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Abstract  

This paper presents a class of methods for finding zeros of a polynomial of single variable as a prelude to deriving  

Newton and Halley’s iteration methods for computing the p-th root of a matrix where 2p . We use the LU 

Factorization and Givens QR–Cholesky Decomposition to invert the matrix which appears in the Newton and 

Halley’s methods. The givens QR algorithm when runs to completion could provide the eigenvalues of the 

symmetric matrices free of charge without additional task. The nature of distribution for the eigenvalues of matix 

A during iteration phases is discussed.  Numerical illustration is demonstrated with the described procedures 

which simultaneously provide the p-th root of a matrix and its inverse whose eigenvalues are not in the left-hand 

side in the extended real line. We compare note with results obtained from Guo and Higham who used polar 

decomposition in their approach for the cases p=12 and 52 respectively. It was observed that for for 10p , the 

p-th root tends to a diagonal matrix. As a special case for p = 2,  we computed  Square root of Newton iteration 

with Euler-Chevbyshev method due to Lakic and Petkovic  for the lower bound of this class of methods.        

Keywords:  Polynomial zeros, p-th root of a matrix, Newton’s method, Halley’s method, distribution of 

eigenvalues, LU decomposition, QR algorithm, polar decomposition. 

 

1. Introduction 

The paper presents numerical methods for Newton and Halley’s iterations and their variants 

for approximating   p-th root of a matrix for the case 2p  provided such eigenvalues of the 

matrix are not on the −R axis. The need to compute the p-th root of a diagonalizable matrix 

with positive eigenvalues is one major task often faced by researchers in numerical 

computation and engineering practices. Popular in these methods is the Newton Schultz Hyper 

Power method which can be amenable to Hensenl’s and p- adic lifting processes Bini and Pan 

(1994) a useful tool in aerospace computation for the Covariance matrix. As an example to this 

discussion is the matrix square root information filters and smoothers, which play crucial role 

in the solution to discrete time and Kalman filter problem Sharp and Allen  
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(2006). Computing the principal p-th root of a matrix is often met with stiff resistance but at 

the same time very crucial in the formation of product of a matrix square root and a vector in 

the dynamical state space differential equations (Bjorck, 2009). Besides, other application area 

of principal p-th root of a matrix is the need also to computing square root of a matrix occurring 

in the Wierner operator with covariance matrix, is a very important tool for discussing the 

solution process to stochastic parabolic partial differential equation (Yan, 2005). It follows that 

the quest for studying computation of principal p-th root of a positive definite matrix is an 

interesting topic in numerical analysis hence, we aim to provide a simplified approach to this 

problem. 

We thus introduce into the discussion, the integral representation of a matrix square root 

defined in the form: 

( )


−
=

0

122

1

_
2

dtAItA

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Given the scalar equation of degree 2=p  in the form 02 =− ax , the Newton iteration formula 

for matrix square root can be developed as follows: 

( ) ,...,.)2,1,0(,,,
2

1
00

1

1 ===+= −

+ kIYAXYXX kkk  .         (1) 

Following this technique which is expressed in Equation (1), Lakic and Petkovic (1998) 

obtained a cubically convergent matrix square root formula derived from the Schultz Hyper 

method for Newton iteration in the form (Altman, 1960): 
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The fact that 2

1

1 AX k →+  while 2

1

1

−

+ → AYk  simultaneously for →k  is a numerical problem 

that is worth giving attention to. 
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A close resemblance to matrix square root iteration of Equation (2) is the Euler-Chevbyshev 

method due to Altman (1960) in the form: 

Algorithm 1.1 (Euler-Chevbyshev method (Altman, 1960). 

Given a matrix nnRA  , whose real eigenvalues are not on −R , it is required to compute 
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It must be noted that the number of square roots may be finite, zero, or infinite. The most 

important for applications of the square roots is the principal square root whose eigenvalues 

are all in the right half plane. The following facts are introduced here as a follow up in our 

presentation. 

Fact 1: If A has Principal square root and *A  be the adjoint of A  with respect to an arbitrary 

scalar product (bilinear or sesquilinear). Then:  
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In what follows we draw the synergy of the theory of square root of a matrix to be extended to 

cover the automorphism group, Lie group and Jordan algebra. Therefore, the structured 

principal root has the following characteristics. 

Fact 2: Let LG,  and J  denote the automorphism group, Lie group and Jordan algebra, 

respectively of an arbitrary scalar product. Then  

(i) GAGA  2

1

, (ii) LALA  2

1

, (iii) JAJA  2

1

. 
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(ii) In the case of a Hermittian matrix, with *A  denoting the adjoint of A  with respect to 

unitary scalar product, then  
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Therefore in forming the product of two square root of matrices 1

*

1 ++ kk XX , the following 

technique applies in the sense of Higham et al. (2004): 
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In that case, the equality ( ) ( )2*1*
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Experimental evidence suggested that method of Equation (1) may converge at a very slow rate 

if there were present eigenvalues of large magnitude or very small values for the matrix A . To 

remedy this problem, it is suggested that determinant scaling or something of its equivalent 

form can be used in method of Equation (1). Thus scaled Newton method is then written as: 
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The kc  appearing above in equation (1.2) is defined to be any of the following 
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More fundamentally,   the Scaled Denver-Beaver method is expressed in Equation (2) and is 

defined as: 
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Further insight into this presentation is that, it should not be confused with the three- term 

recurrence relation earlier obtained in Higham et al. (2004) for method of Equation (4), and is 

written in the form: 
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In the absence of scaling in Equation (5), we give the product form for the Denver Beaver 

iteration developed by the equations Higham et al. (2004), Uwamusi (2005): 
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,...,.)2,1,0( =k . 

The following observations are worth noting Higham et al. (2004) for the Denver-Beaver 

iteration, a modified version of Newton iteration formula for finding square root of a positive 

definite matrix in the presentation of Equation (6). The IM k → as →k , with resultant 

consequences that:  
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One main advantage in the described inverse scaling and squaring in the Denver-Beaver 

method is that, we are able to compute the logarithm of a matrix almost inexpensively. 

Furthermore, using the already computed results that 2

1

AX k → as 2

1
−

→ AYk , then it could be 

written that kkk YXXA loglog2log −= , and  because the product IYX kk →  with additional 

quality in that OYX kk →log , respectively simultaneously. The bound norms then satisfy the 

inequality: 

kkkkkk YYXXIYX −−− ++++ 1111 . 

In addition to the aforementioned facts, it also holds that ( ) ( ) oYX kk =detdet . After all these, 

for the matrix A , we give the bound for the condition number for the matrix square root in the 

form: 
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We give bounds for the singular values of the matrix A  in line with ideas due to Bini and Pan 

(1994) analogous to spectral radius of the matrix A . 

Theorem 1.1: Bini and Pan (1994). Let nnRA   be given and suppose that 1− AAI H

Then, for a full rank matrix A  we have the following: 
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2. Newton’s and Halley’s methods for the pth root of a Symmetric matrix. 

Following the methods of Uwamusi (2005a), we derive a class of Newton and Halley’s 

methods for zeros of the single variable polynomial equation 

0)( =xF  ,                 (12) 

where ],[ baCF  and possessed the necessary derivatives in the neighborhood zeros of F . 

For convenience, F has been specified to be a function of x  with simple zero,  . Thus, f

( ) 0h  where it was derived that h  was a reduced polynomial of F , it will hold that Equation 

(13) assumes the form:  
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Further taking logarithm of both sides of Equation 2.2, and differentiating with respect to x  it 

will be that: 
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After some serious but rigorous analysis, a family of iteration formula was obtained by Hansen 

and Patrick (1977) in the form: 
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The is a variable parameter which rules the governing Equation (15) and it is based on the 

approximation of second order derivative of h  to the square of its first derivative. In what 
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follows we aim to construct functional iterative methods out of Equation (15) for useful 

purpose. 

Firstly, by setting 0=  in equation 2.5 and using this in method 2.4 we obtain that Ostrowski 

formula (Ostrowski, 1966): 
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Again, letting = , a limiting case of Equation 2.4 is arrived at, in which case the Newton’s 

quadratic order of convergence is obtained: 
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On the other hand, we take 1−= , an iterative formula of Halley’s type is obtained: 
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Equivalently, method of Equation (20) can be rewritten in the form: 
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To obtain the Laguerre method in the sense of Ostrowski (1966), Petkovic and Trickovic 

(1995), we have to set 
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   and is given by the equation (Laguerre’s method): 
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We shall move two more steps further in this class of methods of Equation (15) by respectively 
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In what follows we create an implicit formula out of family of methods of Equation (15) in the 

sense of Uwamusi (2005a) by substituting the Halley’s Correction formula 
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We then have an iterative formula: 
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Now we make the following assumptions concerning Equation (26) that  F   is reasonably 

small enough and that the extra term  //FF  in the denominator be ignored, we then write an 

iterative formula of Chevbyshev in the form:  
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By using ideas due to Uwamusi (2005a), we create a forward phasing implicit formula out of 

Equation (27) by using that: 
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As a result of Equation (30) we then write that  
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By substituting Equation (31) into the Chevbyshev formula of Equation (27), we obtain another 

iterative formula earlier reported in Uwamusi (2005b): 
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We have implicit phasing iterative formula obtained from Chevbyshev method 
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The methods under consideration were obtained from solving the scalar polynomial equation 

of order p>1 in the form: 0=− ax p .  

Thus the formulation for Newton and respectively, Halley’s method (Uwamusi (2005a, Hansen 

and Patrick 1975, Ostrowski 1966, Petkovic and Trickovic 1995, Uwamusi 2005b, Breass and 

Hadeller 1973, Wasilkowski 1980, Innazzo 2006) can be written in the form: 

Newton method: 

( )( ) 1,1
1

0

1

1 =+−= −

+ xaxxp
p

x p

kkk .                           (36) 

Halley’s method: 

1,
)1()1(

)1()1(
01 =














−++

++−
=+ x

apxp

apxp
xx

p

k

p

k

kk .                      (37) 

In matrix formulation, the p-th root of a matrix equation 0=− AX p  in the form: 

Newton matrix iteration: 

( )( ) IXAXXp
p

X p

kkk =+−= −

+ 0

1

1 ,1
1

.                           (38) 

Halley’s matrix pth root iteration (Ostrowski 1966, Petkovic and Trickovic 1995, Innazzo 

2006, Guo and Higham 2006, Higham et al 2005, Cheng et al 2001, Guo 2009) is written in 

the form: 

( ) ( ) 1,)1()1()1()1( 0

1

1 =++−−++=
−

+ XApXpApXpXX p

k

p

kkk
.                  (39) 

The eigenvalues of X lie in the segment 
p

z
p

z


− )arg(:  . 

It should be noted that the inverse counterpart of equation (38) for finding p-th root of equation

OAX p =−− , is expressed in the form: 
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00

1

1 ,])1[(
1

AXAXAXXp
p

X p

kkk =−+= +

+ . 

A variant of Newton’s pth  root iteration for the matrix equation given above is presented 

called the stable forms for Newton and Halley’s methods below: 

Stable Newton method Higham et al. (2005), Cheng et al. (2001): 

ANIX == 00 , ;   for ,..,2,1,0=k  

Compute: 

( )







 +−
=+

p

NIp
XX k

kk

1
1 ,                                 (40) 

where 

( )
k

p

k

k N
p

NIp
N

−

+ 






 +−
=

1
1 .                               (41) 

Halley’s method in Stable form Higham et al. (2005), Guo (2009) is defined below in the form: 

ANIX == 00 , , 

( )( ) ( ) ( )( )kkkk NpIpNpIpXX 11)1(1
1

1 ++−−++=
−

+ ,                    (42) 

( ) ( ) p

kkkk NpIpNpIpNN
−−

+ ++−−++= )1()1()1()1(
1

1 ,                     (43) 

In all cases in equations (16)-(19), IN k →  as →k when PAA

1

→ . 

Those methods of Equations (36)-(41) were derived from Altman Hyper power method Guo 

and Higham (2006): 

( ) ( )( ) 11

1 1
1 −−

+ −−−−= AXIAXIXp
p

X p

k

qp

kkk    ,    ( nnRX 0
)                      (44) 

This means that  
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( ) ( )( ) 

( ) ( ) 






















+=

+++++−=

−−−−=


−

=

−−

−

+

1

1

21

1

1

1

...1
1

1
1

q

i

i

kk

k

q

k

q

kk

kk

q

kkk

RpIX
p

IRRRpX
p

XRIIRXpX
p

X

                         (45) 

The matrix q

kR  appearing is a residual matrix of type AXI q

k− . In the case of Newton p-th root 

matrix iteration, define that: 

( ) ( ) ( ) XAX
i

q
Ip

p
X

q

i

ipi









−







−−→ 

=

−

1

1
11

1
,   (the 

pAX

1

→ )  .               (46)  

The Binomial term expansion: 

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) 1

01

1

1

1
)1(11 −

==

−

=

−

 −−







=−








=−








AXIAX

i

q
AXAX

i

q
AX

i

q
p

q

i

ipi
q

i

pipi
q

i

ipi
 

                         = ( )( )( ) 1−
−− AXIAXI pqp .  

It follows that the map  

( ) ( ) ( )( ) 111
1 −−−−−−= AXIAXIXp
p

XF pqp                   (47) 

so defined holds good. 

To obtain the inverse Newton iteration, we proceed in a manner analogous to Equation (46) as 

follows: 

( )














































−





























−−+=














−

−
−−−−

1

1
1111

1
1

AAIAAIAp
p

AF

p

p

q
p

ppp  .             (48) 

After minor rearrangements, Equation (48) would yield, Higham et al. (2005) that: 

( )  )(,1
1

00

1

1

AXAXAXXp
p

AF p

kk

p =−+=













+

−

                   (49) 
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3.  Distribution of eigenvalues for the matrix A  

In what follows, we discuss the nature of resulting eigenvalues for the matrix A. By the real 

Schur decomposition, assuming nnRA   is symmetric, there exists an orthogonal Q  such that:  

( )n

T diagAQQ  ...,,, 21= .                                (50) 

Since each eigenvalue of a symmetric matrix A  is a stationary value of the map 

0, → x
xx

Axx
x

T

T

.                                      (51) 

Courant-Fisher minimax characterization shows that for each nk ,...,2,1= , there holds that 

( )
yy

Ayy
A

T

T

SykS
k

=
=

0)dim(
minmax .                                 (52) 

The interlacing property reveals that the leading rbyr −−  principal submatrix of an nn  

symmetric matrix A  implies that  

( ) ( ) )()()(...)()( 111121111 ++++++  rrrrrrrrrrr AAAAAAA  , ( 1,...,2,1 −= nr ) 

               (53) 

Computation of Rayleigh Quotient iteration  
xx

Axx
xr

T

T

== )(  for the minimizing  

( )
2

xIA −  in the least square sense is as follows: 

Algorithm 3.1 

Given a nonzero vector nRx 0
, 1

20 =x ,  

          for k= ( )10  

          ( )kk xr=  

Solve ( ) kkk xwIA =− +1  for 1+kw  

          

21

1

1

+

+

+ =
k

k

k
w

w
x , end 
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In the case that matrix A is not symmetric, we can compute for the dominant eigenvalue by the 

Power method. We form the product AAT  to obtain estimate 
2

A . Then we have:  

Algorithm 3.2 

Given nRq 0
, and  1

20 =q ,  - order of accuracy 

          for  = :1:0k  

          01 Aqsk =+  

          
11 ++ = k

T

k sAu  

           

21

21

1

+

+

+ =
k

k

k
s

u
  

            is  − +1kk , quit , end. 

The algorithm 3.2 indicated that the best estimate for the norm 
2

A  is given by 
































+

+

++
2

1

2

21

21

21

2

21

2
,,max

k

k

k

k

k

k

u

u

s

u

u

s
A .                     (54) 

The distribution of eigenvalues for the operator in equation (1) defined by 











+=

+

+

1

1

1

2

1
)(

k

k
X

XXf   in second phase in the iteration process is distributed in the form 

Higham (2008): 

( ))1(

1
)1(

1

)1(

1)1(

1

)1(

)1(

)1(

1)2(

1

)2( 1

2

1

2

1
...1 











 fn

n

n =













+















+=  .                (55) 

As earlier said, that the Givens Similarity Transformation preserves length by the Courant-

Fischer minimax characterization, trace  
= =

==
n

i

n

i

iiiaA
1 1

 . Due to this fact, we state the 

Sylvester Law of Inertia. 



Uwamusi    ILORIN JOURNAL OF SCIENCE 

16 

 

Theorem 3.1; Golub and Van Loan (1983): If nnRA   is symmetric and nnRX   is 

nonsingular, then A  and AXX T have the same inertia. 

From the spectral decomposition of AQQA T=  , we compute the Lipschitz constant for the 

function of the matrix A  thus, because 
2XA = , it suffices to show that X  is the square root of

A . This implies writing that ( ) 22 BXQQXQQ TT == , therefore proved that B  is Hermitian.  

Computed results would reveal that IB kk =2 . By taking square root of both sides of the later, 

gives kk IB =  

Coupling these ideas together, we have ( ) TT

kk

T QQAQIQdiagQQAX 2

1

2

1

===  . We use the 

opportunity to present the Low rank minimization of the matrix A .After computing the SVD 

of A ,then for ,...,.1,0=k  , find T

kkk AVUA −min , also compute the root mean square error 

by the equation 

RMSRE=  − T

kkk AVUA
n

1
  .                          (56) 

Thus the Low rank approximation tends to remove noise from the data and it has been found 

useful in machine learning, computer vision and information retrieval problems. Now we aim 

at computing  




























+=

−
+

n

n

n

As
kO

n

VUA
k

T

kkk



)log()(
2

2

12

2
.                   (57) 

The term )(1 Ask+  corresponds to the (k+1)-th singular values of A. In addition

9

84 )(log −

 n
n

n
 , where )(log6 nk  . 
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4. Numerical Examples. 

Problem 1: Consider the matrix
















=

8.01.01.0

1.07.02.0

1.03.06.0

A .  

We compute the 10th root for the matrix A using Newton method, Halleys method and Inverse 

Newton method all implemented with MATLAB Windows 07. Using the above information, 

various results computed from these methods are displayed in Tables 1 and 2 

Table 1: Computed results for the 10th root of a matrix. 

Itera
tio

n
, k

 

NEWTON METHOD 

( 15) 

 𝑲
𝑵
(𝑨
) (1

5
) 

INVERSE NEWTON METHOD (49) 𝑲
𝑰𝑵
(𝑨
) (4

9
) 

HALLEY’S METHOD 

( 39) 

𝑲
𝑯
(𝑨
) (3

9
) 

1 

 

 

 

 

2 

 

 

 

3 

 

 

 

4 

 

 

 

 

































































9766.00107.00127.0

0117.09582.00302.0

0117.00457.09426.0

9766.00107.00126.0

0117.09582.00301.0

0117.00457.09426.0

9767.00100.00124.0

0116.09595.00289.0

0116.00437.09447.0

9800.00100.00100.0

01007.09700.00200.0

0100.003000.09600.0

















9766.00107.00127.0

0117.09582.00302.0

0117.00457.09426.0

 

2.532 

 

 

 

 

1.064 

 

 

 

 

1.093 

 

 

 

1.097 

 

 

 

1.097 

 

 
















−−

−−

−−

















−−

−−

−−

















−−

−−

−−

















−−

−−

−−

















−

−−

−−

0242.10108.00134.0

0121.00454.10333.0

0121.00506.00627.1

0242.10108.00134.0

0121.00454.10333.0

0121.00506.00627.1

0242.10108.00134.0

0121.00453.10332.0

0121.00505.00626.1

0241.10110.00130.0

0120.00430.10310.0

0120.00470.00591.1

0200.10300.10100.0

0100.00300.10200.

0100.00300.00400.1

 

2.5

32 

 

 

 

 

1.0

91 

 

 

 

 

1.0

97 

 

 

 

1.0

97 

 

 

 

1.0

97 

 

































































9766.00107.00127.0

0117.09582.00302.0

0117.00457.09426.0

9766.00107.00127.0

0117.09582.00302.0

0117.00457.09426.0

9766.00107.00127.0

0117.09582.00302.0

0117.00457.09426.0

9769.00108.00123.0

0116.09603.00281.0

0116.00425.09459.0

 

2

.

5

3

2 

 

 

 

 

1

.

0

9

1 

 

 

 

1

.

0

9

7 
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1

.

0

9

7 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2: Results computed with Iannazzo (2006) in equation (40) for principal 10th root of a positive definite 

matrix. 

Iteration, 

k 

Iannazzo Method (40) ( )kX  

(MODIFIED NEWTON 

ITERATION METHOD) 

Cond

( )kX  FOR 

METHOD 

(40) 

RESULTS FOR METHOD 

(18) ( )kM  

Cond 

( )kM  

FOR 

METHOD 

(18)
 

1 

 

 

 

 

2 

 

 

 

 

















9800.00100.00100.0

0100.09700.00200.0

0100.00300.09600.0

 

 

















9767.00108.00124.0

0116.09595.00289.0

0116.00437.09447.0

 

 

1.0647 

 

 

 

 

1.0933 

 

 

 

 

















9662.00083.00256.0

0169.08860.00944.0

0169.01460.08371.0

 

 

















− 9992.00015.00023.0

0004.09857.00139.0

0004.00218.09778.0

 

 

1.3533 

 

 

 

 

1.0382 
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3 

 

 

 

 

4 

 

 

 

 

 

5 

















9766.00107.00126.0

0117.09582.00301.0

0117.00457.09426.0

 

 

















9766.00107.00127.0

0117.09582.00302.0

0117.00457.09426.0

 

 

















9766.00107.00127.0

0117.09582.00302.0

0117.00457.09426.0

 

 

 

 

 

 

1.0974 

 

 

 

 

1.0974 

 

 

 

 

 

1.0974 

















− 0000.10000.00000.0

0000.09998.00002.0

0000.00004.09996.0

 

 

















0000.10000.00000.0

0000.00000.10000.0

0000.00000.00000.1

 

 

















0000.10000.00000.0

0000.00000.10000.0

0000.00000.00000.1

 

 

 

 

 

 

1.0006 

 

 

 

 

1.0000 

 

 

 

 

 

1.0000 

 

 

 

Table 3: Showing Computed results for Euler-Chevbyshev Method 1.1a (Square root case) and its Inverse. 

Iteration 

K 

Euler-Chevbyshev Method 

1.1a 

( )kX  

cond

( )kX  

Inverse-Euler-Chevbyshev 

Method 

( )kY  

cond

( )kY  

1 

 

 

 

 

2 

 

 

 

3 

 

 

















8902.00519.00578.0

0548.08149.01302.0

0548.01968.07483.0

 

















8910.00522.00567.0

0544.08207.01248.0

0544.01883.07572.0

 

 

















8910.00522.00567.0

0544.08207.01248.0

0544.01883.07572.0

 

 

1.6291 

 

 

 

1.5918 

 

 

 

 

1.5918 

 
















−−

−−

−−

















−−

−−

−−

















−−

−−

−−

1300.10545.00757.0

0651.02693.12043.0

0651.03117.03767.1

1300.10545.00757.0

0651.02693.12043.0

0651.03117.03767.1

1289.10557.00733.0

0645.02550.11906.0

0645..02903.03547.1

 

1.5552 

 

 

 

1.5917 

 

 

 

 

1.5917 
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In the implementation of Halley’s method it is strongly recommended to use numerical 

methods for inverting the resulting matrix instead of direct methods due ill-conditioning of the 

elements of the matrix. In this work we use the Lu decomposition and economy size QR 

decomposition to invert the matrices occurring in the iteration phases. 

Define that LULDMA == ,                   (58) 

where L  and M are unit triangular matrices, D  is a diagonal matrix. That is, the structure of 

L  for the (k+1)-th principal determinant is given by ( ) ( ) ( )k

k ALLLA 11

2

1

1

0 .... −−−=  
















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Thus each 0....1 )(

1,1

)1(

22

)0(

11 = ++

k

kki aaam  and 0)(

1,1 ++

k

kka . The implication is that since A  is 

symmetric and nonsingular,  A  has a unique TLDM  factorization where D  is a diagonal 

matrix and TML = . In the long run in the iteration we have that 

1121 ...... MMDMLLLA kkk −= ,                               (61) 

where nk log= . Hence, it follows that 1111 −−−− = LDMA . Especially for the Hermitian positive 

case, we set  DLL =
^

  and thus,
H

LLA
^^

= . We give algorithmic structure for the Cholesky 

the Cholesky Factorization. 

Algorithm 

Given a symmetric matrix A 
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For nk ,...,2,1= , 
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        Endfor 

    Endfor 

End 

This has polynomial time of 
6

3n
. 

Another method for inverting matrices in the Newton and Halley’s methods is the use of 

Singular Value Decomposition (SVD).  This is made possible since the SVD is proven to be 

backward stable, Uwamusi (2016). 

Firstly we obtain a rotation matrix defined in the form 

The matrix Q is orthogonal and is defined in the form: 
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(62) 

 

 

 

With the matrix  ( ),,qpQ  we reduce the matrix A  to an equivalent QR -Cholesky 

Decomposition using the Givens orthogonal matrix plane rotation matrices Uwamusi (2002). 

The cos  and sin  are computed in the form: 

2222
sin,cos

ii

i

ii

i

qp

q

qp

p

+
=

+
=  . Where nRx and xqpJy ),,( =  and after 

multiplication by ),,( qpJ  in the ),( qp  coordinate plane gives that 

jjkiqqip xycxsxysxcxy =+−=+= ;;                       (63) 

Continuing in this manner, we eventually upper triangulate the matrix A in the form 
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R  , where   ,...,  are element of the Upper triangulated matrix. The 

elementary matrices nQQQ ,..., 21  are the constituents Givens rotation matrices. Assembling 

these results, we write that mmm RRARQQQA ...... 2111

^

−=  .As is standard, the QR algorithm is 

numerically stable, so converges for positive definite matrices. On the other hand, the matrix 

needed to be inverted could be split into Singular Value Decomposition (SVD). For instance, 

if 
TVUA = , then  we compute 

TUVA 11 −− = . The components of decomposed A  are that 

U  and V  are left and right hand vectors corresponding to the singular values

( )ndiag  ..,.,, 21= , where n  ...21  are ordered in increasing magnitudes. 

 

5. Conclusion 

The paper presented some methods based on Newton and Halley’s methods and their variants 

for computing the principal p-th root of a matrix whose eigenvalues are not on the −R  axis. In 

particular, it is showed that Halley’s method converges faster than Newton method as was 

demonstrated with numerical example whose computed results are displayed in Table 1 where 

p is taken to be 10. In Table 1, the Halley’s method converged to the required solution in the 

second step of iteration, whereas, the Newton method converged at the third iteration. We also 

gave their condition numbers corresponding to each stage in their iteration cycle for the 

obtained results. In Table 1 also, the results for the  inverse 10th root for matrix A obtained 

from Inverse Newton iteration for the case p=10 was reported. We used the LU–Cholesky 

Factorization and Givens–QR decomposition for the inversion of resulting matrices appearing 

in the computation for the Halley’s iteration method. Especially, the QR decomposition is 

numerically backward stable. Furthermore, the Givens-QR algorithm when run to completion 

also provides the eigenvalues of the matrix free of charge without additional task of cost in 

computation time. 
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In addition, we also reported in Table 2, computed results for the modified Newton method due 

to Iannazzo (2006) as represented. It revalidated that method is actually the Stable form of 

Newton iteration for computing principal p-th root of a positive definite matrix. Furthermore, 

while 10

1

AX k →  , the corresponding IM k →  an indication that there is a good reasonable 

approximate results to the already known values which can be obtained by any other methods. 

As a way of comparison, we also give the results obtained by Guo and Higham (2006) for the 

cases p=12 and 52 respectively where they used method of Polar decomposition in their 

approach as shown below: 

















==

9805.00089.00106.0

0098.09649.00253.0

0098.00384.09518.0

,
12

1
Xp

,  
















==

9954.00021.00025.0

0023.09917.00060.0

0023.00092.09886.0

,
52

1
XP

. 

It can be shown that with either methods of Newton or Halley’s for the case 10p , considering 

the scalar test matrix as given by the example above, the results with our methods are in close 

agreement with those of Guo and Higham (2006). In our methods, we used both LU 

decomposition and Givens QR-Cholesky type Factorization. In either case, the results we 

obtained are accurate within the precision, epsilon. 

We also reported that we used Euler-Chevbyshev method due to Lakic and Petkovic to compute 

the square root and its corresponding inverse matrix square root with results displayed in Table 

3. Convergence for this method was achieved just in the second iteration to the desired root. 

All computations were carried out with the aid of MATLAB Windows 7 version.  

We pointed out that Newton method may become highly unstable sometimes. To remedy this 

defect, we recommend that for convergence all eigenvalues of matrix A must be bounded by 

the quantity (Innazzo, 2006): 

),...,2,1;,...,2,1(,1
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