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Abstract 

In this work, coefficient bounds for the functions in the class S(λ, 𝝓) were obtained. This work was concluded by 

determining  Fekete-Szego functional and the Hankel determinant. 
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1. Introduction 

Let U be a unit disc in {z ϵ C: |z| < 1}. Let S be the class of functions of the form  

𝑓(𝑧) = 𝑧 + ∑ 𝑎𝑛𝑧
𝑛∞

𝑛=2 (𝑧 𝜖 𝑪),        (1) 

which are analytic and univalent in U and satisfying the conditions  f(0) = 0 and f’(0) = 1. 

Let the functions f and g be analytic in U. Then f is said to be subordinate to g, written as f ≺ 𝑔, 

if there exists a function 𝜔 analytic in U, with 𝜔(0) = 0 and |𝜔(z)| < 1, and such that  

f(z) = g(𝜔(𝑧)). If g is univalent, then f ≺ 𝑔 if and only if f(0) = g(0) and f(U) ⊂ g(U) 

(Pommerenke,1975). 

The sigmoid function  

ℎ(𝑧) =  
1

1 + 𝑒−𝑧
 

is differentiable and has the following properties: 
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• It outputs real numbers between 0 and 1. 

• It maps a very large input domain to a small range of outputs. 

• It never loses information because it is a one – to – one function. 

• It increases monotonically. 

Definition 1: The set P is the set of all functions of the form: 

𝑃(𝑧) = 1 + 𝑝1𝑧 + 𝑝2𝑧
2 +⋯+ 𝑝𝑛𝑧

𝑛 +⋯ = 1 + ∑ 𝑝𝑛𝑧
𝑛∞

𝑛=1 , that are analytic in U, and 

such that for z 𝜖U, Re(P(z)) > 0 (Duren, 1983; Goodman, 1983). 

Definition 2: Let h(z) be a sigmoid function and  

𝜙(𝑧) = 2ℎ(𝑧) =  
2

1+ 𝑒−𝑧
= 1 + 

𝑧

2
− 

𝑧3

24
+ 

𝑧5

240
−⋯                (2) 

where 𝜙(𝑧) is the modified sigmoid function which belongs to class P (Fadipe-Joseph et al., 

2013). 

 

Altinkaya and Yalcin (2016) considered a subclass of univalent functions and obtained 

coefficients expansion using Chebyshev polynomials. Ramachandran and Dhanalakshmi 

(2017a) established coefficient estimates for a class of spiral-like functions in the space of 

sigmoid function. Ramachandran and Dhanalakshmi (2017b) obtained the Fekete- Szego 

functional for a subclass of analytic functions related to sigmoid function. Here, coefficient 

bounds for a class of univalent function using sigmoid polynomials were obtained. 

 

2. Main Results 

Here, the main results are given. 

Definition 3: A function f ϵ A is said to be in the class S(λ, 𝝓), 0 ≤ λ ≤ 1, if the following 

subordination holds: 

(1 −  𝜆)
𝑧𝑓′(𝑧)

𝑓(𝑧)
+  𝜆 (1 + 

𝑧𝑓′′(𝑧)

𝑓′(𝑧)
)  ≺  𝜙(𝑧)             (3) 

The following lemma will be required for the proof of the main results. 

Lemma 1: If 𝜔 𝜖 Ω, 𝜔(𝑧) =  ∑ 𝑐𝑛𝑧
𝑛∞

𝑛=1 , (z 𝜖 𝑼), then 

|𝑐𝑛| ≤ 1 n = 1, 2, … ,  |𝑐2|  ≤ 1 − |𝑐1|
2            (4) 

and  

|𝑐2 −  𝜇𝑐1
2| ≤ max{1, |𝜇|} .                        (5) 
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The result is sharp, the functions  𝜔(𝑧) = 𝑧,  𝜔𝑎(𝑧) = 𝑧
𝑧+𝑎

1+ �̅�𝑧
  (z 𝜖 𝑼, |a| < 1) are 

extremal functions (Keogh and Merkes, 1969). 

Theorem 1: If f(z) belongs to the class S(λ, 𝝓), then 

|𝑎2| ≤  
1

2(1+ 𝜆)
, 

|𝑎3|  ≤  
1

4(1+2𝜆)
+ 

1+3𝜆

8(1+ 𝜆)2(1+2𝜆)
, 

|𝑎4|  ≤  
13

72(1+3𝜆)
+ 

1+7𝜆

24(1+ 𝜆)3(1+2𝜆)
+ 

1+5 𝜆

8(1+ 𝜆)(1+2𝜆)(1+3𝜆)
+ 

1+5𝜆

2(1+ 𝜆)3(1+2𝜆)
, 

|𝑎5|  ≤  
5

32(1+4𝜆)
+ 

1+7𝜆

16(1+ 𝜆)(1+4𝜆)
{

1

9(1+3𝜆)
+ 

1+7𝜆

3(1+ 𝜆)3(1+3𝜆)
+ 

1+5𝜆

(1+ 𝜆)(1+2𝜆)(1+3𝜆)
+

 
1+5𝜆

2(1+ 𝜆)3(1+2𝜆)
} + 

1+11𝜆

16(1+ 𝜆)2(1+2𝜆)(1+4𝜆)
{1 + 

1+3𝜆

2(1+𝜆)
} + 

1+8𝜆

8(1+ 𝜆)2(1+4𝜆)
{
1

4
+ 

1+3𝜆

(1+ 2𝜆)2
+

 
(1+ 3𝜆)2

16(1+ 𝜆)2(1+ 2𝜆)2
} +

1+15𝜆

64(1+ 𝜆)4(1+4𝜆)
 . 

Proof: Let f ϵ S(λ, 𝝓).  From (3), we have  

(1 −  𝜆)
𝑧𝑓′(𝑧)

𝑓(𝑧)
+  𝜆 (1 + 

𝑧𝑓′′(𝑧)

𝑓′(𝑧)
) = 1 + 

1

2
𝜔(𝑧) − 

1

24
𝜔3(𝑧) + 

1

240
𝜔5(𝑧) − ⋯  (6) 

for some analytic function 𝜔(𝑧) such that 𝜔(0) = 0 and |𝜔(𝑧)| < 1 for all z ϵ U. 

Therefore, 

(1 −  𝜆)
𝑧𝑓′(𝑧)

𝑓(𝑧)
+  𝜆 (1 + 

𝑧𝑓′′(𝑧)

𝑓′(𝑧)
) = 1 + 

𝑐1

2
𝑧 + 

𝑐2

2
𝑧2 + (

𝑐3

2
− 

𝑐1
3

24
) 𝑧3 + (

𝑐4

2
− 

𝑐1
2𝑐2

8
) 𝑧4 +

⋯                  (7) 

And, it follows that: 

(1 +  𝜆)𝑎2 = 
𝑐1

2
,           (8) 

2(1 + 2𝜆)𝑎3 − (1 + 3𝜆)𝑎2
2 = 

𝑐2

2
,        (9) 

3(1 + 3𝜆)𝑎4 − 3(1 + 5𝜆)𝑎2𝑎3 + (1 + 7𝜆)𝑎2
3 = 

𝑐3

2
− 

𝑐1
3

24
,     (10) 

4(1 + 4𝜆)𝑎5 − 4(1 + 7𝜆)𝑎2𝑎4 + 4(1 + 11𝜆)𝑎2
2𝑎3 − 2(1 + 8𝜆)𝑎2

3 − (1 + 15𝜆)𝑎2
4 =              

𝑐4

2
 −  

𝑐1
2𝑐2

8
 .                       (11) 

Then, from (4), the result follows. 

Corollary 1: If f(z) belongs to the class S(0, 𝝓), then 

|𝑎2|  ≤  
1

2
,  |𝑎3|  ≤  

3

8
, |𝑎4|  ≤  

59

144
, |𝑎5|  ≤  

635

1152
. 

Corollary 2: If f(z) belongs to the class S(1, 𝝓), then 

|𝑎2| ≤  
1

4
, |𝑎3| ≤  

1

8
, |𝑎4| ≤  

59

576
, |𝑎5| ≤  

179

1440
. 

Theorem 2 (Fekete – Szegӧ Inequality): If f(z) belongs to the class S(λ, 𝝓), then 
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|𝑎3 −  𝜇𝑎2
2|  ≤  

{
 
 

 
 

1

4(1+𝜆)
(

1+3𝜆

2(1+𝜆)(1+2𝜆)
)                                      𝜇 = 0

1

4(1+𝜆)
(

1

(1+𝜆)
− 

1+3𝜆

2(1+𝜆)(1+2𝜆)
)                 𝜇 = 1

1

4(1+𝜆)
(

𝜇

(1+𝜆)
− 

1+3𝜆

2(1+𝜆)(1+2𝜆)
)        0 <  𝜇 < 1

. 

Furthermore  

|𝑎2𝑎4 − 𝑎3
2|  ≤  

13

144(1+𝜆)(1+3𝜆)
+ 

1+5𝜆

16(1+ 𝜆)2(1+2𝜆)(1+3𝜆)
+ 

1+5𝜆

32(1+ 𝜆)4(1+2𝜆)
+ 

1+7𝜆

48(1+ 𝜆)4(1+3𝜆)
+

 
1

16(1+ 2𝜆)2
+ 

1+3𝜆

4(1+ 𝜆)2(1+ 2𝜆)2
+ 

(1+3𝜆)2

64(1+ 𝜆)4(1+ 2𝜆)2
 . 

Proof:  From (7) and (8), we have 

|𝑎3 −  𝜇𝑎2
2| =  |

𝑐2
4(1 + 𝜆)

+ 
(1 + 3𝜆)𝑐1

2

8(1 +  𝜆)2(1 + 2𝜆)
− 

𝜇𝑐1
2

4(1 +  𝜆)2
| 

=  |
1

4(1+𝜆)
(𝑐2 − 𝑐1

2 (
𝜇

(1+𝜆)
− 

1+3𝜆

2(1+𝜆)(1+2𝜆)
))|. 

Then, from (4), we have 

|𝑎3 −  𝜇𝑎2
2| ≤  

1

4(1+𝜆)
𝑚𝑎𝑥 {1, |

𝜇

(1+𝜆)
− 

1+3𝜆

2(1+𝜆)(1+2𝜆)
|} . 

Now, for the functional |𝑎2𝑎4 − 𝑎3
2|, substituting for 𝑎2, 𝑎3, 𝑎4, we have 

|𝑎2𝑎4 − 𝑎3
2|  ≤  

13

144(1+𝜆)(1+3𝜆)
+ 

1+5𝜆

16(1+ 𝜆)2(1+2𝜆)(1+3𝜆)
+ 

1+5𝜆

32(1+ 𝜆)4(1+2𝜆)
+ 

1+7𝜆

48(1+ 𝜆)4(1+3𝜆)
+

 
1

16(1+ 2𝜆)2
+ 

1+3𝜆

4(1+ 𝜆)2(1+ 2𝜆)2
+ 

(1+3𝜆)2

64(1+ 𝜆)4(1+ 2𝜆)2
, 

which is the desired result. 
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