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Abstract

The Newton’s method and some of its modifications were reviewed. A new modification of the Newton’s
method, which is of the Quasi-Newton principle is constructed and presented. Some standard test problems were
solved using the Newton” method, one of the existing modifications of the Newton’s method (David Fletcher
Powell) and the refined method. From the results obtained, the newly modified method compared favourably
with the existing ones and proved superior to the David Fletcher Powell method.

Keywords: Newton’s Method, Quasi-Newton, unconstrained optimization, multivariable optimization, non-
linear optimization.

1. Introduction

Optimization can be defined as an act of obtaining the best result under any given
circumstance or selecting the best solution from a set of available numerous solutions. In
every practical situation the above statement translates to determining how best to allocate
the available resources in order to either minimize the effort required or maximize the desired
benefit. It is also true that the effort required or the benefit desired in every practical situation
can be expressed as a function of certain decision variables and that most real life problems
involve functions that are non-linear in nature. Hence researchers continue to seek for new

methods or modifications of the existing ones for non-linear optimization problems.

In this work we reviewed the Newton’s method and some of its modifications. We
constructed a new modification for the Newton’s method and compared its performance with
the performance of some existing methods. The methods reviewed and the new modification

derived are for the solution of the unconstrained optimization problems:
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Minimize f = f(X);
where

X = (X, X, Xg0eo X, )T € QS R" f:QcR">R.

Newton’s method is an iterative method that uses the evaluation of Hessians to solve
problems of non linear programming. Newton in 1669 proposed his method for the solution

of the unconstrained optimization problem:
Minimize f = f(X),
where, X = (x,, x5,...,%,)7 and f:R™ = R,

Using Taylor series expansion, a quadratic approximation of the function fi(x) at x = x;is

given by
f(x)= f(Xi)+(X—Xi)f'(Xi)+%(x—xi)2 fr(x) - 1)

The necessary condition for f(x )to have an optimum at x" is that f'(x")=0. Newton’s
method uses the direct root method which seeks to find the root (or solution) of the equation

f'(x") = 0. Setting the derivative of the equation (1) to zero, we have:
F/(x) = /() + £"(x)(x—%) =0. )

If x, denotes an approximation to the minimum of f(x ), (2) can be re-arranged to obtain

an improved approximation as:

_ ., F(x)
X,y = X TN ©)

The iterative process (3) above which is the Newton’s method converges when the derivative

F(%i.0) is close to zero or
| f'(x,)] < ¢ | (4)

where ¢ is a small quantity called tolerance.
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Extending the Newton’s Method to a multi-variable function f (X )using Taylor’s series

expansion we get

FX)= £+ V1T (X=X + 2 (X=X) )X - X) | ©

where [J;]=[J] at X, is the matrix of second partial derivatives (Hessian matrix) of

f evaluated at the point X;. By setting the partial derivative of (5) equal to zero we get the

minimum of f (X )by solving:

= 0; j=12,...n (6)

which gives from (5) and (6)
Vi =VE +[J (X -X,)=0. (7
If [J,]is non singular i.e | J; |+ 0, (7) can be solved to obtain an improved approximation
at (X =X,,,)as:
Xy = X, =[3,]Vf, . (8)

Since higher order terms have been neglected in (5), (8) is to be used iteratively to find the
optimum solution X~.

Algorithm of the Newton’s Method

Step 0: Given X, seti =0, set ¢ as a stopping criterion,

Step 1: Set d, =—J(X,)*Vf(X;). If d, <&, stop else go to step 2.
Step 2: Choose step size 4, =1

Step 3: Compute X,,, = X; +A4d,,

Step 4: Set i =i+1, goto step 1
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This method was originally developed by Newton for solving non linear equations and later
refined by Raphson in 1690 and hence the method is also known as Newton-Raphson

method.

2. Early Modifications of the Newton’s Method

Earlier modifications of the Newton’s method have been reported in literature and prominent
among them are the Quasi-Newton Methods which are also called the Variable metric

methods.

Some of the widely known members of the Quasi-Newton methods for large scale
unconstrained optimization include Broyden’s (1967) method, the Symmetric Rank 1 Update
(SR1)[(Davidon, 1959; Broyden’s ,1967), the Davidon-Fletcher- Powell Method (DFP)
(Davidon, 1959; Flecther and Powell, 1963), and the Broydon-Fletcher-Goldfarb-Shanno
Method (BFGS) (Broyeden, 1970; Flecther, 1970; Goldfarb, 1970; Shanno, 1970), Yuan
(1991), Zhang et al (1999), Hennig and Martin (2012). Xiaowei Jiang and Yueting Yang
(2010) provided the self scaling Quasi-Newton method for large scale unconstrained

optimization.

Baghmisheh et al. (2013) modified the Newton’s method by using the Guass integration

formula.

The basic iterative process used in the Newton’s method is given by:
Xi+1=Xi_[‘]i]_1Vf(Xi) ) (9)

where the Hessian matrix [J;] is composed of the second partial derivatives of f and varies
with the decision vector X, for a non quadratic (generally non linear) objective function, f .

The main idea behind the Quasi Newton or Variable metric methods(including the ones

mentioned earlier) is to approximate either [J,] by another matrix [A] or [J;]™ by another

-1

matrix [B,], using only the first partial derivatives of f . If [J,]" is approximated by [B ],

(9) can be expressed as:

X,0 = X, ~A[BIVF (%), (10)
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where A can be considered as the optimal step length along the direction:
S =B IVI(X)). (11)

It can be seen that the steepest descent direction method can be obtained as a special case of
(11) by setting [B,]1=[I].

The Computation of [B,]

To implement (9), an approximate inverse of the Hessian matrix, [B,]=[A]", is to be
computed. For this, we first expand the gradient of f about an arbitrary reference point, X,

using Taylor’s series as:
VE(X) = VE(X) +[31(X = X,). (12)

If we pick two points X, and X, and use [A] to approximate [J,],(12) can be rewritten

as
Vi = VE(X) +[A1(X 1 — Xo), (13)

and
V= VE(X,)+[A1X, = X,) . (14)

Subtracting (14) from (13), we get

[Aldi=9;, (15)
where

d; = X — X, (16)

g; = Vi, — Vf,. (17)

The solution of (15) can be written as:
d; =[B]g;, (18)

where,[B,]=[A]" denotes an approximation to the inverse [J,]™, of the Hessian matrix.
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It can be seen that (18) represents a system of n-equations in n® unknown elements of the

matrix [B;]. Thus for n>1, the choice of [B,] is not unique and one would like to choose

[B,] that is closest to [J,], in some sense.

Some techniques have been suggested in the literature for the computation of [B,] as the

iterative process progresses (i.e for the computation of [B, ;] once [B,] is known) and each

i1
update is required to retain the symmetric and positive definiteness properties of [B, ] .
The general formula for updating the matrix [B,] can be written as:

[Bi.]1=[B]1+[AB], (19)
where [AB;] can be considered to be the update (or correction) matrix added to [B,]. Some
earlier suggestions for the update include:

(i) The Broyden (1957) Symmetric Rank1 Update

— - (di _[Bi]gi)(di _[Bi]gi)T
[B..1=[B]1+[AB]1=[B ]+ (di_[Bi]gi)T g ) (20)

(ii) The DFP: Davidon (1959)-Fletcher (1963)-Powell (1963) Update

did _ ([B19:)([B1g,)’
B...]1=[B, B.1=[B, i = 21
[ |+l] [ |]+[A |] [ I]+diTgi ([BI])T gi ( )

which can also be expressed as

/Q:SiSiT _ [Bi]gigiT[Bi]

[Bo: =[B1+ : (22)
' s'g,  9/[Blg,

since

Xia =X, +/1:Si,

where S, is the search direction, and d, = X, , — X, can be rewritten as:

d =4S, ;and
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(iii) The BFGS: Broyden (1969), Fletcher (1970), Goldfarb (1970) and Shanno (1970)
Update

(23)

AgAg; _[Bi]AxiAxJ[mY

[Bo: 1=[H. ] = ([Bi]+ AgiTAXi AXiT[Bi]AXi

3. A New Modification of the Newton’s Method

The New Computation of [B;]

The basic iterative process in the Newton’s method as given in equation (9) is

X1 = X ~[3, T VE (X))
and the first partial derivative of Vf (X)when expanded in Taylor’s series about an
arbitrary reference point, X, is

VE(X) = VE(X,) +[J,I(X = X,). (24)
If [3,]" is approximated by [B,], (9) can be expressed as:

Xy = X, — A[BIVE (%), (25)
where A, can be considered as the optimal step length along the direction:

S; =B IVE(X)). (26)

If we pickthree points X,, X,,and X,,, and use [A]=[J,] then the derivative of f in

i+1

equation(24) can be written generally as:

VE(X) = VE(Xo) +[A1X = X,). (27)
Evaluating (27) at the three chosen points X,, X,,, and X,,, we get

Vi, = VE(X) +[AI(Xi2 = Xo), (28)

Vi = VE(Xo) +[A1(X 10 = X)), (29)
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VE, = VE (X)) +[AT(X, = X,). (30)
Subtracting (29) and(30) from (28) gives
Vi, = Vi =V ==VI(X)) +[AIXL, = X = X)) +[ATX, . (31)

Let

i, = VFi,, —Vf, —Vf,

A, = Xi = Xi = X

My, = —VE(Xo) +[ATX,.

Recall that: [A]=[J,] and [B.]=[J.1*.

Let
[AI] = [Bi+2]_1
=
m;,, = -Vf (Xo)+[Bi+2]7lXo :[Bi+2]_lX0_Vf(Xo)

(31) now becomes: g;,, =m;,, +[Ald;., which implies that di.2 = [AT (912 —m;.2).
This can also be expressed as
di., =[B21(9i,, —m;,,) . (32)

It can be seen that (32) represents a system of n-equations in n®-unknown elements of matrix

[B...]. As the iteration process progresses, we need to update [B...] , which is of RANK 3

(because of the three points selected initially).

Therefore
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[B..1=[B..]+[AB.,]
where [AB,,,]is the update (or correction) matrix added to [B,,,] _
Let
[AB,,]1=C,z2,Z] +C,Z,Z; +C,Z.Z], (33)
For (33) to satisfy the quasi-Newton condition
di,, =[Bi 219, — M),
we must have

di,, =[Bi21(9:,, —mi,) +[A[B,,,1(9:,, — mi+2)]} : (34)

= [Bi.1(9i., —M;,,) +C12121T (Qi, =M 5) + szzzzT (Qi =My 5) +

(35)
C323Z; (gi+2 - mi+2)
This implies that
di+2 —[Bi+2](gi+2)+[Bi+2](mi+2) = (36)

Clzlle (gi+2 - mi+2) + szzzzT (gnz - mi+2) + szsz; (gi+2 - mi+2) .
Since Z](g,,,—m,,,); r=1(1)3 are scalar quantities, we rewrite (36) as:

di,, —[Bi,1(9;.,) +[Bi,,1(M;.,)
ZlT (9in2 — mi+2)ZzT (9isz — mi+2)ZST (95 —M;5)

- Clzl CZZZ
T 5T . T _ ToT . T _ +
ZZ (gi+2 mi+2)23 (gi+2 mi+2) Zl (gi+2 mi+2)z3 (gi+2 mi+2)
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C3Z3
ZJT (gi+2 - mi+2)zg (gi+2 - mi+2) .

Equating terms in the above equationwe get

d.
Clzl - - i+2
Z) (9 —M;5)
1
z,=d,, and C,= . (37)
' ? ' di-I;-Z(gH—Z _mi+2)
Also
C222 — T_[Bi+2]gi+2
Z, (9., —M;,5)
—
-1
Z = [Bi+ ]gi+ and C = (38)
2 2 ? ? [Bi+2]giT+2(gi+2 _mi+2)
and
CSZ3 - T[Bi+2]mi+2
Z;5 (9, —M;,5)
—
ZS = [Bi+2]mi+2 and CS = 1 (39)

([B...Im;,) (9, —My,,)
Now the new update matrix [B;,;] is
[Bi+3] = [Bi+2] + [ABi+2]

:[Bi+2]+d1’ di+2di1~—+2 _ [Bi+2]gi+2([Bi+2]gi+2)T + [Bi+2]mi+2([BiJrZ]miJrZ)-r

i+2(gi+2 _mi+2) ([Bi+2]gi+2)T (gnz _mi+2) ([Bi+2]mi+2)T (gi+2_mi+2) ,

(40)
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where

diyy = Xi = Xi = X

i, = VI, —Vf,, —Vf,

mi,, = [Bi+2]_lxo - Vi,

Suppose:
d._d/
L.,]= - i+2Yi+2 ,
[ H] di+2(gi+2_mi+2)
[M ]:_ [Bi+2]gi+2([Bi+2]gi+2)T
" ([Bi.219:.2)" (9ip — M)
and
[Ni..]= [B”Z]mi*Z(T[BHZ]miJrz)
([Bi2dmi.n) (G, —Miy)
then

[Bi+3] = [Bi+2]+[Li+2]+[Mi+2]+[Ni+2] .

The Algorithm of the New Modification
The algorithm of the new method is as follows:

Initialization

Step 1:=Set i =0, select X, and compute Vf., [J.]

Step 2:= Compute X,

i+1

and X

i+2°

using the conventional Newton’s method or any of its earlier modifications.

Compute
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vfi+l’ [Ji+]_] and Vfi+2

Step 3:= Select[B,,,]=[l], the identity matrix.

Line Search
Step 4:= Compute

Si+2 = _[Bi+2]Vfi+2 ’

_argmin

2 — 150 f(Xi, +4Si,2), 4, €R

xi+3 = ><i+2 +ﬂ’ S

i+2%~i+2 ,
Vfia = VE(Xi.,)

di+3 = Xi+3 - Xi+2 - Xi+1

v

i+1-

v

gi+3 = Vf i+2

i+3

Stopping Criterion

If || 9,5 1= O, Stop, else compute
M5 = [Bi+2]7lxi —-Vf;,
Update [B,,]

di+3 (di+3)T _ [Bi+2]gi+3([Bi+2]gi+3)T + [Bi+2]mi+2([Bi+2]mi+2)T
(di+3)T (gna - mi+3) ([an]gns)T (gna - mi+3) ([Bi+2]mi+2)T (gi+3 - mi+3)

[Bi+3] = [Bi+2] +

Step 5:= Set i =i+1 and goto step 4.
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4.  Computational Experience with the new Modification

We now present some numerical results to demonstrate the performance of the new scheme.
4.1 Hlustrative Examples
Example 4.1: The CUTE Quartic Function:

f(X):=>(x-1)", X =(222:2)
=1
For n=10:

10
f(X):=) (% -1)" X.=(222222222.2
r=1

f(X):= (% =1 + (%, =1)* + (%, =21)" +(x, 1) + (% —1)* + (% =1)* +(x, =1)* +

(Xs _1)4 + (Xg _1)4 + (Xlo _1)4-
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Table 4.1: Numerical Results for Example 4.1

ILORIN JOURNAL OF SCIENCE

Optimal Newton’s DFP
Decision Variables/
Method Method The New Method
Function value
X, 1.087791495 1.000000000  {1.000000000
X, 1.087791495 1.000000000  {1.000000000
x; 1.087791495 1.000000000  [1.000000000
XZ 1.087791495 1.000000000 1.000000000
x; 1.087791495 1.000000000 1.000000000
Xq 1.087791495 1.000000000  |1.000000000
X, 1.087791495 1.000000000 1.000000000
x; 1.087791495 1.000000000 1.000000000
x; 1.087791495 1.000000000 1.000000000
Xy 1.087791495 1.000000000  |1.000000000
£ .0005940319151 0.000000000 |0.000000000
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Example 4.2: The Extended Penalty Function:

f(X)::Z(xr—1)2+(2xf—o.25)2, X, :=(1,2,...0)
For n=10:
f(X)::Z:(xr—1)2+(Zil:xf—0.25)2, X.:=(1,2,3,4,56,7,8,9,10)
f(X) = (% =1 + (%, =1)° + (%, =1 +(x, =1)° + (% =1 + (%, —1)° +(x, —1)° +

(%, —1) +(x, 1Y +(xl2 X AKX X A AKX AKX A Xy A Xy Xy —0.25)2

Table 4.2: Numerical Results for Example 4.2

Optimal Decision Newton’s DFP New

\I/:?Jrri?:?ilc?r? Value Method Method Modification Method
X, 0.357340138 0.310096800 0.324199644
X; 0.357340149 0.325623036 0.337774361
x; 0.357340162 0.341149270 0.351349079
XZ 0.357340174 0.356675499 0.364923796
Xe 0.357340186 0.372201728 0.378498513
Xg 0.357340198 0.387727957 0.392073231
X, 0.357340210 0.403254185 0.405647948
x; 0.357340222 0.418780413 0.419222665
x; 0.357340234 0.434306648 0.432797382
X 7.636906x10¢" [0.199011046 0.196083051
i 4.525718286 4.665980990 4.673038603
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Example 4.3: The Diagonal 3 Function:
f(X):=> (exp(x,)—rsin(x,)), X.:=(11,.,1)" =(1,1,1,--,1)
r=1
For n=10:
10
f(X):=> (exp(x,)—rsin(x,)), X,:=(111,111,11,11)"
r=1

f(X):=e" —sin(x )+e2 —2sin(x,)+e" —3sin(x,)+e™ —4sin(x,)+e" —5sin(x, )

+€'® —6sin(x, )+e” —7sin(x, )+e"8 —8sin(x, )+e"® —9sin(x, )+e"° —10sin(x,, ).
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Table 4.3: Numerical Results for Example 4.3

Optimal DecisionNewton’s Method DFP Method New

\Variables / Modification Method

Function Value
X, 3.18159982«10°° [0.590305204  [0.00119340251
X, 0.539785161 0.716056673  |0.538428333
X, 0.768578541 0.825675280  |0.768628531
XZ 0.904788218 0.919436105 0.904818571
x; 0.997576220 0.997805210 0.997615189
Xq 1.065758888 1.061643109  [1.065856073
X; 1.118389310 1.112073138 1.118592472
x; 1.160454403 1.150372295 1.160749409
x; 1.194962557 1.177883864 1.195214851
Xfo 1.223851813 1.195951206 1.223779621
£ -21.20430570 -20.88807940 |-21.20430136
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Example 4.4: The Cosine Function

n-1
Max f(X):=> cos(-0.5x,, +x7), X, :=(11,.,1)"

r=0

For n=10 \ve have:

9
f(X):= cos(-0.5x,,, +x?), X, :=(1,1,1111111,1)",

r=0

That is

f(X):=cos(x’ —0.5x,)+cos(x; —0.5%,)+cos(x; —0.5x,)+cos(x; —0.5x%,)
+cos(x? —0.5%,) + cos(x? —0.5%,)+ cos(x? —0.5x,)+ cos(x> —0.5x,)+

cos(x; —0.5x,,)
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Table 4.4: Numerical Results for Example 4.4
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Optimal DecisionNewton’s Method DFP New

\Variables / Method Modification Method

Function Value
X, 0.501220390 0.510216963  |0.523989718
X, 0.502443752 0.521609578  |0.530612019
X, 0.504899430 0.533470733  |0.536838779
XZ 0.509846844 0.550955128 0.540510825
x; 0.519887586 0.560413001 0.544415543
Xq 0.540566189 0.534086962  [0.554234382
X, 0.584423604 0.559814383  [0.579555174
x; 0.683101895 0.613298949 0.660227161
x; 0.933256390 0.729238766 0.841013042
Xfo 1.741934913 1.076392099 1.421697946
f* 8.999999998 8.998442574  8.999032696
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4.2  Discussion of Results

The Newton’ method, Davidon-Fletcher-Powell method and the new update for the Quasi-Newton
method derived in this work were used to solve four standard test problems and the results are
presented in Tables 4.1 to 4.4. From the results it can be observed that the new method compares
favourably with the previous methods.

The problems considered are of the minimization type. Maximization problems are not beyond the
scope of this work because a maximization problem can be converted to a minimization type by the

relation:

max f(X)=min [-f(X)].

Very often performing an exact line search by a method such as as the bisection method or other
classical methods is too expensive computationally in selecting a step size in an optimization
algorithm. The Armijo’s rule which is one of the inexact line search methodsand which guarantees a
sufficient degree of accuracy was used to obtain the optimal step length at each iteration in the
computation of the results presented.

At each step, the Armijo’s rule requires that
f(x, +a5.) < f(x)+cavf'S,, ce(0,1)

for some fixed « €[0,1].

5. Summary and Conclusion

A new modification of the Newton’s method which is based on the quasi-Newton principle has been
presented in this work. The new scheme is a three-step method because three points are needed to
implement it. The first point is the initial point which is usually given while the other two points are

computed by using the classical Newton” method or any of its earlier modifications. The initial

approximation to the Hessian matrix is sellected as the identity matrix [B,]=[1]. For subsequent

iterations the rank three update given in equation (40) is employed.

The classical Newton’s method is a single-step iterative method while the new method is a multistep
scheme. Apart from the fact that a multistep scheme gives a better result than a single step method the

new modification of the Newton’s method has the following advantages:
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(a) The inversion of the Hessian matrix at every iteration is no longer needed;
(b) Computation and storage of second derivatives are no longer required.

It can therefore be observed that the new method has eliminated some of the drawbacks of the

Newton’s method.
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