government, corporate and 

private organization (Congressional Budget Office, 2011).  

Seneviratna and Shuhua (2013) investigated the use of the univariate time series ARIMA model 

to predict the rates of government twelve-month Treasury bills in Sri Lanka between June 2008 

and June 2013. Four models were primarily constructed using the Box Jenkins methodology, 

and several diagnostic tests and selection criteria were utilized to determine which model was 

most appropriate. The forecasted values' accuracy was compared with other models using 

Mean Squared Error (MSE) and Mean Absolute Error (MAE) criteria. The empirical findings 

demonstrate that ARIMA(1,1,2) is the best model for the twelve-month Treasury bills. The 

developed model was used to forecast the next five weeks, and the findings revealed that the 

Treasury bill rates were slowly declining. The decline in interest rates suggests a significant 

increase in the interest paid on government Treasury bills. Therefore, the study’s findings have 

influenced investors' future investment planning in some way. Some nations and large 

subnational jurisdictions use simulations or systems of statistical models to forecast their 

economies and related budgetary data (New York City Office of Management and Budget, 

2016). It has been effective in predicting economic (Petrica et al., 2016), marketing (Yan and 

Chen, 2018), industry production (Mgaya, 2019), and so on.  

The process {𝑌𝑡 } is referred to as an ARIMA (p, d, q) if its dth difference is an ARMA (p, q) 

process. i.e., if Xt = ∇dYt, then the process is called an ARMA (p, q) process. We can examine 

the first order difference process if the original process {𝑌𝑡} is not stationary; 𝑋𝑡  = ∇𝑌𝑡   = 𝑌𝑡   – 

𝑌𝑡−1   or the second order differences and soon. The ARIMA model's forecasting results could 

include forecasted values as well as upper and lower limits. A (1- α) confidence interval is 

provided by upper and lower limits. Since α is the specified confidence, any realization that 

lies within the interval will be accepted. In contemporary statistical theory, forecasting the 

economic budget can be done in a variety of ways. The majority of them deal with time series 

forecasting without any additional data, i.e., without considering the effects of other variables. 

One such approach is to build an ARIMA {𝑌𝑡} model. Its core idea is that while some time 

series is a collection of time-dependent random variables, changes in the entire time series 

follow a set of rules that can be modeled by the related mathematical equation Xt = ∇Yt = Yt – 

Yt-1 (first order difference) or Xt = ∇2Yt = ∇(∇Y )t = Yt – 2Yt-1 + Yt-2 (second order difference) 

and so on. One can obtain the best prediction values and a deeper understanding of the time 

series' structure and characteristics by evaluating the mathematical model. Depending on the 

type of analysis and a practical requirement, time series observations are regularly found in 

many different fields. 
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This study, however, is aimed at examining a class of statistical models in analyzing and 

forecasting the budget performance for the period under study of the financial budget in Lagos 

State between the period 1968 and 2018 and examining the time plot of the series of the 

Classification of Functions of Government (COFOG) performance in Lagos State between 

2008 and 2018. The COFOG performance in Lagos state is a measurable variable. The degree 

of stationarity of the data will be examined as well as fitting a statistical model suitable for 

forecasting the data. This research work will help to identify the regular components of the data 

i.e., the trend and seasonal components and to check if there are any the random movements. 

It will help to inquire if the data is a seasonal time series or a time series without seasonal 

component. It will also help to examine the data and see if there is any irregularity or 

fluctuations in order to find it and subtract it away (by splitting the residual up on our plot) 

from a data analytical perspective.  

The findings of this study will benefit Lagos state government for evolving means/strategies to 

rigorously monitor the implementation and the performance of her budgets by making various 

provisions in the budget to improve public service, enhance security of life and property, 

improve access to health facilities and enhance accountability and transparency in order to 

propel growth in the economy. This study will also expose much in terms of seasonality. 

2. Materials and Methods 

The selection of a proper model is crucial as it captures the fundamental structure of the series, 

and the fitted model is then used to predict the future. Time series are used for various purposes. 

The goal may be to control the process that produces the series, it may be to understand the 

mechanism generating the series, or it may be to simply obtain a concise description of the key 

aspects of the series. The goal may also be to forecast the future using knowledge of the past. 

Among the time series components are trend, seasonal movement, cyclical movement, irregular 

movement and outliers. The initial step in analyzing a time series data is to examine the trend 

by observing the time plot. This will highlight the key characteristics, including the trend, 

seasonality, discontinuity, and outliers. (Chatfield, 1996) 

2.1 Time Series Process  

White Noise:  

Let {Ɛ𝑡} be white noise with zero mean [E(Ɛ𝑡)=0], constant variance [V(Ɛ𝑡) = 𝜎2], and 

uncorrelated random variables [E(Ɛ𝑡Ɛ𝑠) = 0]. The scatter plot of a random series plotted against 

time will depict an irregular pattern and it becomes impossible to forecast the future values of 

such a series. 

Autoregressive Model:  

In autoregressive (AR) model, 𝑌𝑡 depends only on its own past values 𝑌𝑡−1, 𝑌𝑡−2, …, 

𝑌𝑡−𝑝, where p is the number of time period available. Thus, 𝑌𝑡 =  f(𝑌𝑡−1, 𝑌𝑡−2, 𝑌𝑡−3, … , Ɛ𝑡)                                                                                               

A typical illustration of an AR model where it depends on p of its past values known as AR(p) 

model is represented below: 

𝑌𝑡 = ꞵ
0
+ꞵ

1
𝑌𝑡−1+ꞵ

2
 𝑌𝑡−2+ꞵ

3
𝑌𝑡−3+…+ ꞵ

𝑝
𝑌𝑡−𝑝+Ɛ𝑡                                                          (2.1) 
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Moving Average Model:  

In a moving average model, 𝑌𝑡 only depends on the random error terms (Ɛ𝑡) and it is a white 

noise process. i.e. 𝑌𝑡= f(Ɛ𝑡, Ɛ𝑡−1, Ɛ𝑡−2, Ɛ𝑡−3, …). A typical illustration of this model, where the 

observations, 𝑌𝑡 depends on q of its past values is called a MA(q) model and is represented by 

𝑌𝑡 = ꞵ
0
+ Ɛ𝑡 + ɸ1Ɛ𝑡−1+ ɸ2Ɛ𝑡−2 + ɸ3Ɛ𝑡−3 +….+ ɸ𝑞Ɛ𝑡−𝑞                                                        (2.2) 

The error Ɛ𝑡 terms are assumed to be white noise processes with mean zero and variance σ2. 

 

Invertibility  

An MA(1) model is given by 𝑌𝑡 = 𝑒𝑡 - 𝜃1𝑒𝑡−1 The model is said to be invertible if |𝜃1| < 1, 

since it is possible to rewrite the model into an infinite – order autoregressive model. 

𝑌𝑡 = (−𝜃𝑌𝑡−1 − 𝜃2𝑌𝑡−2 − 𝜃3𝑌𝑡−3 − …) + 𝑒𝑡   through iterative means. 

 

2.2 Mixed Models 

2.2.1 Autoregressive Moving Average Models (ARMA): 

In ARMA model, AR and MA models are combined to form a hybrid model called mixed 

autoregressive/moving average (ARMA) model. A mixed model is a model that contains both 

AR and MA components. 

𝑍𝑡 = ɸ1𝑍𝑡−1+ ɸ2𝑍𝑡−2 + … + ɸ𝑃𝑍𝑡−𝑃 +  Ɛ𝑡 + 𝜃1Ɛ𝑡−1 + 𝜃2Ɛ𝑡−2 + …+ 𝜃𝑞Ɛ𝑡−𝑞            (2.3) 

𝑍𝑡 is called mixed models i.e., ARMA (p, q). The simplest autoregressive moving average 

model is ARMA (l, l) and it is given by:   𝑍𝑡 - ɸ1𝑍𝑡−1 = 𝜃1Ɛ𝑡−1 

ARMA models have the properties examined for AR and MA models, hence stationary and 

invertible holds respectively if the roots of the polynomials lie outside the unit circle. Given 

the number of parameters, the ARMA model has a greater capacity for approximation than AR 

and MA models. It can be thought of as a general model that includes AR and MA models as 

special cases.  

Box and Jenkins (1976) suggested a three-step ARMA modeling process: 

(i) Identifying the particular ARMA model: It has three formations which are 

Autocorrelation function (ACF), Partial autocorrelation function (PACF) and Inference 

from ACF and PACF. 

(ii) The estimation of parameters. 

(iii) The checking of the model (Diagnostic checking). 

Time series data must be stationary in order to fit an ARMA model, which means that the mean 

and variance of the data must not change consistently over time. The fact that an ARMA 

process uses fewer parameters than a pure MA or AR process by itself is one of its benefits. 

Due to the thorough explanation of these models in Box and Jenkins (1976) the ARMA (p,q) 

processes are also commonly referred to as stationary non-seasonal Box-Jenkins processes. 

There are numerous ways to detect ARMA models, and each one ultimately relies on the 

extended Yule-Walker equations. 
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Autoregressive Moving Average (ARMA) Models for Stationary Time Series 

The primary concept of stationarity in this model is that the probability laws that govern the 

behaviour of the process and the mean do not change over time. A series { 𝑌𝑡} is said to be 

stationary, if the joint distribution of 𝑌𝑡1 𝑌𝑡2, … , 𝑌𝑡𝑛 is the same as the joint distribution of 

𝑌𝑡1−𝑘 𝑌𝑡2−𝑘, … , 𝑌𝑡𝑛−𝑘  ti, i = 1, 2,…, k and for all choices of time lag k. White noise is a good 

illustration of a stationary process. 

Assuming the observed time series { 𝑌𝑡} is partly autoregressive and partly moving average, 

the model for the series is generally represented by 

𝑌𝑡 = 𝜑1𝑌𝑡−1 + 𝜑2𝑌𝑡−2 + … + 𝜑𝑝𝑌𝑡−𝑝 + 𝑒𝑡 - 𝜃1𝑒𝑡−1 - 𝜃2𝑒𝑡−2 - … - 𝜃𝑞𝑒𝑡−𝑞          (2.4) 

The process (𝑌𝑡) is said to be a mixed ARMA process of orders p and q i.e. ARMA (p, q). A 

special case is ARMA (1,1).   

 

ARMA (1,1) Model  

The ARMA(1,1) model is given by 

𝑌𝑡 = φ𝑌𝑡−1 + 𝑒𝑡 - θ𝑒𝑡−1 with variance given by  𝛾0 =
(1−2𝜃𝜑+𝜃2)𝜎/𝑒2 

1− 𝜑2  and autocorrelation 

function given by  𝜌𝑘 =
(1−𝜃𝜑)(𝜑−𝜃)  

1−2𝜃𝜑+𝜃2 𝜑𝑘−1 for k ≥ 1 

The autocorrelation function decays exponentially as the lag increases, where φ is the damping 

factor, but the decay starts from initial value 𝜌1, which is dependent of θ as well. This, however, 

negates the AR(1), which also decays with damping factor φ but always start from the initial 

value 𝜌0= 1, and the stationarity condition model is |θ|<1. 

 

Differencing 

 Differencing is a way of rendering series stationary, that is, without trend. The first difference 

operator is defined by:   

             ∇𝑌𝑡 =  𝑌𝑡 − 𝑌𝑡−1                                                                                                                     (2.5) 

And can be written as: ∇𝑌𝑡 = (1−𝐵)𝑌𝑡                                                                                      

           B𝑗𝑌𝑡 = 𝑌𝑡−𝑗,                                                                                                                (2.6)  

So that   

            𝐵𝑌𝑡 = 𝑌𝑡−1 ,                                                                                                                          (2.7) 

where B is called the Backshift Operator. If the first difference of a series does not induce 

stationarity, then another difference is taken.  

           ∇2𝑌𝑡=∇ (∇𝑌𝑡)  

          =∇ (𝑌𝑡−𝑌𝑡−1)  

                  =∇𝑌𝑡−∇𝑌𝑡−1  

                  = 𝑌𝑡−𝑌𝑡−1− 𝑌𝑡−1−𝑌𝑡−2 

                  =𝑌𝑡−2𝑌𝑡−1−𝑌𝑡−2                                                                                                                           

and can be written as  

           ∇2𝑌𝑡 = (1 − B)2𝑌𝑡,                                                                                                   (2.8)                                                                                                                                 

where B is the Backshift Operator.  
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Usually, differencing one or two times renders the series stationary. For a multiplicative model, 

dividing the original series by the fitted trend will yield a series without trend. For an additive 

model, subtracting the fitted trend from the original time series will yield a series without trend. 

2.2.2 Autoregressive Integrated Moving Average (ARIMA) Models  

In ARIMA model, the autoregressive component along with the error term’s past values, are 

used to represent the current values of a time series (the moving average terms). To induce 

stationarity, a series must be differenced a certain number of times, which is referred to as the 

integrated component. In ARIMA model, the number of times a time series is differenced to 

induce stationarity is denoted by d, thus, ARIMA(p, d, q), where p represents the number of 

autoregressive parameters, d stands for the number of series differences required to achieve 

stationarity, and q denotes the number of moving average parameters. 

It may be represented as; θ(B)θ(B)𝛻𝑑𝛻
𝑑
𝑠 𝑦𝑡 = θ(B) θ(B) 𝑎𝑡 ;                                                         

Where, 𝑥𝑡  =  𝛻𝑑𝛻
𝑑
𝑠 𝑦𝑡   is a stationary series, 𝛻 = 1 − B is a Difference operator. 

         𝛻𝑑 = (1 − 𝐵)𝑑                                                                                                                                   (2.9) 

represents the number of regular differences.                                                     

𝛻
𝑑
𝑠 𝑦𝑡 represents the number of seasonal differences required to induce stationary in 𝑦𝑡. 

ARIMA (p, d, q) can also be written as: 

θ(B) (1 − 𝐵)𝑑 𝑍𝑡 = Θ(B)𝑒𝑡 ; where 𝑍𝑡 is an ARIMA(p,d,q) process if     

(1 − 𝐵)𝑑 𝑍𝑡 is ARMA(p,q) and  there is some white noise 𝑒𝑡 . 

Equation (2.9) can be written as;  

          ɸ(B) 𝛻𝑑 = Θ(B)𝑒𝑡  using the difference operator 𝛻𝑑                                               (2.10) 

where B is the Backshift operator            

 

3. Results and Discussion 

This study is based on the application of some of time series techniques with reference to the 

data collected for financial budget over a period 50 years ranging from 1968 to 2018 and for 

classification of functions of government in Lagos state over a period 10 years ranging from 

2008 to 2018. 
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             Figure 3.1: Time Plot of Financial Budget Performance 

Figure 3.1 shows a nonstationary series. The series can be described using an integrated term by 

differentiating the process (differencing) in-order to make the series stationary. The time plot shows the 

presence of trend and seasonality in the series. However, the Financial Budget Performance of Lagos 

state reach a peak in 1992 (24th point) and the lowest is in 2000 (32nd point). 

3.1 Stationary Test for Budget Performance  

3.1.1  ADF Test  

𝐻𝑂: There is Unit Root 

𝐻1 : There is No Unit Root 

                      Table 3.1: Unit Root Test 

Process Test Statistics Lag Order P-value 

 

ADF -2.8831 

 

3 0.2193 

 

Table 3.1 shows that p-value > 𝛼 =  0.05, we do not reject null hypothesis and that there is a 

unit root, hence the series is not stationary. 

3.1.2 KPSS Test  

𝐻𝑂: The series is not stationary. 

𝐻1 : The series is stationary. 
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                      Table 3.2:  KPSS Level 

Process                 Test Statistics Lag order            P-value 

KPSS       0.1249                       3                   0.1 

Table 3.2 shows that the p-value > 𝛼 =  0.05, we do not reject null hypothesis and conclude 

that series is not stationary. 

3.2 Model Identification for Financial Budget 

The model for the financial budget performance in Lagos state is done by estimating the 

Autocorrelation Function (ACF) and Partial Autocorrelation Function (PACF). The selection 

of a tentative time series model is frequently accomplished by matching estimated 

autocorrelations with the theoretical autocorrelation.  

 

Table 3.3:  Sample ACF and PACF of the Budget Performance 

Lag k  ACF PACF AIC 

0  1.000  0.000 12.029683 

1  0.490  0.490 0.000 

2  0.229 -0.015 1.988194 

3  0.058 -0.063 3.783201 

4  0.017  0.021 5.761244 

5 -0.039 -0.055 7.606465 

6 -0.037  0.003 9.606081 

7 -0.069 -0.053 11.464314 

8 -0.133 -0.106 12.887789 

9 -0.144 -0.037 14.819504 

10 -0.204 -0.134 15.889175 

11 -0.004  0.208 15.636443 

12 -0.076 -0.186 15.846971 

13  0.019  0.120 17.106024 

14 -0.032 -0.096 18.632995 

15  0.036  0.077 20.332601 

16  0.029 -0.008 22.329050 

17  0.000 -0.081 23.993976 
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                        Figure 3.2: The ACF of the budget performance 

Table 3.3 shows that the Autocorrelation function (ACF) of the budget performance at Lag1 is 

0.490, which corresponds to the Partial Autocorrelation Function (PACF) at Lag1, as shown in 

Figures 3.2 and 3.3. 

 

                      Figure 3.3: The PACF of the budget performance  

 

3.3 Parameter Estimation 

To identify the best fitted model among several linear and nonlinear time series models, the 

Akaike information criterion (AIC) (Akaike 1974) was used. This criterion measures the 
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deviation of the fitted model from the actual one. The model with the minimum value of AIC 

which is the contending models was chosen.  

Table 3.4: Estimation of the ARIMA Model 

 ARIMA 

(1,0,0) 

ARIMA 

(1,1,0) 

ARIMA 

(1,1,1) 

ARIMA 

(2,0,0) 

ARIMA 

(2,1,0) 

ARIMA 

(2,1,1) 

ARIMA 

(2,2,2) 

ARIMA 

(2,2,3) 

ARIMA 

(2,2,4) 

A.R 0.5362 -0.2630 0.5708 0.5252 -0.2847 0.5493 0.5181 -0.0625 -0.0903 

S.E 0.1240 0.1351 0.1301 0.1406 0.1407 0.1441 NAN 0.3698 1.0588 

A.R    0.0244 -0.0794 0.0525 0.0642 0.4052 0.3255 

S.E    0.1481 0.1461 0.1523 0.1410 0.2536 0.7069 

M.A   -1.000   -1.000 -1.8510 -1.2734 -1.4067 

S.E   0.0772   0.0754 0.0473 0.4380 1.0797 

     M.A       0.8566 -0.2117 0.0515 

S.E       NAN 0.8186 2.0226 

M.A        0.4938 0.3076 

S.E        0.4030 1.0969 

M.A         0.0658 

S.E         0.2362 

Intercept 75.9702   75.7960      

S.E 8.7532   9.0621      

Estimated Sigma 

Squared 

868.6 1031 886.4 868.1 1024 886.4 991 984 983.1 

Log likelihood -245.09 -244.43 -241.97 -245.08 -244.28 -241.91 -241.08 -240.9 -240.77 

AIC 496.18 492.86 489.94 498.16 494.56 491.82 492.16 493.8 495.53 

From the Table 3.4, we fitted ARIMA(p,d,q), where p is the number of autoregressive parameters, d is 

the number of differencing and q is the number of moving average parameters. . The best model chosen 

based on the minimum Akaike Information Criterion (AIC) is ARIMA (1,1,1). Thus, the ARIMA model is 

written as: 

           𝑌𝑡  = 0.5708 𝑌𝑡−1 -1.000 𝑒𝑡−1 +𝑒𝑡                                                                                         (2.11) 

Kwiatkowski Philips Schmidt Shin (KPSS) and Bayesian Information Criterion (BIC) tests are 

other criteria that can be used to decide on the model. 

 



Arowolo et al.                               ILORIN JOURNAL OF SCIENCE 
   

  43 

3.4  Box- LJung Test 

Here, the Box-LJung test is tested to check whether the residuals are correlated or not. 

 𝐻𝑂: The residuals are uncorrelated.           

𝐻1 : The residuals are correlated. 

 

Table 3.5: Test Statistics 

Process Box test Df P-value 

Budget performance 0.20379 1 0.6517 

Table 3.5 shows that the p-value > 𝛼 =  0.05, so we do not reject null hypothesis and conclude 

that the residuals are uncorrelated. Hence the model fits the data. 

3.5 Forecast Evaluation for Budget Performance 

This is an out-of-sample forecast values in predicting the budget performance in Lagos state 

for the next ten years (2019-2028). The predicted values of the table below contain an 

increasing order of the financial budget performance.  

 

Table 3.6: Forecast Evaluation 1 

S/n Financial year 

Percentage 

Performance 

1 2019 32 

2 2020 38 

3 2021 42 

4 2022 45 

5 2023 47 

6 2024 49 

7 2025 51 

8 2026 53 

9 2027 55 

10 2028 56 
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     Figure 3.4: Time Plot of COFOG Performance 

Figure 3.4 shows that the various classification of government functions in Lagos state are 

stationary over time and there is some variability which indicate the volatility nature of their 

performance. 

3.6 Stationary Test for (COFOG)  

3.6.1  ADF Test and P-P Test 

𝐻𝑂: There is Unit Root 

𝐻1 : There is No Unit Root 

                  Table 3.7: Unit Root Test 2 

Process Test Statistics Lag Order P-Value 

ADF -7.206 

 

4 0.01 

 

P-P -151.65 3 0.01 

 

Table 3.7 shows that the p-value < 𝛼 =  0.05,  thus, the null hypothesis is rejected and we 

conclude that there is no unit root. The process is stationary. 

 

3.7 Model Identification for Classification of Function of Government (COFOG) 

The model for the COFOG in Lagos state is achieved by plotting the estimated ACF and PACF 

against time. The matching of the estimated sample ACF and PACF of the underlying 
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stochastic processes suggest that the series were stationary, using the ACF, PACF and AIC 

criteria. 

   Table 3.8: Sample ACF and PACF of the (COFOG) 

Lag k ACF PACF AIC 

0 1.000 0.000 139.809353 

1 -0.460 -0.460 118.255159 

2 0.451 0.304 110.646892 

3 -0.371 -0.122 111.172811 

4 -0.079 -0.511 83.203928 

5 -0.059 -0.100 84.207734 

6 -0.404 -0.546 51.108897 

7 -0.417 -0.065 52.689992 

8 -0.432 -0.396 37.816683 

9 0.862 0.575 0.000000 

10 -0.425 0.029 1.914610 

11 0.440 -0.128 2.288673 

12 -0.344 -0.165 1.568573 

13 -0.052 0.030 3.480966 

14 -0.053 -0.056 5.167336 

15 -0.362 0.107 6.033367 

16 0.383 0.001 8.033313 

17 -0.392 0.004 10.032025 

18 0.767 0.049 11.797423 

19 -0.390 0.067 13.357674 
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               Figure 3.5: The ACF of the COFOG 

 

        Figure 3.6: The PACF of the budget performance 

Figure 3.5 shows that the Autocorrelation function (ACF) of the COFOG performance at Lag1 

is -0.460 which corresponds to the Partial Autocorrelation Function (PACF) at Lag1 in Figure 

3.6  

 

3.8 Box- Ljung Test 2 

 𝐻𝑂: The residuals are uncorrelated. 

 𝐻1 : The residuals are correlated. 
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 Table 3.9: Test Statistics 2 

Process Box test Df P-value 

COFOG % 0.15796 1 0.691 

Table 3.9 shows that the p-value > 𝛼 =  0.05, so, we do not reject null hypothesis and 

conclude that the residuals are uncorrelated. Hence the model fits the data. 

 

3.9 Forecast Evaluation for COFOG 

This is an out-of-sample (long term) forecast values in predicting the COFOG performance in 

Lagos state for the next ten years (2019-2028). The predicted values of the table below contain 

an increasing order of performance of percentage allocated to each various classification of 

government in Lagos state.  

 

 Table 3.10: Forecast Evaluation 2 

2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 

8.97 10.70 11.11 11.94 13.31 15.22 17.62 20.45 23.65 27.18 

9.28 10.76 11.17 12.06 13.49 15.46 17.91 20.79 24.03 27.59 

10.12 10.77 11.25 12.19 13.68 15.71 18.21 21.13 24.41 28.01 

10.26 10.82 11.33 12.33 13.88 15.96 18.52 21.48 24.80 28.42 

10.50 10.84 11.41 12.48 14.09 16.23 18.83 21.83 25.18 28.84 

10.53 10.89 11.51 12.63 14.30 16.49 19.14 22.19 25.58 29.27 

10.64 10.93 11.60 12.79 14.52 16.77 19.46 22.55 25.97 29.69 

10.64 10.99 11.71 12.95 14.75 17.04 19.79 22.91 26.37 30.13 

10.70 11.04 11.82 13.13 14.98 17.33 20.12 23.28 26.78 30.56 

 

 

4. Conclusion 

Attempt had been made in the fitting an appropriate time series model for the data using both 

ARMA and ARIMA models. The descriptive and inferential procedures were conducted using 

R statistical package. The data was smoothed to average out irregular component before it was 

differenced. The data was subjected to ADF and Phillips-Perron unit root test. Hence a 

stationary test was conducted to affirm the degree of stationarity of the data at 5%, level of 

significance. From the sample ACF and PACF plots, it was seen that the financial budget (1968 

– 2018) series followed autoregressive integrated moving average ARIMA (1,1,1) since the 

data was differenced once. The COFOG (2008 – 2018) series followed autoregressive moving 

average (ARMA) as it was stationary in the first place. 

For the fact that the necessary technique was used in the analysis of data in pursuant of the 

objectives of the study, hence the main objectives of the study have been fully achieved. From 

the period under study (1968 – 2018) and (2008 – 2018) respectively for financial budget and 
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COFOG performance, it is easy to see that the process is a non-seasonal time series because it 

comprises both a trend component and an irregular component. Thus, the data was smoothed 

to make the trend component obvious in the plot. With the aid of differencing and performing 

Unit root test, the series becomes a Stationary time series. Forecast were made using 

Autoregressive Integrated Moving Average (ARIMA) Models because of its explicit statistical 

model for the irregular components of a time series and are defined for a stationary time series 

which the data is now one. In line with the conclusion of this study, the following 

recommendations were highlighted in order to improve the budget performance and the 

percentage allocation of classification of function of government in Lagos State.  

We therefore recommend that the state government should put in place an effective database 

for the continuous collection and updating of the classification of function of government 

records which will prefer for the identification of area of key performance. Lagos state 

government should take appropriate measures for an efficient and effective allocation of the 

state’s resources in planning subsequent budget based on the trend analysis of the classification 

of function of government performance. At the beginning of a financial year, Government 

should constitute a budget preparation committee to brainstorm on the budget performance and 

the economic situation. The department of budget should generate the necessary periodic 

performance data from all departments and units to enable it compare actual performance with 

budgeted figures. Budget execution should be done with work plans and cash forecast/budgets. 
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