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Abstract

The paper presents methods for solving a large-scale rectangular system of equations based on Tikhonov
regularization procedures wherein, incorporated, the Singular Value Decomposition (SVD) as basis of numerical
computation. We obtain the regularization parameter by adopting the Penrose-pseudo-inverse process with a view
to diminishing occurrence of huge condition number appearing in the left-hand side of the equation for meaningful
solution. We obtain the rank of a rectangular matrix as well as approximation of Low rank matrix, a very important
tool in image reconstruction from the noisy data. It is demonstrated that the symmetric matrix coming from the
normal equation is reduced to a tridiagonal matrix using the Givens- QR - transformation process wherein, the

norm of the inverse tridiagonal matrix may be obtained in an economical way

Keywords: Least squares problem, Tikhonov regularization method, Singular Value Decomposition (SVD),
Low rank matrix approximation, Inverse of a tridiagonal matrix

1. Introduction

One important problem in mathematics as well as in other engineering practices is fitting data
to a mathematical model or finding equilibrium point to a given chemical reactions problem.

This often leads to overdetermined system of nonlinear equations
F(x)=0, 1)

where F : D < R™ — R"is a differentiable function onS = é(x(o), r)c D which is assumed to
be Lipschitz continuous on D, andm > n. Basic method for solving this is the Gauss-Newton
—Tikhonov operator approximated by a linear model in the form:
F(X)ZF(Xk)+F/(Xk)(X_Xk)' (2)
Starting with Newton method, we obtain solution to equation (1) in the form:

X(k+1) — X(k) _ (F/(X(k))T F/(X(k)))—l F/(X(k))T F (X(k))
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For the typical un-regularized least squares problem case, the solution is in the form
x®D =x®O _F/(xX®)y F(x®), (k=01..,). (3)
The F/(x®)* so defined is the well-known Pseudo-inverse matrix.

By further setting A(x®):S = R" — L(R™,R"), F(x®) = F’(x(k’)T F(x‘k)), then equation (1)

can be rewritten in the form:
XD = x® _(AXO) AX®)FF(X®)  (k=012,..,). (4)

For the general case, it is extended to include the square nonlinear system when m=n.We
then impose, a stringent condition in the sense of Ortega and Rheinboldt (2000) on Newton

method:

x* = x® — AKX TF(x®),k=01,..... )
AssumingF : D < R" — R" is F is differentiable on a convex set D, — D and that

[F'00—=F'()][<nlx-y]. ¥,y € D,. Let there exists ax® e D, such that [F'(x*)*| <

and o =ﬂngsé WheregZHF’(X‘O))‘lF(x(O))H. If P(t) = %,B’gt2 —t+¢ =0 is the quadratic
. . -1 1 -1 3
equation with roots t, =(fs) {1—(1—205)2}, t, =(Bs)"|1+(1-2a)? |. It follows that for

S(x©,t,)= D,, the iterates of Newton method are well defined, remain in S(x®,t,) and
converge to a solution x" of F(x) =0 that is unique in S(x,t, )N D,

As is well known, Xu and Chang (1997), solving a nonlinear system of equation (1) is

synonymous to finding the global minimizer of f(x) :GJF(X)T F(x). In any case, the
condition that F(x)be locally Lipschitz continuous implies that f (x) does. The remaining
section in the paper is arranged as follows: Section 2 deals with the iterated filtered Tikhonov
regularization method. We made a synchronization of SVD with the Filtered Tikhonov
regularization method for the resulting least squares problem. In section 3, a bound is
constructed for the Singular values of an overdetermined matrix in the sense of Rump (2012)
which has special importance to the described method for which a negative log likelihood
function for Tikhonov regularization parameter becomes handy as a useful tool. We also

discussed in the paper the Givens-QR factorization as an alternative method to checking the
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accuracy of approximate solution as described in section2. Section 4 gives the numerical
illustration with the described procedures. In section5, we conclude the paper based on the

strength of findings.

2. The Iterated Filtered Tikhonov Regularization Method

The singular value decomposition of a matrix Ae R™" for m>n in line with Uwamusi

(2017) is given by A=U V' => u,o,v; where U =(u,U,,...,u,)V = (v, V,,...,V, ) are
=1

j
matrices with orthonormal columns, U'U =1,,V'V =1, and ¥ = diag(c,,0,,...,c,) has a

. . . .- O.
non-increasing order such that o, >0, >..>0,>0 with condition number of A=—

On

becomes severe for o, — 0. We give special features of the matrix A in the form:
AAT — (U ZTVTXV ZUT)ZU(ZT z)JT ‘ and ATA = (V ST UTXU ZVT):V(ZT Z)\/T |
(AAT )Ji = Gizui (AT A)\/i = O'i2Vi _

In order to simplify details, it is that: U is the matrix of eigenvectors for A" A while V is the
matrix of eigenvectors for AA™ .Furthermore, matrices AA" and A’ A have the same positive

eigenvalues. The singular values o;0f A will cluster at zero with resultant huge condition

number see e.g., Bjorck (2009), Rump (2012), because in terms of SVD

Xj = Zn:ivj’ (&;=ujb) (6)

i O
has coefficients &; decreasing faster than o;.
The Tikhonov regularization method is used to solve highly ill-posed system of equations. It is
used to stabilize an unstable linear system that is highly singular whose solution by traditional
methods is meaningless due to presence of noisy data in the right-hand side of linear ill-posed
system. The reason for this is that, there is a clustered eigenvalue close to zeros, hence the need
for regularization. Choosing a best regularization parameter is a nontrivial problem. The best-
known Tikhonov regularization type method is the Filtered Tikhonov regularization that is
dependent on Singular values of the matrix.

The Tikhonov regularization and the side constraint are defined in the form:

X_=arg min{||Ax—b||§ +r2HL(x—x*) E} : (7)

287



Uwamusi ILORIN JOURNAL OF SCIENCE

The scalar 7 is a regularization parameter that is designed to control the weight assigned to the
minimization of residual norm while the L may be tken as an Identity matrix. The solution to
the normal equation for least squares problem in the sense of equation (7) is then given in the
form:

X, =(ATA+7°1)"A'b. (®)
We present the filter function Chung et al. (2012, 2015), Bjorck (2009), Erhel et al. (2001) for
Tikhonov regularization as follows:

k u'b
ONE ;[qé(A)G'—jv,} = Vdiag(U'b)x . (©)

The ¢(A) appearing in equation (9) is given by the equation:

o=y (10)

In matrix form, we write the filter function for Truncated Singular values decomposition

(TSVD) for Tikhonov regularization method assuming 3, =(o;,0,,...,c, )in the form:

2
s 0
O'l (JETTZ)
2
0 1% 0. 0
72 (62+22)
X () =V . U'b . (11)

2
Oy

0 s ()k [ 2 2]
k

The interpretation of equation (11) to equation (6) is that, for a very small number z , ¢((A))

is approximately ¢(i); j=12,..,k and, this will be noisy for small enough o ;. On the other
O
J

hand, a direct approach to regularized method of Equation (7) using SVD of A=U V' is
(VX?VT 4221 )x=V ZUb, (12)
with solution given by

X, =V(Z2+2%1) " ZUDb. (13)
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In the implementation of solution to Equation (13) using MATLAB, we should take into

2

. (N
cognizance that: > =(o;,0,,...0,)", p:(UTb)./Z, , :m, so that x, =V (¢.* p) .

3. Construction bound for Singular values of a Matrix A.

Fundamental to this discussion is the approach due to Rump (2012). There, it was established
that “singular value decomposition A=U Y.V reveals most important properties of A, from

condition number over the distance to singularity to the solution of a linear or, in case of a

rectangular matrix, both under/over determined or least squares problem’’.

Theorem, Rump (2011). Let A< R™" be given, and suppose HI —ATAHSa<1. Then for

m > n, A has full rank, and

<o, (A") < !

1
Vi-a <o (A) <vJl+aWith 1, 11—«

forall 1<i<n. In particular:

Vli—a £ ||A|| <Vl+a 3 1

nd = <A< .
Vlita Vli—-«a

Now consider the model

Ax=b+eg, (14)

which has &~ N(0,5%1) and whose variance ¢ is unknown. Solving linear least squares

problem would lead to inversion of highly ill-conditioned matrix which pushes the data noise

to the right-hand side, thereby rendering solution process in most cases useless for any
meaningful uses. By setting A(r) asA(z) = A(ATA+12I)_1AT, the negative log likelihood

function is defined by the equation

n re 2
3(x™ (%), Ab)=—log] ]| = L exp ~ (A g(ﬂrj)—b)
=\ o271 205
re 2
= glogZﬂg:HAx g(TA?_bH : (15)
20
. e ey -t

, then

Thus when o is the maximum likelihood estimate to
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3(x® (%), Ab) = glog%+glog”Axreg (%) -b[ +g . (16)

2 eff 2
The bias correction term is given by B AD)=P" () =TrA") The matrix ATA is
symmetric and positive semi-definite, and by the ideas expressed in Neumaier (1998) the

matrix ATA+7°l has its eigenvalues in the interval (12,12 +| Aﬂz) with condition number less

than or equal to (iz(rz +||A||2)] which decreases as z increases.
T

The estimate for the condition number K (A) is given by the inequality

K < o7 777 (_ maij | an

+
(6?2 +7%) =i (67 +77)

In the QR Factorization method without regularization parameter, the matrix A is decomposed

R R
into the formA=Q[o} so that {O}X=QTb. Since Q'Q =1and the column of Q are

orthonormal. It follows Q preserves the Euclidean norm. The formulation of least squares

problem with the aid of QR assumes the form

2 2 2

oA - - g [ <Jern-aq g || x

2 2. 2
by orthogonality of Q, implies thatQ'Q = | . We now give error estimates for the condition
number to the perturbed system:
(A+AA)X=Db+Ab , (18)
where AAand Abrespectively are the perturbation to Aandb and are expressed in the form:
;7(>A<) = min{e (A+ AA))A(:b+Ab}. (19)

Using the fact that||AA| < £| A.[Ab| < ]| , we then compute the ratio

n—— (o) (20)

A+ o]

In what follows we choose z to be a vector such that z" x =||x||[z|| =1and z isadual of x. The

optimal perturbation for AA and Abrespectively are given by
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JAlx
IR -

[+l A+ bl

AA

The backward error in the sense of Walden et al. (1995) for the perturbed problem of Equation
(18) is described in the form:

n(;(j:min{”AA,@Ab”F (A+AA)x—(b+Ab), =mint . (21)
Provided that:

e i
nl x|=| T2 g+min{o,A.}| ,and A = A,  AAT —u——+. (22)

X I
0%|x|°
S VS I v
1+ 62%||x

2
Particularly, is the case when the real eigenvalue A < 0. Then we would have that

2
Ir

|
2
n

X

p+2e | =6,,(AR])

and

1
R=u? ”E”z (| _ I’I’T)
X

2

T

A

= , X = .
[bl, (x'x)

4. Numerical Examples.
Problem 4.1:

We consider the rectangular matrix Ae R™" where m >n defined by
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68
68
74
83
83
83
48
37
51
61
64
56
33
41
48

80
82
78
79
60

55
65
73
75
76
67
76
80
80
81
82
182
184

P R R R R R R R R R R R R R R R RRRRRRRRR R R R B B B

[EEN

4624
4624
5476
6889
6889
6889
2304
1369
2601
3721
4096
3136
1089
1681
2304

84 7056 592704 49787136

6400
6724

6084 474552 37015056
493039 38950081

6241
3600
3025
4225
5329
5625
5776
4489
5776
6400
6400
6561
6724
6724
7056

314432 21381376
314432 21381376
405224 29986576
571787 47458321
571787 47458321
571787 47458321
110592 5308416
50653 1874161
132651 6765201
226981 13845841
262144 16777216
175616 9834496
35937 1185901
68921 2825761
110592 5308416

512000 40960000
551368 45212176

216000 12960000
166375 9150625

274625 17850625
389017 28398241
421875 31640625
438976 33362176
300763 20151121
438976 33362176
512000 40960000
512000 40960000
531441 43046721
551368 45212176
551368 45212176

592704 49787136
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Knowing well that the rank approximation to A in the spectral norm is|||,. We set that

A =Y ouyl 1o have that A = min|A- A, = S oV =0y
i=1 i=r+l 2
Similarly, we have that
JA- AL =Y ouy =Zcff- 23)
i=r+l F i=r+l

The question is “can we estimate the upper bound for the Pseudo inverse matrix A"”? To do

this will require the use of SVD of A and using relevant ideas due to Bjorck (2009), for
example. Because A=UYV', Z=diag(al,02,...,an), inductive argument implies
ATA+721 =V(Z2+221 T . The Pseudo inverse matrix A" = (ATA) AT is transformed in a

manner analogous to the form:

(ATA+ 221 )T AT =V (224221 )T ZUT (24)
If we take the norm of both sides of Equation (24), then we see that
(AT A 221 AT = max— 2L (25)
o, +T
The other pertinent details as a fall out to Equation (25) are:
= 1
(AT A1) w2 (26)
1
AX AX 1
1A, = ””X”” [mx ”” ”” T] (al(A)z N Tz)z . @7)

Turning back to the Numerical problem 4.1 above, the following results are obtained. The
computed results are displayed in Table 1 below, where we used the Penrose pseudo-inverse

process as Tikhonov regularization parameter in our solution.
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Table 1: Showing Results for the linear system.

Results from Normal | Results From | Results from using
Equation Regularized SVvD
QR method Tikhonov parameter x

)“( 7=0.0182

Xtik

1.0000 0.0531 1.0000

0.0000 0.0691 —0.0000

0.0000 -0.0018 0.0000

0.0000 0.0000 —0.0000
0.0000 —0.0000 0.0000

The matrix A has huge condition number K(A) =0,/ o, =1.9391e +11, with singular values

2.0748 0 0 0 O
0 0.01070 0 O
0 0 0O 0 O
2 =1.0e+08* 0 0 0O 0 O

—0.0000 0.0000 0.0007 0.0535 —0.9986
—0.0000 0.0002 0.0305 0.9981 0.0535
where the orthonormal matrixV =| —0.0001 0.0125 0.9994 -0.0308-0.0009
—0.0102 0.9999 -0.0125 0.0002 0.0000
—0.9999 -0.0102 —0.0000 —0.0000-0.0000

for the ill-conditioning of linear system of problem 4.1.

Particularly, we also, showed the result for the Low rank matrix approximation for Problem
4.1 in the form:

0.0000 0.0000 0.0000-0.0011-1.7725
~0.0000-0.0000 0.0000 0.0001 0.1059
min|ZA—1,|° = (1.0e +09)* 0.0000  0.0000 —0.0000 —0.0000 —0.0019
’ ~0.0000 0.0000 0.0000 0.0000 0.0000
~0.0000 —0.0000 —0.0000 —0.0000 — 0.0000
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In the course of implementation, we noted Xiang and Zou (2013),that the condition number,

K (A) associated to the Tikhonov regulator parameter defined earlier has the distinct quality:

Swlai2+rz( 22’ > +max 2O-i zj. (28)

o, +7T Kisn g7 +7

A+

K(A) =|A

We make special remarks on the occurring matrix B= A" A. For purposes of analysis,
Hargreaves (2006), using givens orthogonal matrix plane rotations, Uwamusi and Otunta
(2002) assuming the matrix B is dense, it is possible to reduce this matrix B to tridiagonal in

the form:
a, B
B oo B
B, a, pB;

T= R . (29)

Ay P

B a,

The inverse of this matrix T is a useful tool for analysis in numerical analysis. To compute

HT‘lul in O(n) operations, the following approach is adopted: After sometime, the

transformation for the matrix R is equal to the form:

n-2 hn—Z tn—Z

M1 hn—l b

(30)
while the matrix Q is equal to
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I j, sing 0
i2j2 i2 j2 SinHZ

Q= I . (31)
in jl inj2 "'injn—l in jn

For clarity of purposes, it is that:

D= diag((],—sin@l,sin 6,sind,...(-1)"*)(sing,sind,...sin en_l))

i = D*(1,c0s6,,c086,,...,c0s6), , )

j = D(cos,,cosé,,...,cosb, , 1)

5. Conclusion

The paper presented solution for solving a large-scale rectangular system of equation.
Particularly important, is the choice of Tikhonov regularization parameter using the Penrose
pseudo-inverse process. Solving ill-conditioned system of equations is often fraught with
problem of obtaining meaningless solution because of huge condition number being pushed to
the right-hand side of the system. This paper discussed processes for overcoming this problem.
The SVD is numerically backward stable; hence its applications in many areas have been
presented. For example, we used this, to obtain the rank of a rectangular matrix and
approximation of Low rank matrix, a very important tool in image reconstruction from the
noisy data. The upper bound for the condition number of the matrix A was discussed using
ideas due to Rump (2012). Sample numerical problem has been demonstrated in section 4. All
computed results are displayed in Table 1. Thus, from Table 1, the computed results from QR
and SVD for normal equation are the same. We used Tikhonov regularized method with SVD
to obtain result in column 2 in Table 1. Therefore, it follows that the obtained results for

Regularized Tikhonov method gave more meaningful estimate in a reasonable sense.
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