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Abstract  

The paper presents methods for solving a large-scale rectangular system of equations based on Tikhonov 

regularization procedures wherein, incorporated, the Singular Value Decomposition (SVD) as basis of numerical 

computation. We obtain the regularization parameter by adopting the Penrose-pseudo-inverse process with a view 

to diminishing occurrence of huge condition number appearing in the left-hand side of the equation for meaningful 

solution. We obtain the rank of a rectangular matrix as well as approximation of Low rank matrix, a very important 

tool in image reconstruction from the noisy data.  It is demonstrated that the symmetric matrix coming from the 

normal equation is reduced to a tridiagonal matrix using the Givens- QR - transformation process wherein, the 

norm of the inverse tridiagonal matrix may be obtained in an economical way  

Keywords: Least squares problem, Tikhonov regularization method, Singular Value Decomposition (SVD), 

Low rank matrix approximation, Inverse of a tridiagonal matrix 

 
 

1. Introduction 

One important problem in mathematics as well as in other engineering practices is fitting data 

to a mathematical model or finding equilibrium point to a given chemical reactions problem. 

This often leads to overdetermined system of nonlinear equations  

0)( =xF ,                                     (1) 

where nm RRDF →: is a differentiable function on ( ) DrxSS =
−

,)0(
 which is assumed to 

be Lipschitz continuous on D , and nm  . Basic method for solving this is the Gauss-Newton 

–Tikhonov operator approximated by a linear model in the form: 

)()()()( /
^

kkk xxxFxFxF −+= .                                                                            (2) 

Starting with Newton method, we obtain solution to equation (1) in the form: 

)()())()(( )()(/1)(/)(/)()1( kTkkTkkk xFxFxFxFxx −+ −= . 
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For the typical un-regularized least squares problem case, the solution is in the form 

),..,.1,0(),()( )()(/)()1( =−= ++ kxFxFxx kkkk .                                                      (3) 

The +)( )(/ kxF  so defined is the well-known Pseudo-inverse matrix. 

By further setting ),(:)( )( nmnk RRLRSxA → , ( ) ( ))()(/)( )( kTkk xFxFxF =
−

, then equation (1) 

can be rewritten in the form: 

( ) ,...,.)2,1,0(,))()(( )(1)()()()1( =−=
−

−+ kxFxAxAxx kkTkkk
.                       (4) 

For the general case, it is extended to include the square nonlinear system when nm = .We 

then impose, a stringent condition in the sense of Ortega and Rheinboldt (2000) on Newton 

method: 

,...,.1,0),()( )(1)()()1( =−= −+ kxFxAxx kkkk

           (5) 

Assuming nn RRDF →:  is F is differentiable on a convex set DD 0  and that  

0

// ,,)()( DyxyxyFxF −−  . Let there exists a 0

)0( Dx   such that −1)0(/ )(xF  

and 
2

1
=   where )()( )0(1)0(/ xFxF − . If  0

2

1
)( 2 =+−=  tttP  is the quadratic 

equation with roots ( ) ( ) ( ) 







−+=







−−=

−− 2

1
1

2
2

1
1

1 )21(1,211  tt . It follows that for 

( ) 01

)0( , DtxS 
−

, the iterates of Newton method are well defined, remain in ( )1

)0( , txS
−

 and 

converge to a solution *x  of 0)( =xF  that is unique in ( ) 02

)0( , DtxS  . 

As is well known, Xu and Chang (1997), solving a nonlinear system of equation (1) is 

synonymous to finding the global minimizer of )()(
2

1
)( xFxFxf T









= . In any case, the 

condition that )(xF be locally Lipschitz continuous implies that )(xf  does. The remaining 

section in the paper is arranged as follows: Section 2 deals with the iterated filtered Tikhonov 

regularization method. We made a synchronization of SVD with the Filtered Tikhonov 

regularization method for the resulting least squares problem. In section 3, a bound is 

constructed for the Singular values of an overdetermined matrix in the sense of Rump (2012) 

which has special importance to the described method for which a negative log likelihood 

function for Tikhonov regularization parameter becomes handy as a useful tool. We also 

discussed in the paper the Givens-QR factorization as an alternative method to checking the 
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accuracy of approximate solution as described in section2. Section 4 gives the numerical 

illustration with the described procedures. In section 5 , we conclude the paper based on the 

strength of findings. 

 

2. The Iterated Filtered Tikhonov Regularization Method 

The singular value decomposition of a matrix nmRA  for nm   in line with Uwamusi 

(2017) is given by 
=

==
1j

T

jjj

T vuVUA   where ( ) ( )nn vvvVuuuU ...,,,,...,,, 2121 ==  are 

matrices with orthonormal columns, n

T

n

T IVVIUU == , , and ( )ndiag  ...,,, 21= has a 

non-increasing order such that 0...21  n  with condition number of 
n

A


1=  

becomes severe for  0→n . We give special features of the matrix A in the form: 

( )( ) ( ) TTTTTT UUUVVUAA == , 
and

 ( )( ) ( ) TTTTTT VVVUUVAA == , 

( ) iii

T uuAA 2=
, 
( ) iii

T vvAA 2=
.  

In order to simplify details, it is that: U is the matrix of eigenvectors for AAT  while V is the 

matrix of eigenvectors for TAA .Furthermore, matrices TAA  and AAT  have the same positive 

eigenvalues. The singular values j of A  will cluster at zero with resultant huge condition 

number see e.g., Bjorck (2009), Rump (2012), because in terms of SVD 

 ==
n

j

T

jjj

j

j

j buvx )(, 



                                                                 (6) 

has coefficients j decreasing faster than j . 

The Tikhonov regularization method is used to solve highly ill-posed system of equations. It is 

used to stabilize an unstable linear system that is highly singular whose solution by traditional 

methods is meaningless due to presence of noisy data in the right-hand side of linear ill-posed 

system. The reason for this is that, there is a clustered eigenvalue close to zeros, hence the need 

for regularization.  Choosing a best regularization parameter is a nontrivial problem. The best-

known Tikhonov regularization type method is the Filtered Tikhonov regularization that is 

dependent on Singular values of the matrix. 

The Tikhonov regularization and the side constraint are defined in the form: 

( ) 2

2

*22

2
minarg xxLbAxx −+−=     .                                                 (7) 
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The scalar is a regularization parameter that is designed to control the weight assigned to the 

minimization of residual norm while the L may be tken as an Identity matrix. The solution to 

the normal equation for least squares problem in the sense of equation (7) is then given in the 

form: 

bAIAAx TT 12 )( −+=  .               (8) 

We present the filter function Chung et al. (2012, 2015), Bjorck (2009), Erhel et al. (2001) for 

Tikhonov regularization as follows: 

( ) ( ) A

t
k

j

j

j

T

j

Atik bUVdiagv
bu

Ax 


 1

1

)( −

=

=













= .                                           (9) 

The ( )A  appearing in equation (9) is given by the equation: 

( )22

2

)(





+
=

j

j
A   .                                                                                                                (10) 

In matrix form, we write the filter function for Truncated Singular values decomposition 

(TSVD) for Tikhonov regularization method assuming ( )rr  ...,,, 21= in the form: 

( )

( )

( )

bUVx T

k

k
k

Atikh











































+

+

+

=

−

−

−

22

2
1

22

2

2

21

2

22

1

2

11

1

...0

.

.

.

.........

0...00

0...0

)(
















  .                    (11) 

The interpretation of equation (11) to equation (6) is that, for a very small number , ( ))(A  

is approximately kj
j

,...,2,1);
1

( =


  and, this will be noisy for small enough j . On the other 

hand, a direct approach to regularized method of Equation (7) using SVD of 
TVUA =  is  

( ) bUVxIVV TT =+ 22  ,                                                                           (12) 

with solution given by 

( ) bUIVx T+=
−122  .                                                                                (13) 
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In the implementation of solution to Equation (13) using MATLAB, we should take into 

cognizance that: ( ) == /.,)...,,,( 21 bUp TT

n , 
( )22

2






+
=

i

i
i , so that ( )pVx = .  .       

                                            

3. Construction bound for Singular values of a Matrix A. 

Fundamental to this discussion is the approach due to Rump (2012). There, it was established 

that “singular value decomposition TVUA =  reveals most important properties of A , from 

condition number over the distance to singularity to the solution of a linear or, in case of a 

rectangular matrix,  both under/over determined  or least squares problem’’. 

Theorem, Rump (2011). Let nmRA   be given, and suppose 1− AAI T . Then for

nm  , A  has full rank, and  

 +− 1)(1 Ai
with 


 −


+

+

1

1
)(

1

1
Ai

 

for all ni 1 . In particular:  

 +− 11 A
and 

 −


+ 1

1

1

1
A . 

Now consider the model 

+= bAx ,                                                                                        (14) 

which has ),0( 2IN    and whose variance 2  is unknown. Solving linear least squares 

problem would lead to inversion of highly ill-conditioned matrix which pushes the data noise 

to the right-hand side, thereby rendering solution process in most cases useless for any 

meaningful uses. By setting )(A  as ( ) TT AIAAAA
12)(
−

+=  , the negative log likelihood 

function is defined by the equation 

( ) ( )

= 





























−−

−=
n

i

i

reg
reg bAx

bAx
1

2^

22

^

2

2

)(
exp

2

1
log,),(









  

 = 
2^

2
22^

2

)(
2log

2





bAxm
reg −

+   .                                                                                         (15) 

Thus when 
2^

 is the maximum likelihood estimate to
n

bAx reg
2

2 )( −
, then 
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( )
2

)(log
2

2
log

2
,),(

2
22 n

bAx
n

n

n
bAx regreg +−+= 


 .                                              (16) 

The bias correction term is given by )()(),,( 22  TrApbAB eff == . The matrix AAT   is 

symmetric and positive semi-definite, and by the ideas expressed in Neumaier (1998) the 

matrix IAAT 2+  has its eigenvalues in the interval ( )222 , A+  with condition number less 

than or equal to ( )







+

22

2

1
A


 which decreases as   increases. 

The estimate for the condition number )(AK  is given by the inequality 

( ) 








+
+

+
+

 )(
max

)(
)(

22
1

22

22

1









i

i

ni
n

AK  .                                                 (17) 

In the QR Factorization method without regularization parameter, the matrix A is decomposed 

into the form ,







=

O

R
QA so that bQx

O

R
T=








. Since IQQT = and the column of Q  are 

orthonormal. It follows Q  preserves the Euclidean norm. The formulation of least squares 

problem with the aid of QR  assumes the form 

2

2

2

2

2

2

2

2
x

O

R
QQbQx

O

R
QbAxbr TT









−=








−=−=

.

2

2

x
O

R
bQT









−=

,  

by orthogonality of Q , implies that IQQT = . We now give error estimates for the condition 

number to the perturbed system: 

bbxAA +=+ )(  ,                                                                                                       (18) 

where A and b respectively are the perturbation to A and b  and are expressed in the form: 

( )








+=+= bbxAAx
^^

min)(  .                                                                           (19) 

Using the fact that bbAA   , , we then compute the ratio 

bxA

r
x

+

=
^

^

)(  ,     (
^

xAbr −= ).                                                 (20) 

In what follows we choose z to be a vector such that 1
^^

== zxxzT and z  is a dual of
^

x . The 

optimal perturbation for A  and b respectively are given by 
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Trz

bxA

xA

A

+

=
^

^

, 

r

bxA

b
b

+

−=
^

. 

The backward error in the sense of Walden et al. (1995) for the perturbed problem of Equation 

(18) is described in the form:  

 ( ) ( ) !min,min 2

^^

=+−+=







bbxAAbAx

F
     .                                                 (21) 

Provided that:  

 

2

1

*^

2

2
^

,0min



















+=









x

r
x , and














−=

2

2

min*

x

rr
AA

T
T  .                                         (22) 

2

2

^
2

2

2

2

1 x

x






+

= , and ( ) 2

2

2
, bAbA

F
+=  . 

Particularly, is the case when the real eigenvalue 0 . Then we would have that  

 ( )RA

x

r
.min

2

1

*^

2

2  =



















+

  

and 

 

( )TrrI

x

r
uR −=

2

^

22

1

, 

 

2
b

A
F= , 

( )xx

x
x

T

T

=+
. 

 

4. Numerical Examples. 

Problem 4.1: 

We consider the rectangular matrix nmRA   where nm   defined by  
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A =



















































































































497871365927047056841

452121765513686724821

452121765513686724821

430467215314416561811

409600005120006400801

409600005120006400801

333621764389765776761

201511213007634489671

333621764389765776761

316406254218755625751

283982413890175329731

178506252746254225651

91506251663753025551

129600002160003600601

389500814930396241791

370150564745526084781

452121765513686724821

409600005120006400801

497871365927047056841

53084161105922304481

2825761689211681411

1185901359371089331

98344961756163136561

167772162621444096641

138458412269813721611

67652011326512601511

1874161506531369371

53084161105922304481

474583215717876889831

474583215717876889831

474583215717876889831

299865764052245476741

213813763144324624681

213813763144324624681

 

( )Tb 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1= . 
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Knowing well that the rank approximation to A  in the spectral norm is
2

. . We set that


=

=
r

i

T

iiir vuA
1

 , to have that
1

21
2

min +

+=

==−=  k

n

ri

T

iiir
A

r vuAAA
r

 .  

Similarly, we have that 


+=+=

==−
n

ri

i

F

n

ri

T

iiiFr vuAA
1

2

2

1

2
 .                                                                       (23) 

The question is “can we estimate the upper bound for the Pseudo inverse matrix +A ”? To do 

this will require the use of SVD of A and using relevant ideas due to Bjorck (2009), for 

example. Because ( )n

T diagVUA  ,...,,, 21== , inductive argument implies

( ) TT VIVIAA 222  +=+  . The Pseudo inverse matrix TT AAAA 1)( −+ =  is transformed in a 

manner analogous to the form:  

( ) ( ) TTT UIVAIAA +=+
−− 12212  .                                                                (24) 

If we take the norm of both sides of Equation (24), then we see that 

( )
22

12 max





+
=+

−

n

i

i

TT AIAA .                                                                      (25)   

The other pertinent details as a fall out to Equation (25) are: 

( )
22

12 1




+
=+

−

n

T IAA ,                                                                                  (26) 

( )( )2
1

22

1

2

1

2

2

2
maxmax  +=














+== A

x

Ax

x

Ax
A

xx
   .                            (27) 

Turning back to the Numerical problem 4.1 above, the following results are obtained. The 

computed results are displayed in Table 1 below, where we used the Penrose pseudo-inverse 

process as Tikhonov regularization parameter in our solution. 
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Table 1: Showing Results for the linear system. 

Results from Normal 

Equation 

QR method 

    
^

x  

Results From 

Regularized 

Tikhonov parameter 

0182.0=  

tikx  

Results from using 

SVD  

      
^

x  























0000.0

0000.0

0000.0

0000.0

0000.1

 























−

−

0000.0

0000.0

0018.0

0691.0

0531.0

 






















−

−

0000.0

0000.0

0000.0

0000.0

0000.1

 

 

The matrix A has huge condition number 119391.1/)( 1 +== eAK n , with singular values  

 





























+=

.....

.....

.....

00000

00000

0000107.00
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where the orthonormal matrix
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9986.00535.00007.00000.00000.0

V , 

 for the ill-conditioning of linear system of problem 4.1. 

Particularly, we also, showed the result for the Low rank matrix approximation for Problem 

4.1 in the form:
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In the course of implementation, we noted Xiang and Zou (2013),that the condition number,

)(AK  associated to the Tikhonov regulator parameter defined earlier has the distinct quality:










+
+

+
+=



+

22
1

22

22 max)(









i

i

ni
n

iAAAK  .                                             (28) 

We make special remarks on the occurring matrix AAB T= . For purposes of analysis, 

Hargreaves (2006), using givens orthogonal matrix plane rotations, Uwamusi and Otunta 

(2002) assuming the matrix B is dense, it is possible to reduce this matrix B to tridiagonal in 

the form: 
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...

...

...
.                               (29) 

 

The inverse of this matrix T is a useful tool for analysis in numerical analysis. To compute 

1

1−T  in ( )nO  operations, the following approach is adopted: After sometime, the 

transformation for the matrix R is equal to the form: 
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                                                           (30) 

while the matrix Q is equal to  
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


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

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







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− nnnnnn
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   .                                                         (31) 

For clarity of purposes, it is that: 

( )( )121

1

211 sin...sin)(sin)1...(sinsin,sin,1 −

−−−= n

ndiagD 
, 

( )TnDi 121

1 cos,...,cos,cos,1 −

−= 
,

( )TnDj 1,cos,...,cos,cos 121 −= 
. 

 

5. Conclusion 

The paper presented solution for solving a large-scale rectangular system of equation. 

Particularly important, is the choice of Tikhonov regularization parameter using the Penrose 

pseudo-inverse process. Solving ill-conditioned system of equations is often fraught with 

problem of obtaining meaningless solution because of huge condition number being pushed to 

the right-hand side of the system. This paper discussed processes for overcoming this problem. 

The SVD is numerically backward stable; hence its applications in many areas have been 

presented. For example, we used this, to obtain the rank of a rectangular matrix and 

approximation of Low rank matrix, a very important tool in image reconstruction from the 

noisy data. The upper bound for the condition number of the matrix A was discussed using 

ideas due to Rump (2012). Sample numerical problem has been demonstrated in section 4. All 

computed results are displayed in Table 1. Thus, from Table 1, the computed results from QR 

and SVD for normal equation are the same. We used Tikhonov regularized method with SVD 

to obtain result in column 2 in Table 1. Therefore, it follows that the obtained results for 

Regularized Tikhonov method gave more meaningful estimate in a reasonable sense. 
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