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Abstract  

Concrete has a reputation as a “low tech” material, but it is actually very complex and worthy of study. It’s the 

most widely used construction material in the world. Carbonation process in concrete regularly involves a 

chemical reaction between carbon dioxide ( 2CO ) and the products of cement hydration. By treating transport 

phenomena as a concrete carbonation process, this study presented a two-dimensional linear partial differential 

equation derived based on the principle of mass balance and convective-dispersive equation incorporating rate 

constant for zero-order production. We assume the diffusion coefficient of 2CO  in any direction of concrete is 

all the same. The analytical solution of the model is achieved by the eigenfunctions expansion technique. The 

results obtained are presented graphically and discussed. It is revealed that the relationships among 2CO  

concentration, carbonation depth and time that can be used to state a carbonation transport phenomena in concrete 

structures are influenced by the diffusion coefficient.  
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1. Introduction  

The cement manufacturing process has been responsible for about 5 to 7 % 2CO  emissions. 

However, during its life cycle, concrete structures are submitted to carbonation and can uptake 

part of 2CO  emitted during its construction (Possan et al., 2016). The carbonation process of 

concrete is principally a diffusion phenomenon. The penetration rate of carbon dioxide depends 

mainly on the concrete quality and the exposure condition (Liang et al., 2002). Carbonation is 

a result of 2CO  chemical reactions with alkaline products of cement hydration, in order to form 

calcium carbonate ( 3CaCO ) and water. This reaction ( ( )
2

Ca OH  + 2CO  → 3CaCO  + 2H O ) 

reduces concrete pH, so, steel becomes susceptible to corrosion. On the other hand, the same 

reaction uptakes 2CO , since carbon dioxide that enters through concrete pore solution reacts 
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with calcium hydroxide ( ( )
2

Ca OH ) to produce 3CaCO  in an opposite process to cement 

production ( 3CaCO →  CaO+ 2CO ). Carbonation reaction, and consequently CO2 uptake, 

occurs throughout concrete structure lifetime (Possan et al., 2016). 

In order to understand and model the deterioration mechanisms and their kinetic and action in 

the concrete structures, countless studies have emerged in the technical and scientific 

community. As a result, many models to estimate carbonation depth and lifetime preview were 

established in recent years. These models enabled considerable advances for understanding the 

behavior of the exposed concrete structures over time. With the aim of estimate the carbonation 

depth, Possan et al. (2016) applied mathematical modeling to evaluate the performance of 

compression strength from a 20, 30 and 40 MPa concrete produced with different types of 

cements (CP III, CP IV and CP V, ARI) from 0 to 100 years of age. It was found out that 2CO  

uptake is directly ratable to the concrete superficial area exposed to 2CO , influenced by the type 

of cement and concrete strength. 

 

Tran et al. (2017) investigated in twelve cases of testing the effect of environment, ambient 

temperature and relative humidity on a concrete slab in the laboratory, to minimize the 

influence of wind. Their results showed that the absolute contrast between the defective and 

sound areas becomes more apparent with an increase of ambient temperature, and it increases 

at a faster rate with large and shallow delaminations than small and deep delaminations. Liang 

et al. (2002) determined the carbonation depth from the surface and at the corners of a concrete 

member. The carbonation depth was predicted by using a statistical method. In order to 

investigate the concrete carbonation problem, the three-dimensional equation of carbonation 

of mass, based on both the Fick first and second laws, was reduced into a one-dimensional 

diffusion equation of which the solution was simplified as an empirical formula. In another 

development, Liang and Lin (2003) described a theoretical study that is a one-dimensional 

linear diffusion equation with initial and boundary conditions. The mathematical model 

considered the relationships among unsteady state and diffusion, pore-water convective effect 

and chemical reaction. 

 

In this paper, a two-dimensional mathematical model that can be used to determine the rate at 

which water or other substances penetrate into concrete structures is presented. Concrete is 

considered homogeneous, isotropic and free of crack. As a result of this, to simulate the flow 

analytically using eigenfunctions expansion technique, we assume the diffusion coefficient, 

D, of 2CO  in any direction of concrete is all the same.  
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2. Model Formulation 

According to Miloud (2005), the permeability of concrete refers to the rate at which water or 

other substances (sulphates, chlorides ions, carbon dioxide, etc.), can penetrate the concrete. 

Following Liang and Lin (2003), the rate at which water or other substances penetrates into 

concrete structures can be determined using several transport mechanisms. These mechanisms 

often act simultaneously on the concrete structures and may include such processes as 

convection, diffusion, dispersion, and first-order production (Weber and DiGiano, 1996) or 

decay. Assume that concrete is a kind of homogeneous and isotropic material and is free of 

crack. This means that the diffusion coefficient, D, of 2CO  in any direction of concrete is all 

the same. The general partial differential equation that relates these factors to a two-

dimensional transport process can be written as  
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where ( )tyxC ,,  is the concentration of substances at space x and  y and time t, sD  is the diffusion 

coefficient, u and v are the pore-water velocities, TK  is the rate constant for first-order decay at a 

given temperature T, r is the rate constant for zero-order production, x is space and t is time, 

dynamic viscosity, k  permeability, p  pressure, iC  is the initial concentration of substances in 

concrete, sC  is the concentration of substances on the surface of concrete structure, and fC  is the 

concentration of substances at the interface between concrete and steel, L is the concrete cover 

thickness on the reinforcing steel.  

Equation (1) consider the relationships among unsteady; 
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3. Method of Solution 

In order to solve the concrete porosity and permeability problem modeled by Equations (1) and 

(2), we introduce a new space variable (Olayiwola et al. (2014)) as: 

yxz += ,                                                                                                                                   (3) 

then, equation (1) and the corresponding initial and boundary conditions in equation (2) 

becomes: 
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where DD 21 =  and ( )vuU += .  

Next, we assume 

( ) ( )tzetzC tz ,,  += ,                                                                                                                                                           (6) 

where α and β are the constant parameters and ( )tz,  are a new function of substances 

concentration. Then 
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Substituting equations (6) – (9) into equation (4) gives 
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In order to reduce equation (10) as a standard form of the one-dimensional diffusion equation, 

the coefficients of the second and third terms on the right-hand side should be equal to zero, 

that is: 

02 1 =−UD ,                                                                                                                                                             (11) 

01

2 =−−−  TKUD .                                                                                                                                          (12) 
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From Equation (11), one has 

12D
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substituting equation (13) into equation (12), one obtains 
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Now the problem formulated by equations (4) and (5) changes into the control equation with 

initial and boundary conditions: 
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3.1 Non-dimensionalisation  

We non-dimensionalised equations (15) and (16) using the following set of dimensionless 

variables: 
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3.2 Solution by Eigenfunction Expansion Method  

The problem in equations (18) and (19) is non-homogeneous boundary problem. In that case, 

we first find a function, ( ),z   which satisfies the boundary conditions. We note that equation 

(20) below does the trick 
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we make the change of variable: 

( ) ( ) ( ), , ,z t z t z t  = + .                                                                                                                (21) 

Then, equations (18) and (19), respectively  become: 
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To solve equations (22) and (23), the solution of the form (24) below is assumed: 

( ) ( )


=









=

1

sin,
n

n z
L

n
ttz


 ,                                                                                                            (24) 

where  

( )
( )

( )





















−














−








−

+= 
t

L

n
k

n

t

n

t
L

n
k

n ebdFet

22

0






 ,                                                                                  (25) 

( ) ( ) dzz
L

n
tzF

L
tF

L

n  







=

0
sin,

2 
,                                                                                                       (26) 

( ) dzz
L

n
zf

L
b

L

n  







=

0
sin

2 
.                                                                                                          (27) 

Here 

( ) ( )

( )
























−+−=











−++−===

−−

−+−−

+

11

,,,1,1








e
C

C
ze

C

C
zf

ee
C

C
ze

e

r
tzFkL

s

fz

s

i

tt

s

ft

tz

                            

and we obtain 

( ) ( ) ( )


=

=
1

sin,
n

n znttz  ,                                                                                                            (28) 

where 



Olayiwola et al.                     ILORIN JOURNAL OF SCIENCE 

85 
 

( )
( )( ) ( )( )

( )

( )
( )
( )

tn

n

tnt
s

fn

nn

n

eb

n

ee

n

e
C

C

n

ern

n
t

22

22

22222

112
112112






















−

−−

−

−

+
−

−































−−

−
+

−+
+

−−
=

          (29) 

and 

( )( )

( )
( )( )

( )































−−

+
−−

+
+

−−

=

−−






n

e
C

C

nn

en
C

C

b
s

fn

n

n

s

i

n

112
112

112

222
 ,                                               (30) 

then 
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The computations were done using computer symbolic algebraic package MAPLE.   

4. Results and Discussion 

We assume that a reinforced concrete structure has 0, 1.0, 0.2,i s fC C C= = =
1210 ,U −=

11 10 1210 , 10 , 10 ,TD K r− − −= = =  analytical solution given by equation (31) are computed 

using computer symbolic algebraic package MAPLE. The numerical results obtained from 

Eigenfunctions expansion technique are shown in Figures 1 to 8. The concentration-time 

relationships are displayed in Figures 1 - 4. The relation between concentration and carbonation 

depth are depicted in Figures 5 - 8.  

 

Figure 1 depicts the graph of ( ),z t against t  for different values of D . It is observed that the 

concentration of carbon dioxide in concrete structure increases and reached steady state as time 

increases but decreases as diffusion coefficient increases. Figure 2 shows the graph of ( ),z t

against t  at 1110D −=  and different carbonation depth z . It is observed that the concentration 

of carbon dioxide in concrete structure increases and reached steady state as time increases but 

decreases as carbonation depth increases. Figure 3 displays the graph of ( ),z t against t  at 

1210D −=  and different carbonation depth z . It is observed that the concentration of carbon 



Olayiwola et al.                     ILORIN JOURNAL OF SCIENCE 

86 
 

dioxide in concrete structure increases and reached steady state as time increases but decreases 

as carbonation depth increases. Figure 4 manifests the graph of ( ),z t against t  at 1310D −=  

and different carbonation depth z . It is observed that the concentration of carbon dioxide in 

concrete structure increases and reached steady state as time increases but decreases as 

carbonation depth increases.                                           
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Figure 5 discloses the graph of ( ),z t against z  for different values of D . It is observed that 

the concentration of carbon dioxide in concrete structure decreases along the carbonation depth 

but decreases as diffusion coefficient increases. Figure 6 shows the graph of ( ),z t against z  

at 1110D −= and different carbonation depth z . It is observed that the concentration of carbon 
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dioxide in concrete structure decreases along the carbonation depth but increases as time 

increases. Figure 7 displays the graph of ( ),z t against z  at 1210D −=  and different 

carbonation depth z . It is observed that the concentration of carbon dioxide in concrete 

structure decreases along the carbonation depth but increases as time increases. Figure 8 depicts 

the graph of ( ),z t against z  at 1310D −=  and different carbonation depth z . It is observed 

that the concentration of carbon dioxide in concrete structure decreases along the carbonation 

depth but increases as time increases. 
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It is worth pointing out that the effect observed in Figures 1 to 4, is an indication that as time 

increases, carbon dioxide concentration in the concrete structure increases and reached steady 

state. 

 

5. Conclusion  

The concrete carbonation problem is one of the chemical contamination phenomena of 

reinforced concrete structures. A two-dimensional solute transport model incorporating rate 

constant for zero-order production, formulated to determine 2CO transport in concrete is solved 

analytically using eigenfunctions expansion technique. The governing parameter of the 

problem is the diffusion coefficient ( D ). It is discovered that the 2CO concentration 

distribution in concrete is significantly influenced by the diffusion coefficient, time and 

carbonation depth. The proposed mathematical model obtained from the eigenfunctions 

expansion technique is suitable for treating a non-uniform diffusion system with variable 

parameters such as the concentration, diffusion and chemical reaction of 2CO  and pore-water 

velocity. The results of this study may be of importance to civil engineers and scholars 

attempting to develop programming standards and to researchers interested in the theoretical 

aspects of computer programming. 
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