

### ILJS-15-072

Chemical constituents from the leaf extracts of *Scleria depressa* (C.B. Clarke) Nelmes with its antioxidant and antiinflammatory activity.

Oguntoye<sup>1</sup>, S. O., Hamid<sup>1\*</sup>, A. A., Jimoh<sup>1</sup>, A., Abdulrauf<sup>1</sup>, A. T., Bale<sup>1</sup>, M. I., Lawal<sup>3</sup>, A. Z., Shehu<sup>4</sup>, A., Faturoti<sup>1</sup>, I. O., Oluwo<sup>1</sup>, A. C. and Olodu<sup>1</sup>, J. O.

#### **Abstract**

Antioxidant and antiinflammatory activity of the extracts of Scleriadepressa leaf part were investigated in this study. The leaf part of Scleriadepressa were dried, ground, weighed, and exhaustively extracted with n-hexane, ethylacetate and methanol. GC-MS analysis of the extracts was carried out to know the compounds present in the extracts as well as their molecular formula. These extracts of the plant were evaluated for antioxidant and antiinflammatory activity using peroxide scavenging, lipoxidase and membrane stabilization. Hexane, Ethylacetate and methanol extracts of the Scleriadepressa leaves exhibited antioxidant activity on peroxide radicals at different concentrations ranging from 10-150 µg/mL, using ascorbic acid as standard antioxidant. Ethylacetate and methanol extracts of the plant's leaves possessed antioxidant activity by exhibiting peroxide free radical scavenging with IC500f 106.23 and 148.79µg/mL respectively, using peroxide antioxidant assay. The hexane extract shows inhibition that is more pronounced compared to that of ethylacetate for the antiinflammatory activity while methanol extract of the plant's leaves shows activity higher than that of hexane and ethylacetate for the anti-inflammatory activity. The GC-MS analysis shows the presence of 13 compounds for hexane extract with Carvomenthol, (an α-Terpenol) and 1,2,3-Trimethylbenzene being the abundant compounds with % abundance of 23.78% and 19.20% respectively, while ethylacetate extract revealed 19 compounds with 1,2-Benzenedicarboxylic acid,bis(2-methylpropylester), and 4,7-dimethylundecane with corresponding % abundance of 24.56% and 16.83% being the abundant compound also the GC-MS analysis of methanol extract of Scleriadepressa leaves showed the presence of 11 compounds. The compound with highest abundance is Methyl-9-octadecenoate, with % abundance of 69.86 and retention time of 14.714.

Keyword: Antioxidant activity, anti-inflammatory activity, carvomenthol, α-Terpenol, GC-MS.

## 1. Introduction

Present in the body are some reactive oxygen species commonly called free radicals that cause oxidative stress which could lead to some chronic conditions and diseases such as carcinogenesis, and damaging of cells (Sies, 1997). There is need to convert these unstable free radicals into a normal or fairly stable

\*Corresponding Author: Hamid, A. A. Email: <a href="mailto:hamid.aa@unilorin.edu.ng">hamid.aa@unilorin.edu.ng</a>

<sup>&</sup>lt;sup>1</sup>Department of Chemistry, Faculty of Physical Sciences, University of Ilorin, Ilorin, Nigeria

<sup>&</sup>lt;sup>2</sup>Department of Micobiology, Kwara State University, Malete, Nigeria

<sup>&</sup>lt;sup>3</sup>Department of Medical Biochemistry, College of Health Sciences, University of Ilorin

<sup>&</sup>lt;sup>4</sup>Department of Chemistry, Faculty of Science, Federal University Lokoja, Lokoja, Kogi State, Nigeria

ones, therefore the search for antioxidant drugs becomes a compulsory tool. *Scleria depresa* a Nigeria native plant that belongs to the family Cyperaceae with the common name sword grass, it is a robust plant with erect stems up to 2m high. The section of the stem is triangular in shape. It has large linear leaves which measures up to 3cm wide, with well-marked ribs. Theses leaves are scabrous on the margin and veins. The inflorescence is a terminal panicle composed of a set of tiered panicles, each one located at the axil of a bract leaf. The male spikelet is long and female spikelet are swollen. The fruit is a compressed achene smooth and shiny, bluish grey colour, which has circular groove around the apex. It has sedge weed type. It reproduces by seeds. It is usually found on lowland, hydromorphic areas, sides of ponds and stream in the savanna. It is frequent and usually found in Nigeria, while rare and not abundant in countries like Benin and Burkina-Faso (Johnson, 1997).

The plant parts can be used for the treatment of cough, irregular menstruation, easing of labour, it can be used to produce new antibiotics as it is from natural source. This research work focuses on the antioxidant and anti-inflammatory activity of the plant extracts.

#### 2. Materials and Methods

Scleria depressa plant was collected at Ajase-Ipo, Kwara state, November 2017. The plant was firstly identified using its vernacular name by an area hunter, Mr. Sumanu and later identified and authenticated by Mr. Ajayi Bolu of the Department of Plant Biology, University of Ilorin, Ilorin, Nigeria. A voucher specimen [UIH/002/1188] was deposited into the herbarium section of the department. Leaves' part of the plant were washed with water, air dried for more than a week, crushed and grounded into a powdery form. The weight after grinding was 1300 g. The plant samples were weighed and extracted using successive extraction method by moving from a non-polar (n-hexane) solvent to a medium polar solvent (ethyl acetate) and then to a polar solvent (methanol).

### **Antioxidant activity**

## Hydrogen peroxide scavenging activity

The ability of the samples to scavenge peroxide radicals was assessed following the procedure of Ruch *et al.*, (1989). A solution of H<sub>2</sub>O<sub>2</sub> (43 mM) was prepared in phosphate buffer (0.1 M, pH 7.4). The extracts at different concentrations in 3.4 mL phosphate buffer was added to 0.6 mL of H<sub>2</sub>O<sub>2</sub> solution (0.6 mL, 43 mM). The absorbance value of the reaction mixture was

recorded at 230 nm.  $H_2O_2$  scavenging activity (%) =  $(A_0 - A_1)/A_0 \times 100$  Where  $A_0$  is the absorbance of the control, and  $A_1$  is the absorbance of the sample. The absorbance was measured in three folds at different concentrations and the mean absorbance for each concentration was determined. Parallel to examination of the antioxidant activity of the plant extracts, the value for the standard compound (Ascorbic acid) was obtained and compared to the values of the antioxidant activity and percentage inhibition of the standard and the extracts was determined using the expression above.

The IC<sub>50</sub> values (Inhibition Concentration at 50%) were estimated from the %inhibition versus concentration graph (Aiyelaagbe *et al.*, 2016).

### ANTI-INFLAMMATORY ASSAY OF THE CRUDE EXTRACT

# **Anti-Lipoxygenase activity**

Anti-Lipoxygenase activity was studied using linoleic acid as substrate and lipoxidase as enzyme (Shinde *et al.*, 1999). Test samples were dissolved in 0.25 mL of 2M borate buffer pH 9.0 and added 0.25 mL of lipoxidase enzyme solution (20,000 U/ml) and incubated for 5 min at 25 °C. After which, 1.0 mL of linoleic acid solution (0.6 mM) was added, mixed well and absorbance was measured at 234 nm. Indomethacin was used as reference standard. The percent inhibition was calculated from the following equation, % inhibition= [{Abs control-Abs sample}/Abs control] x 100, A dose response curve was plotted to determine the IC<sub>50</sub> values. IC<sub>50</sub> is defined as the concentration sufficient to obtain 50% of a maximum scavenging capacity. All tests and analyses were run in triplicate and averaged

### Membrane stabilization test

Preparation of red blood cells (RBCs) suspension

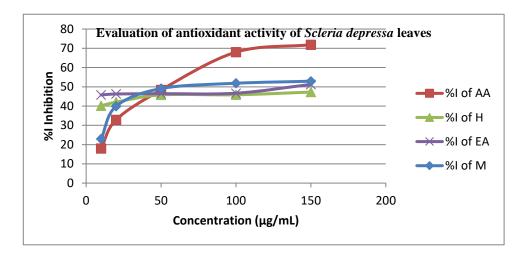
Fresh whole human blood (10 mL) was collected and transferred to the centrifuge tubes. The tubes were centrifuged at 3000 rpm for 10 min and were washed three times with equal volume of normal saline. The volume of blood was measured and reconstituted as 10% v/v suspension with normal saline (Sakat *et al.*, 2010).

# GC-MS analysis of the extracts

GC-MS analysis of the two plants' extracts was performed with Agilent 19091GC plus automatic sampler system coupled with a quadruple Mass Spectrometer 433HP-5MS. Compounds were separated in HP5MS column fused with phenylmethylsilox, (length; 30m x

250  $\mu$ m; film thickness 0.25  $\mu$ m). Samples were injected at a temperature of about 250°C with a split ratio of 10:1 with a flow rate of helium 1*mL*/min.

## 3. Result and Discussion


## Antioxidant activity of Scleria depressa

The ability of the plants' extracts (n-hexane, ethyl acetate and methanol) against peroxide radical scavenging was analyzed. The results of this analysis are as shown in the tables and figures below:

**Table 1:** Hydrogen Peroxide radical scavenging of ascorbic acid, Hexane, Ethyl Acetate and Methanol Extracts of *Scleria depressa* leaves

|                                         | Concentration (µg/ml) | Absorbance 1 | Absorbance 2 | Absorbance 3 | Mean     | %Inhibition |
|-----------------------------------------|-----------------------|--------------|--------------|--------------|----------|-------------|
| Ascorbic acid A <sub>ctr</sub> = 0.4102 | (μg/IIII)<br>10       | 0.1903       | 0.1828       | 0.2385       | 0.203867 | 17.93755    |
|                                         | 20                    | 0.2965       | 0.2012       | 0.1974       | 0.2317   | 32.86092    |
|                                         | 50                    | 0.5081       | 0.3608       | 0.2534       | 0.3741   | 48.35491    |
| 1101 = 011102                           | 100                   | 0.5844       | 0.4448       | 0.4298       | 0.486333 | 68.01345    |
|                                         | 150                   | 0.6802       | 0.5735       | 0.5296       | 0.59443  | 71.85589    |
|                                         | 10                    | 0.2873       | 0.2615       | 0.2384       | 0.2624   | 40.17328    |
|                                         | 20                    | 0.2585       | 0.2468       | 0.2574       | 0.254233 | 42.03526    |
| Hexane<br>extract                       | 50                    | 0.2409       | 0.2292       | 0.2431       | 0.237733 | 45.79723    |
| $A_{ctr} = 0.4386$                      | 100                   | 0.2386       | 0.2126       | 0.2611       | 0.237433 | 45.86563    |
|                                         | 150                   | 0.2383       | 0.2296       | 0.2259       | 0.231367 | 47.27162    |
| Ethyl<br>acetate                        | 10                    | 0.2316       | 0.2492       | 0.2325       | 0.237767 | 45.78963    |
| extract                                 | 20                    | 0.2336       | 0.2495       | 0.2237       | 0.2356   | 46.28363    |
| Actr= <b>0.4386</b>                     | 50                    | 0.2377       | 0.2387       | 0.2353       | 0.2349   | 46.44323    |
|                                         | 100                   | 0.2582       | 0.2076       | 0.2357       | 0.23383  | 46.68643    |
|                                         | 150                   | 0.2166       | 0.2097       | 0.2152       | 0.21383  | 51.24639    |
| Methanol                                | 10                    | 0.2761       | 0.355        | 0.383        | 0.338033 | 22.92902    |
| Extract                                 | 20                    | 0.2433       | 0.2664       | 0.281        | 0.263567 | 39.90728    |
| $A_{ctrl}$                              | 50                    | 0.2189       | 0.2231       | 0.2277       | 0.223233 | 49.10321    |
| =0.4386                                 | 100                   | 0.2179       | 0.2065       | 0.2091       | 0.211167 | 51.85439    |
|                                         | 150                   | 0.2061       | 0.2081       | 0.2084       | 0.206533 | 52.91078    |

Please note that all the cells were deleted to conform with the latest standard and the table above and graph below were separated



**Figure 1:** Evaluation of Antioxidant activity of *Scleria depressa* leaves.

**Keywords**: AA=Ascorbic Acid, H=Hexane, EA=Ethylacetate, M=Methanol.

Ethyl acetate extract of the *Scleria depressa* leaves exhibited antioxidant activity on peroxide radicals at different concentration, using ascorbic acid as standard antioxidant. Ethyl acetate and methanol extracts of the plant showed significant inhibition of peroxide radicals at concentrations in the range of 10-150 μg/mL, by scavenging the free radicals with IC<sub>50</sub> of 148.79 and 106.23 μg/mL respectively. Hexane extract of *Scleria depressa* showed low inhibition of peroxide radical with IC<sub>50</sub> of 198.41 μg/mL.

**Table 2:** Antilipoxygenases activity of indomethacin, Hexane and Ethylacetate extract of *Scleria Depressa* leaves

|                                              | Concentration (µg/ml) | Absorbance          | Absorbance           | Absorbance           | Mean                 | %Inhibition        |
|----------------------------------------------|-----------------------|---------------------|----------------------|----------------------|----------------------|--------------------|
|                                              | 10                    | 0.03685             | 0.094                | 0.0327               | 0.054517             | 47.19987           |
| Indomethacin                                 | 20                    | 0.046325            | 0.041125             | 0.027575             | 0.038342             | 62.86557           |
| $A_{control = 0.10325}$                      | 50                    | 0.041725            | 0.02355              | 0.033575             | 0.03295              | 68.08748           |
|                                              | 100                   | 0.031425            | 0.0258               | 0.037075             | 0.031433             | 69.55639           |
|                                              | 150                   | 0.020075            | 0.017225             | 0.021478             | 0.019593             | 81.02424           |
|                                              | 10                    | 0.078875            | 0.063523             | 0.090525             | 0.077608             | 24.836             |
| Hexane extract                               | 20                    | 0.0644              | 0.061739             | 0.062064             | 0.062734             | 39.241             |
| A <sub>contr</sub>                           | 50                    | 0.0071034           | 0.0572214            | 0.051982             | 0.060077             | 41.815             |
| =0.103251                                    | 100                   | 0.037845            | 0.037025             | 0.039675             | 0.038182             | 63.021             |
|                                              | 150                   | 0.0375              | 0.035125             | 0.038775             | 0.037133             | 64.036             |
|                                              | 10                    | 0.096275            | 0.0776275            | 0.091634             | 0.088511             | 14.276             |
| Ethyl acetae extract $A_{contro} = 0.103251$ | 20                    | 0.076775            | 0.076775             | 0.071845             | 0.075515             | 26.863             |
| $A_{\text{contro}} = 0.103231$               | 50                    | 0.041875            | 0.041875             | 0.030275             | 0.038475             | 62.736             |
|                                              | 100                   | 0.043725            | 0.041425             | 0.032121             | 0.03909              | 62.14              |
| Methanol                                     | 150<br>10             | 0.011275<br>0.06435 | 0.0333275<br>0.05575 | 0.028423<br>0.060375 | 0.024324<br>0.060158 | 76.442<br>41.73583 |
| $A_{ctrl} = 0.10325$                         | 20                    | 0.047875            | 0.061425             | 0.042458             | 0.050586             | 51.00677           |
|                                              | 50                    | 0.043275            | 0.043108             | 0.040425             | 0.042269             | 59.06157           |
|                                              | 100                   | 0.041599            | 0.041425             | 0.039211             | 0.040745             | 60.53791           |
|                                              | 150                   | 0.03890             | 0.031475             | 0.035325             | 0.035233             | 65.87604           |

**Table 3:** Membrane stabilization activity of Indomathacin, Hexane, Ethylacetate and Methanol extracts

of Scleria Depressa leaves.

|                                                | Concentration | Absorbane | Absorbance | Absorbance | Mean     | %Inhibition |
|------------------------------------------------|---------------|-----------|------------|------------|----------|-------------|
|                                                | (μg/ml)<br>10 | 0.4661    | 0.4394     | 0.3971     | 0.688967 | 37.53702    |
|                                                | 20            | 0.4601    | 0.6972     | 0.5596     | 0.637567 | 42.19704    |
| Indome-                                        | 50            | 0.6662    | 0.6993     | 0.5315     | 0.632333 | 42.6715     |
| thacin<br>A <sub>control</sub> =1.103          | 100           | 0.6537    | 0.6582     | 0.6008     | 0.636533 | 42.29072    |
|                                                | 150           | 0.7193    | 0.7212     | 0.6264     | 0.4342   | 60.63463    |
|                                                | 10            | 0.6853    | 0.681      | 0.9762     | 0.7808   | 29.20822    |
|                                                | 20            | 0.6715    | 0.6505     | 0.8727     | 0.7316   | 33.67483    |
| Hexane                                         | 50            | 0.6287    | 0.6471     | 0.8325     | 0.7028   | 36.28589    |
| extract<br>A <sub>contr=1.103</sub>            | 100           | 0.6514    | 0.6659     | 0.7554     | 0.6909   | 37.36174    |
| Acontr=1.103                                   | 150           | 0.6089    | 0.6150     | 0.6913     | 0.6387   | 42.09731    |
| Ethyl acetate extract A <sub>contr=1.103</sub> | 10            | 0.6039    | 0.5184     | 0.5403     | 0.5549   | 49.695      |
|                                                | 20            | 0.5276    | 0.5183     | 0.5616     | 0.5358   | 51.42       |
|                                                | 50            | 0.5796    | 0.5173     | 0.5268     | 0.5212   | 52.744      |
|                                                | 100           | 0.5077    | 0.5027     | 0.5132     | 0.5059   | 54.137      |
|                                                | 150           | 0.4807    | 0.4992     | 0.5109     | 0.4969   | 54.947      |
|                                                | 10            | 0.6744    | 0.5442     | 0.6219     | 0.6135   | 44.37897    |
|                                                | 20            | 0.6267    | 0.561      | 0.4946     | 0.560767 | 49.15987    |
| Methanol                                       | 50            | 0.6097    | 0.5382     | 0 .5203    | 0.556067 | 49.58598    |
| Extract                                        | 100           | 0.6233    | 0.5487     | 0.4891     | 0.5537   | 49.80054    |
| A <sub>cotr</sub> =1.103                       | 150           |           |            |            |          |             |
|                                                |               | 0.6171    | 0.5448     | 0.4762     | 0.546033 | 50.49562    |

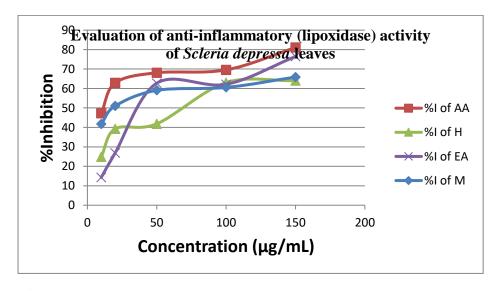



Figure 2a

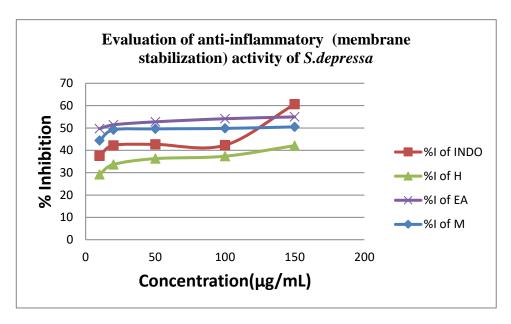



Figure 2b

Figures 2a&2b: Show the graph of %inhibition against concentration for lipoxidase and membrane stabilization test repectively.

KEYWORDS: INDO=Indomethacin, H=Hexane, EA=Ethylacetate, M=Methanol, AA=Indomethacin(fig2a).

**Lipoxidase**: Hexane, ethylacetate and methanol extracts of *Scleria depressa* leaves exhibited anti-inflammatory activity with an IC<sub>50</sub> values of 78.98, 63.52 and 26.64 μg/mL respectively which are very much comparable with the IC50 value of the indomethacin standard, 18.86 μg/mL. methanol extract out of the three extracts is more anti-inflammatory active than the two other extracts because of its closer value to the value of the standard.

**Membrane Stabilization**: Hexane, ethylacetate and methanol extracts of *Scleria depressa* leaves exhibited anti-inflammatory activity with an IC<sub>50</sub> values of 257.2, 10.61 and 115  $\mu$ g/mL respectively while the value of indomethacin is 103.97  $\mu$ g/mL. Ethylacetate extract out of the three extracts shows a more pronunced anti-inflammatory activity than the two other extracts and interestingly more active than the standard.

#### GC-MS Results of Hexane, Ethylacetate and Methanol extracts of Scleria depressa leaves

GC-MS analysis of hexane extract of *S. depressa* leaves reveals the presence of 13 compounds.5-methyl-2-(1-methylethyl) Cyclohexanol, that is, Carvomentholand 1,2,3-Trimethylbenzene are the most abundant (23.78% and 19.20%) compounds with molecular formula  $C_{10}H_{20}O$  and  $C_{19}H_{12}$  and retention time 5.172 and 3.494. The most abundant and other

compounds have fragmented ions has shown in the given table 3. The trace compound below 1.0 is 2,2-Dimethyl-propyl-2,2-dimetyl-propanesulfinylsulfone with retention time of 6.544.

GC-MS analysis of ethylacetate extract of *S. depressa* leaves reveals the presence of 19 compounds, two compounds 4,7-Dimethylundecane and 2,2-Dimethylbutane appeared twice each with different retention time and their % area were added up to give single compound each thus reducing the 19 compounds in the library to 17compounds. 1,2-Benzenedicarboxylic acid, bis(2-methylpropyl) ester, 4,7-dimetylundecane, 1,2-Diisopropenylcyclobutane are the most abundant (24.56%, 16.83% and 9.47%) compounds with retention time 13.338, 6.298 and 3.819. while the trace compounds below 1.0 are alpha-methylnaphthalene, 1-sec-butoxybutane and 2,2-Dimethylbutane with % area 0.22, 0.52 and 0.74 and retention time 6.500, 6.749 and 7.011.

GC-MS analysis of methanol extract of *Scleriadepressa*leaves showed the presence of 11 compounds. The compound with highest abundance is Methyl-9-octadecenoate with % abundance of 69.86 and retention time of 14.714.

**Table 4**: Interpretation of GC-MS analysis of hexane extract of *Scleria depressa* leaves

| Compound                                                                                                                       | Formulae                          | Molecular mass | % Area | % Height | Retention time | Mass Fragmentation |
|--------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|----------------|--------|----------|----------------|--------------------|
| 2-Phenyleicosane                                                                                                               | C <sub>26</sub> H <sub>46</sub>   | 358            | 7.04   | 4.80     | 3.203          | 27,41,147,161      |
| 1,2,3-<br>Trimethylbenzene                                                                                                     | $C_{19}H_{12}$                    | 120            | 19.20  | 16.72    | 3.494          | 14,39,91,105       |
| 2-Oxo-2-phenylethyl-<br>3-methylbenzoate                                                                                       | $C_{16}H_{14}O_3$                 | 254            | 6.06   | 6.07     | 3.769          | 39,51,105,119      |
| 3,3-Dimethylhexane                                                                                                             | $C_8H_{18}$                       | 114            | 9.54   | 10.11    | 4.026          | 27,41,85,99        |
| 1,2,4-Butanetriol                                                                                                              | $C_4H_{10}O_3$                    | 106            | 2.71   | 3.59     | 4.969          | 12,45,588          |
| 5-methyl-2-(1-<br>methylethyl)Cyclo<br>hexanol                                                                                 | $C_{10}H_{20}O$                   | 156            | 23.78  | 30.07    | 5.177          | 27,41,123,138      |
| 1,2,3-<br>Trimethyldiaziridine                                                                                                 | $C_4H_{10}N_2$                    | 86             | 1.25   | 2.03     | 6.127          | 28,71,85           |
| 2,2-Dimethyl-propyl 2,2-dimethyl- propanesulfinyl sulfone                                                                      | $C_{10}H_{22}O_3S_2$              | 254            | 0.65   | 1.09     | 6.544          | 45,57,71           |
| 2-(2',4',4',6',6',8',8'-<br>Heptamethyltetrasilox<br>an-2'-yloxy)-<br>2,4,4,6,6,8,8,10,10-<br>nonamethylcyclopenta<br>siloxane | $C_{16}H_{48}O_{10}Si_{9}$        | 652            | 3.09   | 3.53     | 8.407          | 41,57,517,575      |
| N- [(pentafluorophenyl)m ethylene]beta.,3,4- tris[(trimethylsilyl)oxy ]                                                        | $C_{24}H_{34}F_5N0_3Si_3$         | 563            | 2.46   | 3.13     | 10.826         | 45,59,473, 548     |
| 1,2-<br>Benzenedicarboxylic<br>acid                                                                                            | $C_{16}H_{20}O_4$                 | 278            | 12.96  | 10.83    | 13.336         | 27,41,205 ,223     |
| 9-<br>Azabicyclo[3.3.1]nona<br>-2,6-diene-9-<br>carboxaldehyde                                                                 | C <sub>9</sub> H <sub>11</sub> NO | 149            | 8.24   | 6.17     | 14.366         | 27,53,120,134      |
| 1,3,3-trimethyl<br>Bicyclo[2.2.1]heptan-<br>2-one                                                                              | $C_{10}H_{16}O$                   | 152            | 3.03   | 1.86     | 17.827         | 27,41,137,152      |
| 9-<br>Azabicyclo[3.3.1]nona<br>-2,6-diene-9-<br>carboxaldehyde                                                                 | C <sub>9</sub> H <sub>11</sub> NO | 149            | 8.24   | 6.17     | 14.366         | 28,54,120,134      |

 Table 5: Interpretation of GC-MS analysis of ethyl acetate extract of Scleria depressa leaves

| Compound                                                   | Formulae             | Molecular<br>mass | %<br>Area | %<br>Height | Retention time | Mass Fragmentation |
|------------------------------------------------------------|----------------------|-------------------|-----------|-------------|----------------|--------------------|
| 1,2-Diisopropenylcyclobutane                               | $C_{10}H_{16}$       | 136               | 9.47      | 7.05        | 3.819          | 45,5,107,121       |
| Methanecarboxamide                                         | $C_2H_5NO$           | 59                | 2.05      | 1.99        | 3.925          | 13,15,44,59        |
| 4-(1,1,3,3-                                                | $C_{17}H_{30}OSi$    | 278               | 2.05      | 1.65        | 4.03           | 42,57,263,278      |
| Tetramethylbutyl)phenyl trimethylsilyl ether               |                      |                   |           |             |                |                    |
| 2,2-Dimethylbutane                                         | $C_6H_4$             | 86                | 4.89      | 5.64        | 15.454         | 14,27,41,43,57,71  |
| 1,1,3-Trimethylcyclopentane                                | $C_8H_{16}$          | 112               | 5.47      | 6.81        | 5.293          | 14,27,41,83,97     |
| 3,7-Dimethyldecane                                         | $C_{12}H_{26}$       | 170               | 6.53      | 6.96        | 5.367          | 27,41,141,155      |
| Bis(N,N-dimethylamino) pentachlorophenyl phosphate         | $C_{22}H_{15}F_3O_5$ | 416               | 1.06      | 1.37        | 6.232          | 50,64,145,173      |
| 4,7-Dimethylundecane                                       | $C_{13}H_{28}$       | 184               | 16.83     | 20.81       | 13.538         | 27,41,141,155      |
| 1H-Indene-1-methanol, .alpha<br>methyl-, acetate           | $C_{13}H_{14}O_2$    | 202               | 2.63      | 3.29        | 13.620         | 42,68,142,158      |
| 1-Methylnaphthalene                                        | $C_{11}H_{10}$       | 142               | 0.22      | 0.05        | 6.500          | 27,39,98,115       |
| 1-Sec-butoxybutane                                         | $C_8H_{18}O$         | 130               | 0.52      | 0.93        | 6.749          | 27,41,115,130      |
| alphaTridecene                                             | $C_{13}H_{26}$       | 182               | 8.04      | 9.84        | 7.161          | 27,41,140,154      |
| 5-ethyl-5-isopropyl Barbituric acid                        | $C_9H_{14}N_2O_3$    | 198               | 0.81      | 1.02        | 7.626          | 53,69,156,169      |
| 1-Hexadecanol                                              | $C_{16}H_{34}O$      | 242               | 8.79      | 7.68        | 12.397         | 27,41,168,196      |
| 1,2-Benzenedicarboxylic acid-<br>bis(2-methylpropyl) ester | $C_{16}H_{22}O_4$    | 278               | 24.56     | 19.34       | 13.338         | 27,41,205,223      |
| 1,7-Dimethyl-4-(1-<br>methylethyl)cyclodecane              | $C_{15}H_{30}$       | 210               | 3.81      | 4.13        | 14.636         | 27,41,151,168      |

**Table 6:** Interpretation of GC-MS analysis of methanol extract of *Scleria depressa* leaves

| Compound                     | Formulae          | Molecular | % Area | %      | Retention | Mass          |
|------------------------------|-------------------|-----------|--------|--------|-----------|---------------|
|                              |                   | mass      |        | Height | time      | Fragmentation |
| Diethylphthalate             | $C_{12}H_{14}O_4$ | 222       | 2.38   | 2.39   | 8.499     | 45,50,177     |
| Neodol                       | $C_{15}H_{32}O$   | 228       | 4.13   | 4.19   | 10.388    | 27,41,182,210 |
| Methylmyristate              | $C_{15}H_{30}O_2$ | 242       | 0.89   | 1.27   | 11.312    | 27,41,199,211 |
| Methylpentadecanoate         | C16H32O2          | 256       | 0.22   | 0.28   | 11.462    | 27,41,213,225 |
| Methylhexadec-9-enoate       | C17H34O2          | 268       | 3.14   | 4.91   | 13.333    | 29,41,194,236 |
| Hexadecanoicacid,methylester | C17H34O2          | 270       | 2.08   | 3.56   | 13.613    | 27,41,153,167 |
| Heptacosan-1-ol              | C27H56O           | 396       | 7.63   | 12.10  | 13.881    | 29,41,227,239 |
| Nonadecanol                  | C19H40O           | 284       | 2.05   | 3.40   | 14.324    | 27,41,180,222 |
| 9-Octadecenoic, methylester  | C19H36O2          | 296       | 69.86  | 56.22  | 14.714    | 29,41,180,22  |
| 7-Octadecenoic, methylester  | C19H36O2          | 296       | 3.16   | 4.60   | 15.531    | 27,41,180,222 |
| Strearic acid                | C19H38O2          | 298       | 2.60   | 4.24   | 15.708    | 27,41,255,267 |

#### 4. Conclusion

This study has shown that the leaf extracts of *S. depressa* have active ingredients or bioactive compounds which are able to scavenge free radicals and also are antiinflammatory active. The observed antioxidant and antiinflammatory potency of this medicinal plant may be attributed to the presence of the most abundant bioactive compounds present in synergy with all other compounds present in relatively small amounts. This justifies the ethnomedicinal uses of the plant and the plant may be a potential source of novel antioxidant and antiinflammatory drugs.

#### References

- Aiyelaagbe O.O., Oguntoye S.O., Hamid A.A., Ogundare A.M., Ojo D.B., Ajao A., Owolabi N.O. (2016). GC-MS analysis, antimicrobial and antioxidant activities of extracts of the aerial parts of *Conyza sumatrensis*. *Journal of Applied*. *Science Environment*. *Management*. **20**, 103-110.
- Johnson, D.E.(1997). Weeds in rice in West Africa.WARDA / WARDA, Bouake, Ivory Coast. 120p.a
- Ruch, R.J., Cheng, S.J., Klaunig, J.E. (1989). Prevention of cytotoxicity and inhibition of intracellular communication by antioxidant catechins isolated from Chinese green tea. *Carcinogenesis*. **10**, 1003.
- Sakat S., Juvekar A.R., Gambhire M.N. (2010). In vitro antioxidant and anti-inflammatory activity of methanol extract of Oxalis corniculata Linn. *International Journal of Pharmacy and Pharmocology Science.* **2,** 146-155.
- Shinde U.A., Phadke A.S., Nari A.M., Mungantiwar A.A., Dikshit V.J., Saraf M.N. (1999) Membrane stabilization activity- a possible mechanism of action for the anti-inflammatory activity of Cedrusdeodara wood oil. *Fitote.* **70**, 251-257.
- Sies H. (1997). Oxidative stress: oxidants and antioxidants. *Journal of Exploration Physiology.* **82**, 291-295.