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Abstract 

Empirical evidence suggests unusual or outlying observations in data sets are much more prevalent than one might 

expect and therefore this paper addresses multiple outliers in linear regression model. Although reliable for a 

single or a few outliers, standard diagnostic techniques from an Ordinary Least Squares (OLS) fit can fail to 

identify multiple outliers. The parameter estimates, diagnostic quantities and model inferences from the 

contaminated data set can be significantly different from those obtained with the clean data. A regression outlier 

is an observation that has an unusual value of the dependent variable Y, conditional on its value of the independent 

variable X. Four procedures for detecting outliers in linear regression were compared; the Cook’s, DFFITS, 

DFBETAS, and Mahalanobi’s distances. DFBETAS is most efficient in outlier detection for small sample and 

small percentage of outliers but has low sensitivity when the sample size is large. Mahalanobi has more power of 

detection of small percentage of outliers regardless of sample size.  
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1. Introduction 

Data collected by research workers commonly contain outliers and it is important that these 

outliers be identified in the course of a thorough and correct statistical analysis (Hadi and 

Simonoff, 1993). A number of procedures have been proposed in recent years for detecting 

outliers in linear regression, yet their detection still may be difficult, especially when there are 

multiple outliers in the data. Two common problems in multiple-outlier detection are masking 

and swamping (Hoaglin and Welsch, 1978, Atkinson, 1994). Masking occurs when one outlier 

obscures the existence of another while swamping occurs when a non-outlier is wrongly 

included in a group of observations thought to be outliers. Along with the proliferation of 

outlier-detection methodologies over the years, philosophical changes have occurred.  

 

 
*Corresponding Author:  Oyeyemi, G. M.  

Email: gmoyeyemi@gmail.com 

 

Ilorin Journal of Science  

Volume 4, Number 1, 2017, pp. 130–138 (Printed in Nigeria) 

ISSN: 2408 – 4840 © 2017 Faculty of Physical Sciences, University of Ilorin 

https://doi.org/10.54908/iljs.2017.04.01.009 
 

JOURNAL OF SCEINCE 

ILORIN 

mailto:gmoyeyemi@gmail.com


Oyeyemi et al.       ILORIN JOURNAL OF SCIENCE 

131 
 

In the early years, many statisticians and practitioners viewed outlier-identification 

methodologies largely as ways to legitimize deleting observations which, though not 

necessarily erroneous, fell outside the pattern seen in the bulk of the data and were perhaps 

troublesome in the analysis (Barnett and Lewis, 1994, She and Owen, 2011). 

 

Nowadays, outlier identification is viewed more broadly. It is widely recognized that, in some 

applications, outliers are of interest in their own right and may be the most important 

observations in the data set; identifying them may help chart future research (Hossain and Naik, 

1991, Chandola et al., 2007). The literature on influential observations has expanded our 

understanding of the need to identify certain points as candidates for special treatment lest they 

warp our impression of relationships in the body of the data. The focus has moved away from 

viewing these procedures as providing support for automatic deletion of points, and toward 

seeing them as aids in identifying points for more careful scrutiny. The latter perspective 

suggests interest in identifying moderate as well as extreme outliers. 

 

Several factors can affect the efficiency of the analyzed methods. In particular, the method 

depends on: whether or not the data is multivariate normal; the dimension of the dataset; the 

type of outliers; the proportion of outliers in the dataset; and the outlier’s degree of 

contamination (Markatou and He, 1994, Tang et al., 2006, Alanamu and Oyeyemi, 2018). An 

observation that is substantially different from all other ones can make a large difference in the 

results of regression analysis. Outliers occur very frequently in real data, and they often go 

unnoticed because nowadays much data is processed by computers, without careful inspection 

or screening (Rahman et al., 2012, Oyeyemi et al., 2015). Outliers may be a result of keypunch 

errors, misplaced decimal points, recording or transmission errors, exceptional phenomena 

such as earthquakes or strikes, or members of a different population slipping into the sample. 

 

Several decades have passed since linear regression analysis became a widely employed 

statistical methodology that utilizes the relation between quantitative response and quantitative 

and qualitative covariates to make predictions and inferences. When a regression model is 

considered for an application, researchers and analysts usually are not certain in advance 

whether a particular form of model is appropriate, especially with social science or 

epidemiological data. It is therefore natural to raise questions before making inferences based 

on the particular data at hand. A general question is: what type of model is appropriate – linear 

or nonlinear? A more specific question is whether the fitted model is unduly affected by 
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unusual points (Davies and Gather, 1993, Yu and Yao, 2017). If so, what features of the data 

explain this effect? Do collinear relationships exist among the data series used as predictors? 

Do such problems degrade the parameter estimation? Diagnostic techniques were gradually 

developed to find problems in model-fitting and to assess the quality and reliability of 

regression estimates. These concerns turned into an important area in regression theory 

intended to explore the characteristics of a fitted regression model for a given data set. 

 

Discussion of diagnostics for linear regression models are often indispensable chapters or 

sections in most of the statistical textbooks on linear models and are also included as standard 

options in many statistical packages. Although techniques for regression diagnostics have been 

developed theoretically and methodologically for conventional linear regression models, 

diagnostics have not been extensively studied in survey sampling. The diagnostic tools 

provided by current popular software are generally based on ordinary or weighted least squares 

regression.  

 

2. Materials and Methods 

Data analysts routinely encounter data sets which potentially contain one or more outliers. 

When, as is usually the case, there is no a priori reason to suspect that particular observations 

are the outliers, an outlier test based on the sequential (perhaps better called "repeated") 

application of a single-outlier test statistic is commonly used. This sequential approach is 

especially prone to masking in the presence of multiple outliers. 

 

Several methods for outlier detections are highlighted here ranging from Grubbs test, Dixon 

test, Rosner test, Cochran test, Tietjen-moor test, Inter Quartile Range, Boxplot, Histogram, Z-

score, etc., but for the purpose of this project work, only four procedures will be considered 

2.1 Cook’s Distance 

Cook (1977) introduced distance measure for commonly used estimates of the influence of a 

data point when performing least squares regression analysis. Cook's distance points with a 

large value are considered to merit closer examination in the analysis (Cook and Weisberg, 

1982). Cook’s Distance provides an overall measure of the combined impact of an observation 

on all of the estimated regression coefficients (b). It can be derived from the confidence region 

of β, which at level 100(1-α)% is given by those values b∗ satisfying 
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(𝑏∗−𝑏)′(𝑏∗−𝑏)

𝑝𝑠2 < 𝐹(1 − 𝛼; 𝑝, 𝑛 − 𝑝). 

Using this structure, Cook’s Distance measure 𝐷𝑖 was proposed as 

                                          𝐷𝑖 =  
(𝑏(𝑖)−𝑏)

′
𝑋′𝑋(𝑏(𝑖)−𝑏)

𝑝𝑠2 .                                                                     (1) 

This is a measure of the distance 𝑏(𝑖)𝑡𝑜 𝑏. If 𝑏(𝑖)𝑎𝑛𝑑 𝑏 are relatively far from each other, this 

means that unit i has a substantial effect on the full sample estimate. Large values of 𝐷𝑖 indicate 

observations that are influential on joint inferences about the parameters in the linear model. It 

has been found useful to relate 𝐷𝑖 to the percentile values of F(1-α; p, n-p) distribution to make the 

judgement on influence. For example, if the percentile value is less than about 20 percent, the 

unit has little apparent influence on the regression coefficients. On the other hand, if the 

percentile value is near 50 percent or more, the influence is partially important. 

A more convenient form for 𝐷𝑖, without fitting a new regression function for each deletion, 

follows from substitution of DFBETA and it is expressed as; 

                                                𝐷𝑖 =
𝑒𝑖

2ℎ𝑖

𝑝𝑠2(1−ℎ𝑖)2 =
𝑟𝑖

2ℎ𝑖

𝑝(1−ℎ𝑖)
 ,                                                            (2) 

where 𝑟𝑖 =
𝑒𝑖

𝑠√(1−ℎ𝑖)
 is the internally studentized residual. Note that from the expression in 

equation (2), 𝐷𝑖 depends on the size of the studentized residual and the leverage value 

 

2.2 Influence on fitted values: DFFIT and DFFITS 

DFFITS is a diagnostics tool for statistical regression model which shows the influence point 

(Paul and Fung, 1991). This statistic summarizes how much the regression function change in 

predicted values when an observation is deleted, with the advantage that it does not depend on 

the particular coordinate system used to form the regression model. Rescaling DFFIT by the 

estimated deviation of the predicted value, with the sample standard error s replaced by the 

delete-one version 𝑠(𝑖), DFFITS can be expressed as the product of a t-distributed random 

variable and a function of the leverage: 

DFFITS = 
�̂̂�𝑖−�̂̂�𝑖(𝑖)

𝑠(𝑖)√ℎ𝑖
=  

𝑋𝑖
′(𝑏−𝑏(𝑖))

𝑠(𝑖)√ℎ𝑖
=

𝑒𝑖

𝑠(𝑖)√1−ℎ𝑖
√

ℎ𝑖

1−ℎ𝑖
.                          (3) 
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A large value of DFFITS indicates that the observation is very influential in its neighborhood 

of the X space. A general cutoff to consider is 2; a size adjusted cutoff recommended by Belsley 

et al (1980) is 2√
𝑝

𝑛
, where p is the number of independent variable and  

𝒑

𝒏
  is the mean leverage. 

2.3 Influence on regression coefficients: DFBETA and DFBETAS 

Recall that an influential observation is one that combines discrepancy with leverage. 

Therefore, examine how regression coefficients change if outliers are omitted from the model. 

We can use Dij (often termed DFBETASij) to do so: DFBETA, the change in parameter 

estimates after deleting the ith observation can be formulated and rewritten as DFBETA = b-

𝑏(𝑖) =  
𝐴−1xiei

1−hi
 , where A = X′X. If we let C = (X′X)−1X′ = (Cji)p×n, then the jth element of the 

DFBETA vector is bj − bj(i) = 
Cjiei

1−ei
.  Belsley et al (1980) suggest that changes in the estimated 

regression coefficients are often mostly usefully assessed relative to the variance of b. A scaled 

measure of the change can be defined as the following: 

                      DFBETASij =  
bj−bj(i)

𝐬(𝐢)(X′X)−1
𝐣𝐣

=
Cji

√∑ Cjk
2n

k=1

=
ei

s(i)√1−hi

1

√1−hi
 ,                                  (4) 

where (X′X)−1
jj
is the (jj)th element of (X′X)−1 . The denominators of DFBETASij is analogous 

to the estimated standard error of ‘b’ with the sample standard error ‘s’ replaced by delete-one 

version ‘s(i)’ . 

The DFBETAS statistic is the product of a quantity of order n−1
2⁄ , a t-distributed random 

variable, and a quantity that approaches 1 (assuming hi = 0). Belsley et al. (1980) proposed a 

cutoff point of 
2

√n
  to identifying influential cases. Thus, if all the observations in the sample 

follow an underlying normal model, the X’s are bounded, and the leverages are small, roughly 

95% of the observations will have a DFBETAS lesser than 
2

√n
  in absolute value. In some 

samples, especially small or moderate size ones, this statement is less precise since hi may not 

be negligible and the term involving Cji may not be near 
1

√n
. 

DFBETAS is somewhat cumbersome to work with because an analyst must examine pn values, 

for each observation, there are p DFBETAS for each parameter. 
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2.4 Mahalanobi’s Distance 

One classical method to identify leverage points is to inspect the use of the Mahalanobi’s 

Distance MDi to find outliers xi 

                                     MDi = √(𝑥𝑖 − �̅�)𝐶−1(𝑥𝑖 − �̅�)′  ,                                              (5) 

where �̅� and C are the sample mean and classical sample covariance matrix of the data set X, 

respectively. The distance tells us how far is x from the center of the cloud taking into account 

the shape of the cloud. It is well known that this approach suffers from the masking effect by 

which multiple outliers do not necessarily have a large MDi. 

In classical linear regression, the diagonal element hi of the hat matrix H=X(X’X)−1X′are used 

to identify leverage points, the ith leverage  hi = Hi is the ith diagonal element of the hat matrix 

H. Rousseeuw and Van Zomeren (1990) reported the following monotone relationship between 

the hi and MDi 

                  hi = [((MDi)
2) (N − 1⁄ )] + [1

n⁄ ] .                                               (6) 

It points out that neither the MDi nor the hi is entirely save for detecting leverage points reliably. 

Multiple outliers do not necessarily have large  MDi values because of the masking effect. 

Rousseeuw and Leroy (1987) suggest using hi>
2p

n⁄  and MDi
2 > ϰp;1−0.95

2  as benchmarks for 

leverages and Mahalanobi’s Distance. 

 

3. Data Analysis and Discussion 

The data of concern in this paper were simulated from R-statistical package and various outlier 

detection methods were carried out to verify how efficient each test could detect outliers. 

Furthermore, outliers at 10%, 20% and 30% were injected to various sample sizes of 10, 40 

and 100 and then iterated 500 times and the simulated data were analyzed using the four test 

statistics expressed in equations (1) to (4). Data were simulated from Normal distribution with 

mean 2 and standard deviation 1, outliers were injected from a poisson distribution with mean 

7 using R-statistical package. 
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Table 1: Frequency and probability of correctly detecting actual percentage number of injected outliers 

      Sample 

         Size 

% of 

Outlier 

                                                      X 

Cook’s 

distance 

DFFITS 

distance 

DFBETAS 

distance 

Mahalanobi’s 

distance 

 

          10 

     10 217  (0.434) 186  (0.372) 257   (0.514) 201   (0.402) 

     20 164  (0.328) 192  (0.384) 32     (0.064) 1       (0.002) 

     30 104  (0.208) 202  (0.404) 0       (0.000) 0       (0.000) 

 

          40 

     10 29    (0.058) 97    (0.194) 73     (0.146) 9       (0.018) 

     20 0     (0.000) 1      (0.002) 0       (0.000) 0       (0.000) 

     30 0      (0.000) 0      (0.000) 0       (0.000) 0       (0.000) 

 

         100 

     10 0      (0.000) 48    (0.096) 4       (0.008) 3       (0.006) 

     20 0      (0.000) 0      (0.000) 0       (0.000) 0       (0.000) 

     30 0      (0.000) 0      (0.000) 0       (0.000) 0       (0.000) 

 

Table 2: Frequency and probability of correctly detecting percentage number of injected outliers 

      Sample 

         Size 

% of 

Outlier 

                                                      X 

Cook’s 

distance 

DFFITS 

distance 

DFBETAS 

distance 

Mahalanobi’s 

distance 

 

          10 

     10 222  (0.444) 217  (0.434) 297   (0.594) 202   (0.404) 

     20 174  (0.348) 220  (0.440) 32     (0.064) 1       (0.002) 

     30 110  (0.220) 224  (0.448) 0       (0.000) 0       (0.000) 

 

          40 

     10  32   (0.064) 182  (0.364) 105   (0.210) 16     (0.032) 

     20  0     (0.000) 1      (0.002) 0       (0.000) 0       (0.000) 

     30 0      (0.000) 0      (0.000) 0       (0.000) 0       (0.000) 

 

         100 

     10 0      (0.000) 113  (0.226) 5       (0.010) 9       (0.018) 

     20 0      (0.000) 0      (0.000) 0       (0.000) 0       (0.000) 

     30 0      (0.000) 0      (0.000) 0       (0.000) 0       (0.000) 

 

Table 3: Frequency and probability of detecting more than number of injected outliers 

      Sample 

         Size 

% of 

Outlier 

                                                      X 

Cook’s 

distance 

DFFITS 

distance 

DFBETAS 

distance 

Mahalanobi’s 

distance 

 

          10 

     10  5     (0.010)  31   (0.062) 40     (0.080) 1       (0.002) 

     20 10    (0.020  28   (0.056)  0      (0.000) 0       (0.000) 

     30  6     (0.012)  22   (0.044)  0      (0.000) 0       (0.000) 

 

          40 

     10  3     (0.006)  85   (0.170) 32     (0.064) 7       (0.014) 

     20  0     (0.000)   0    (0.002)  0      (0.000) 0       (0.000) 

     30  0     (0.000)   0    (0.000)  0      (0.000) 0       (0.000) 

 

         100 

     10  0     (0.000)  65   (0.013)  1      (0.002) 6       (0.012) 

     20  0     (0.000)   0    (0.000)  0      (0.000) 0       (0.000) 

     30  0     (0.000)   0    (0.000)  0      (0.000) 0       (0.000) 

 

Table 4: Frequency and probability of detecting less than number of injected outliers 

      Sample 

         Size 

% of 

Outlier 

                                                      X 

Cook’s 

distance 

DFITTS 

distance 

DFBETAS 

distance 

Mahalanobi’s 

distance 

 

          10 

     10 278  (0.556) 283  (0.566) 203   (0.406) 298   (0.596) 

     20 326  (0.652) 280  (0.560) 468   (0.936) 499   (0.998) 

     30 390  (0.780) 276  (0.552) 500   (1.000) 500   (1.000) 

 

          40 

     10 468  (0.936) 318  (0.636) 395   (0.790) 484   (0.968) 

     20 500  (1.000) 499  (0.998) 500   (1.000) 500   (1.000) 

     30 500  (1.000) 500  (1.000) 500   (1.000) 500   (1.000) 

 

         100 

     10 500  (1.000) 387  (0.774) 495   (0.990) 491   (0.982) 

     20 500  (1.000) 500  (1.000) 500   (1.000) 500   (1.000) 

     30 500  (1.000) 500  (1.000) 500   (1.000) 500 (1.000) 
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4. Discussion of Results and Conclusion 

Based on the analysis presented above, the four outlier detection methods have similar pattern. 

DFBETAS has more power of detecting outlier when the sample size is small and when the 

number of injected outliers is also small. Furthermore, detection of outliers achieved high level 

of sensitivity, when the sample size is moderate but low sensitivity was the case when the 

sample size becomes large. Cooks Distance can only detect outliers when the sample size is 

small and when outlier injected is small. Mahalanobis do detect outliers when injected outliers 

are small regardless of the sample size. DFFITS among the four methods has more power of 

detecting outliers better at large sample size and it detects larger number of injected outliers at 

small sample size. It is therefore recommended that for small sample size and small number of 

outliers, DFBETAS should be employed for its accuracy of detecting outliers. While for 

moderate and large sample sizes and small numbers of outliers the DFFITS preferred. 
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