

ILJS-21-007

Iron def Science

SR, Number 1, 2021, pp. 1 – 20 (Printed in Nigeria)

OURNAL OF SCEINCE

This org/10.54908/iljs.2021.08.01.001

ILJS-21-007

Free Vibration Analysis of Non-uniform Rayleigh Beams on Variable

Winkler Elast Imal of Science

8, Number 1, 2021, pp. 1 – 20 (Printed in Nigeria)

08–4840 © 2021 Faculty of Physical Sciences, University of Ilorin

ILJS-21–007

Free Vibration Analysis of Non-uniform Rayleigh Beams on Variable

Winkle Franch of Science

S. Number 1, 2021, pp. 1 – 20 (Printed in Nigeria)

Olo -4840 © 2021 Faculty of Physical Sciences, University of Ilorin

ILJS-21-007

Free Vibration Analysis of Non-uniform Rayleigh Beams on Variab

Wink Imal of Science

8, Number 1, 2021, pp. 1 – 20 (Printed in Nigeria)

18 – Side – 2021 Faculty of Physical Sciences, University of Ilorin

ILJS-21-007
 ILMS-21-007
 Pree Vibration Analysis of Non-uniform Rayleigh Beams o Imal of Science

28. -4840 © 2021 Faculty of Physical Sciences, University of Ilorin

28. -4840 © 2021 Faculty of Physical Sciences, University of Ilorin

ILJS-21-007

Free Vibration Analysis of Non-uniform Rayleigh Beams

Abstract

Include of Science

States (2011-pp. 1–20 (Printsd in Nigeria)

16. org/10.54908/11:2021.08.01.001

11.J.S-21-007
 **Tree Vibration Analysis of Non-uniform Rayleigh Beams on Variable

Winkler Elastic Foundation using Differ** unal of Science

18, Number 1, 2021, pp. 1 – 20 (Primed in Nigeria)

16.58, Number 1, 2021, pp. 1 – 20 (Primed in Nigeria)

11.JS-21-007

ITMS-21-007

ITMS-21-007

ITMS-21-007

ITMS-21-007

ITMS-21-007

Tree Vibration Anal Length direction of the beam. A semi-analytical approach and the beam. A semi-analytical approximation of the beam. A semi-analytical approximation of the beam. A semi-analytical approximation of the beam of the beam. A s and solential function of the beam. A semi-mulyical approach for the non-dimensional frequencies of a particular content of Mathematics, University of Home and Society and A and Charles and Society and Charles Content of Rayleigh direction of the beam and set of variable set of recursive algebraic equations are obtained. These Vibration Analysis of Non-uniform Rayleigh Beams on Variable Winkler Elastic Foundation using Differential Transf **ILJS-21-007**
 ILJS-21-007
 Free Vibration Analysis of Non-uniform Rayleigh Beams on Variable
 Winkler Elastic Foundation using Differential Transform Method
 Olotu', **O. T.**, Agboola², **O.** O. and Gbadeyan⁴, J **ILJS-21-007**
 Free Vibration Analysis of Non-uniform Rayleigh Beams on Variable
 Winkler Elastic Foundation using Differential Transform Method
 Olotu'', O. T., Agboola', O. O. and Gbadeyan¹, J. A.

¹ Departmen II.JS-21-007

Free Vibration Analysis of Non-uniform Rayleigh Beams on Variable

Winkler Elastic Foundation using Differential Transform Method

Olotu", O. T., Agboola², O. O. and Gbadeyan¹, J. A.

¹ Department of M Free Vibration Analysis of Non-uniform Rayleigh Beams on Variable

Winkler Elastic Foundation using Differential Transform Method

Olotu", O. T., Agboola², O. O. and Gbadeyan¹, J. A.

¹ Department of Mathematics, Uni **Free Vibration Analysis of Non-uniform Rayleigh Beams on Variable Winkler Elastic Foundation using Differential Transform Method Olotu", O. T., Agboola², O. O. and Gbadeyan¹, J. A.

¹ Department of Mathematics, Univ Free VIDT AIOD ANIALYSTS OF NON-UNITOTIFI Raytergit Beams SOF VATIADDENTIAL CONDICT UNITS CONDUPT SURVEY TO DETERMIND THE SURVEY TO DETERMIND THE USE THE USE THE USE THE USE THE USE THE OPERATOR THE SURVEY SURVEYS TO USE Olotu'', O. T., Agboola', O. O. and Gbadeyan', J. A.**
¹ Department of Mathematics, University of Ilorin, Ilorin, Nigeria.
² Department of Mathematics, Covenant University, Ota, Nigeria.
 Abstract

This study examin Figure 1.1 Introduction

2. Intervalse and design of the conduction of the foundation of

2. Intervalse and the state of variable Winkler foundation on the natural frequentiform Rayleigh beam. In this work, the elastic coe **Abstract**
This study examines the effect of variable Winkler foundation on the natural frequencies of a prestressed non-
This study examines much more, the elastic coefficients of the foundations are assumed to vary along Ins stuay examines the reret of variable whister foundation on the natural requencies of a prestressed non-
uniform Rayleigh beam. In this work, the elastic coefficients of the foundations are assumed to vary along the
len rlangth direction of the beam. A semi-amalytical approach known as Differential Transform Method (DTM) is
applied to the non-dimensional form of the governing equations of motion of the prestressed non-uniform
anyiel of th

structure on the total method and the several method in the several norm of the present norm and a set of recursive algebraic equations are obtained. IV aduating these derived equations and using some computer codes writte using some computer codes written and implemented in MAPLE 18, the ono-dimensional frequencies and these for various values of the slenderness ratio on the non-dimensional frequencies are investigated. The causal force for incolution of the mathematical controlling the vibration of beam vibration of the mathematical frequencies are investigated. The entirely supported boundary conditions are considered to illustrate the accuracy and climpedclamped clamped and simply supported boundary conditions are considered to illustrate the accuracy and
efficiency of this method. Finally, the results obtained are validated and are found to compare favorably well
with tho with those in the open literature.
 Keyword: Free vibration, natural frequency, Winkler foundation variations and differential transform method.
 1. Introduction

The problem of analyzing the vibration behaviour of b 1. Introduction
The problem of analyzing the vibration behaviour of beams resting on elastic fou
a wide application in the analysis and design of the foundations of building
railways and a host of other geotechnical struct Ilyzing the vibration behaviour of beams resting on elastic foundations has
in the analysis and design of the foundations of buildings, highways,
st of other geotechnical structures. In fact, it is an important aspect of
c

Email: olotu.ot@unilorin.edu.ng

Olotu *et al.* ILORIN JOURNAL OF SCIENCE
Winkler foundation model, being the simplest of all the models, is the most widely used
model because of its simplicity and for convenience's sake. The Winkler model assumes that UCRIN JOURNAL OF SCIENCE
Winkler foundation model, being the simplest of all the models, is the most widely used
model because of its simplicity and for convenience's sake. The Winkler model assumes that
the subgrade/found Dotu *et al.* ILORIN JOURNAL OF SCIENCE
Winkler foundation model, being the simplest of all the models, is the most widely used
model because of its simplicity and for convenience's sake. The Winkler model assumes that
the ILORIN JOURNAL OF SCIENCE
Winkler foundation model, being the simplest of all the models, is the most widely used
model because of its simplicity and for convenience's sake. The Winkler model assumes that
the subgrade/foun Olotu *et al.* ILORIN JOURNAL OF SCIENCE
Winkler foundation model, being the simplest of all the models, is the most widely used
model because of its simplicity and for convenience's sake. The Winkler model assumes that
t Vinkler foundation model, being the simplest of all the models, is the most widely used
model because of its simplicity and for convenience's sake. The Winkler model assumes that
the subgrade/foundation reaction is directl (Muture *al.* ILORIN JOURNAL OF SCIENCE

Winkler foundation model, being the simplest of all the models, is the most widely used

model because of its simplicity and for convenience's sake. The Winkler model assumes that
 The vibration of Euler-Bernoulli beam resting on elastic foundation. Because of state implest of all the models, is the most widely used model because of its simplicity and for convenience's sake. The Winkler model assume (1994) ULORIN JOURNAL OF SCIENCE

Winkler foundation model, being the simplest of all the models, is the most widely used

model because of its simplicity and for convenience's sake. The Winkler model assumes that

the su **EXECT URIGAT INTERT INTURNAL OF SCIENCE**

Winkler foundation model, being the simplest of all the models, is the most widely used

model because of its simplicity and for convenience's sake. The Winkler model assumes tha

LORIN JOURNAL OF SCIENCE

Winkler foundation model, being the simplest of all the models, is the most widely used

model because of its simplicity and for convenience's sake. The Winkler model assumes that

the subgrade/f **EXECT:** ULORIN JOURNAL OF SCIENCE

Winkler foundation model, being the simplest of all the models, is the most widely used

model because of its simplicity and for convenience's sake. The Winkler model assumes that

the Winkler foundation model, being the simplest of all the models, is the most widely used
model because of its simplicity and for convenience's sake. The Winkler model assumes that
the subgrade/foundation raction is directl winkier foundation model, being the simplest of all the models, is the most widely used
model because of its simplicity and for convenience's sake. The Winkler model assumes that
the subgrade/foundation reaction is direct moael because or its simplicity and for convenience s sake. The winker model assumes that
the subgrade/foundation reaction is directly proportional to the beam deflection at any point
on the foundation. In other words, the the subgrade/foundation reaction is directly proportional to the beam deflection at any point
on the foundation. In other words, the soil is modelled as uniformly distributed linear elastic
vertical springs, which tend to on the foundation. In other words, the soll is modelled as uniformly distributed inear elastic
vertical springs, which tend to produce distributed reactions along the direction of the beam
(Mutman and Coskun, 2013; Tazabc (Mutman and Coskun, 2013; Tazabekova *et al.*, 2018).
The vibration of Euler-Bernoulli beam resting on elastic foundation has been investigated by
quite a number of scholars. Eisenberger (1994) determined a general solutio The vibration of Euler-Bernoulli beam resting on clastic foundation has been investigated by
quite a number of scholars. Eisenberger (1994) determined a general solution to vibrations of
beams resting on a variable Winkle The vibration of Euler-Bernouin beam resting on eiastic foundation has been investigated by
quite a number of scholars. Eisenberger (1994) determined a general solution to vibrations of
differential transform method to st quite a number of scholars. Eisenberger (1994) determined a general solution to Vibrations of
bcams resting on a variable Winkler clastic foundation. Balkaya *et al.* (2009) employed the
differential transform method to st

beanns resting on a variable winker elastic folundation. Balkaya *et al.* (2009) employed the differential transform method to study the vibration analysis of beams resting on elastic foundation. The homotopy perturbation antierential transform method to study the vibration analysis of beams resting on elastic
foundation. The homotopy perturbation method was used by Ozturk and Coskun (2011) to
analyze the vibration behavior of beams on elas notination. The homotopy perturbation method was used by Ozturk and Coskin (2011) to
enalyze the vibration behaviour of beams on clastic foundation. Jiya and Shaba (2018)
ensublished the Glarekin Finite element method in c analyze the vibration behaviour of beams on elastic foundation. Jiya and shaba (2018)
established the Galerkin Finite element method in conjunction with Beta time integration
method to analyze a uniform Bernoulli-Euler bea method to analyze a uniform Bernoulli-Euler beam subjected to a harmonic moving load on a
Winkler foundation. The analysis covered the effect of acceleration of load, velocity of load
and position of the load on the beam.
 Winkler foundation. The analysis eovered the effect of acceleration of load, velocity of load
and position of the load on the beam.
Ma *et al.* (2018) considered the effects of Winkler foundation mass, damping and stiffne and position of the load on the beam.

Ma *et al.* (2018) considered the effects of Winkler foundation mass, damping and stiffness on

the nonlinear damping response of beam based on the expression of subgrade reaction

o Ma *et al.* (2018) considered the effects of Winkler foundation mass, damping and stiffness on
the nonlinear damping response of beam based on the expression of subgrade reaction
obtained from the equation of motion of th

Ma *et al.* (2018) considered the entects of winkter foundation mass, damping and stirmess on
the nobilinear damping response of beam based on the vyinkler clundation. The free vibration
obtained from the equation of moti the nonlinear damping response or beam based on the expression or subgrade reaction
obtained from the equation of motion of the Winkler foundation. The free vibration
bene studied by Tazabekova *et al.* (2018) using the ¹ obtained from the equation of motion of the winker foundation. The tree vibration characteristics for an Euler-Bernoulli beam resting on a Winkler clastic foundation have also been studied by Tazabekova *et al.* (2018) usi enaracteristics for an Euter-Bermouin beam resumg on a winkier clastic foundation have also
been studied by Tazabekova *et al.* (2018) using the He's variational iteration method. Jena *et*
al. (2019) employed the differ

Olotu *et al.* ILORIN JOURNAL OF SCIENCE
prismatic beam resting on elastic subgrade and under the actions of accelerating masses. The
dynamic behaviour of a finite uniform Rayleigh beam subjected to travelling distributed Dotu *et al.* ILORIN JOURNAL OF SCIENCE
prismatic beam resting on elastic subgrade and under the actions of accelerating masses. The
dynamic behaviour of a finite uniform Rayleigh beam subjected to travelling distributed l Dotu *et al.* ILORIN JOURNAL OF SCIENCE
prismatic beam resting on elastic subgrade and under the actions of accelerating masses. The
dynamic behaviour of a finite uniform Rayleigh beam subjected to travelling distributed l Dotu *et al.* ILORIN JOURNAL OF SCIENCE
prismatic beam resting on elastic subgrade and under the actions of accelerating masses. The
dynamic behaviour of a finite uniform Rayleigh beam subjected to travelling distributed l Decreases as the foundation modulus and under the actions of accelerating masses. The dynamic behaviour of a finite uniform Rayleigh beam subjected to travelling distributed loads was studied by Andi *et al.*, (2014). It w Dotu *et al.* ILORIN JOURNAL OF SCIENCE
prismatic beam resting on elastic subgrade and under the actions of accelerating masses. The
dynamic behaviour of a finite uniform Rayleigh beam subjected to travelling distributed l This paper focused on the free vibration analysis of tapered beam and the beam and the same natural frequency.
The obtained by Andi *et al.*, (2014). It was shown that the response amplitude of the system decreases as the This paper focused on the free vibration analysis of taperad or the national medicines and mode shapes of the free vibration contact and the system decreases as the foundation modulus and rotatory inertia correction facto Foundation. The Rayleigh beam theory is used to model the beam is uniformedic to the payamic behaviour of a finite uniform Rayleigh beam subjected to travelling distributed loads was studied by Andi *et al.*, (2014). It w ILORIN JOURNAL OF SCIENCE

prismatic beam resting on clastic subgrade and under the actions of accelerating masses. The

dynamic behaviour of a finite uniform Rayleigh beam subjected to travelling distributed loads

was st **EXECT EXECT THE EXECT THE MODE SET SET SET SET SET SET SET SUPPOSE SET SHAPES OF SCIENCE PRIMIT OF A SHAPE INTERT BET SHAPE IN EXERCT BUT SHAPE IN EXERCT SHAPE IN THE BEAM IS SHAPE IN A SHAPE INTERT AND SHAPE INTERTAIL ME** ILORIN JOURNAL OF SCIENCE
prismatic beam resting on elastic subgrade and under the actions of accelerating masses. Th
dynamic behaviour of a finite uniform Rayleigh beam subjected to travelling distributed load
was studied prismatic beam resting on elastic subgrade and under the actions of accelerating massedynamic behaviour of a finite uniform Rayleigh beam subjected to travelling distributed was studied by Andi *et al.*, (2014). It was sho dynamic behaviour of a finite uniform Rayleigh beam subjected to travelling distributed loads
was studied by Andi *et al.*, (2014). It was shown that the response amplitude of the system
decreases as the foundation modulus

Was studied by Andi *et al.*, (2014). It was shown that the response amplitude of the system
decreases as the foundation modulus and rotatory inertia correction factor increase. It was
also observed that the critical spee decreases as the foundation modulus and rotatory inertia correction factor increase. It was
also observed that the critical speed for the system traversed by a distributed force is greater
than the one traversed by a movi

$$
\frac{\partial^2}{\partial x^2} \left[E(x)I(x) \frac{\partial^2 D(x,t)}{\partial x^2} \right] + \rho(x)A(x) \frac{\partial^2 D(x,t)}{\partial t^2} - \frac{\partial}{\partial x} \left[N(x) \frac{\partial D(x,t)}{\partial x} \right]
$$

$$
- \frac{\partial}{\partial x} \left[\rho(x)I(x) \frac{\partial^3 D(x,t)}{\partial x \partial t^2} \right] + K(x)D(x,t) = F(x,t), \quad x \in (0,1), \tag{1}
$$

as differential transform method.

2. Materials and Methods

2.1 Problem Formulation and Methods

The governing equation of motion for a prestressed non-uniform Rayleigh beam of finite

length, resting on Winkler foundati 2. Materials and Methods

2.1 Problem Formulation and Methods

The governing equation of motion for a prestressed non-uniform Rayleigh beam of finite

length, resting on Winkler foundation as shown in figure 1 can be writ **2.1 Problem Formulation and Methods**

The governing equation of motion for a prestressed non-uniform Rayleigh beam of finite

length, resting on Winkler foundation as shown in figure 1 can be written as:
 $\frac{\partial^2}{\partial x^2} \$ The governing equation of motion for a prestressed non-uniform Rayleigh beam of finite
length, resting on Winkler foundation as shown in figure 1 can be written as:
 $\frac{\partial^2}{\partial x^2} \left[E(x)I(x) \frac{\partial^2 D(x,t)}{\partial x^2} \right] + \rho(x)A(x) \frac{\partial^2$ length, resting on Winkler foundation as shown in figure 1 can be written as:
 $\frac{\partial^2}{\partial x^2} \left[E(x)I(x) \frac{\partial^2 D(x,t)}{\partial x^2} \right] + \rho(x)A(x) \frac{\partial^2 D(x,t)}{\partial t^2} - \frac{\partial}{\partial x} \left[N(x) \frac{\partial D(x,t)}{\partial x} \right]$
 $- \frac{\partial}{\partial x} \left[\rho(x)I(x) \frac{\partial^2 D(x,t)}{\partial x \partial t^2} \right$ $\frac{\partial^2}{\partial x^2} \left[E(x)I(x) \frac{\partial^2 D(x,t)}{\partial x^2} \right] + \rho(x)A(x) \frac{\partial^2 D(x,t)}{\partial t^2} - \frac{\partial}{\partial x} \left[N(x) \frac{\partial D(x,t)}{\partial x} \right]$
 $- \frac{\partial}{\partial x} \left[\rho(x)I(x) \frac{\partial^3 D(x,t)}{\partial x \partial t^2} \right] + K(x)D(x,t) = F(x,t), \quad x \in (0, l),$
where $D(x,t)$ represents the dynamic response of the be $-\frac{\partial}{\partial x}\left[\rho(x)I(x)\frac{\partial^3 D(x,t)}{\partial x\partial t^2}\right] + K(x)D(x,t) = F(x,t), \quad x \in (0, l),$ (1)
where $D(x,t)$ represents the dynamic response of the beam, $E(x)$ is the variable Young's
modulus, $I(x)$ is the variable moment of inertia, $\rho(x)A(x)$ is the $\partial x \left(\frac{\partial x}{\partial x} \right) = \frac{\partial x}{\partial y} \left(\frac{\partial y}{\partial y} \right) = \frac{\partial x}{\partial y} \left(\frac{\partial y}{\partial y} \right) = \frac{\partial x}{\partial y} \left(\frac{\partial y}{\partial x} \right)$. Every, $\theta = \sqrt{x}$, θ , θ is the variable Young's modulus, $I(x)$ is the variable moment of inertia, $\rho(x)A(x)$ is t

$$
N(x) = \int_x^1 g(\eta) d\eta,
$$

$$
D(x,0) = D_0(x) \quad \text{and} \quad \frac{\partial D(x,0)}{\partial t} = D_0(x). \tag{2}
$$

The initial conditions are:
\n
$$
D(x, 0) = D_0(x)
$$
 and
$$
\frac{\partial D(x, 0)}{\partial t} = D_0(x).
$$
\n(2)
\nThe relevant boundary conditions are:
\nSimplify supported-beam:
\n
$$
D(x,t) = \frac{\partial^2 D(x,t)}{\partial x^2} = 0, \text{ at } x = 0, l.
$$
\n(3)
\nClamped-clamped:
\n
$$
D(x,t) = \frac{\partial D(x,t)}{\partial x} = 0, \text{ at } x = 0, l.
$$
\n(4)
\nFor natural vibration, $F(x,t) = 0$ and the form of ensure response is
\n
$$
D(x,t) = Y(x)e^{i\alpha t}
$$
\n(5)
\nwhere $Y(x)$ is the amplitude of vibration of the beam ω is the angular frequency.
\nSubstituting equation (5) into equation (1) gives

Clamped-clamped:

$$
D(x,t) = \frac{\partial D(x,t)}{\partial x} = 0, \text{ at } x = 0, l. \tag{4}
$$

$$
D(x,t) = Y(x)e^{i\omega t} \tag{5}
$$

Ob the *et al*. **IDENTIFY** JOURNAL OF SCIENCE
\n
$$
\frac{d^2}{dx^2} \left[E(x)I(x) \frac{d^2Y(x)}{dx^2} \right] - \rho(x)A(x)\omega^2 Y(x) - \frac{d}{dx} \left[N(x) \frac{dY(x)}{dx} \right]
$$
\n
$$
+ \frac{d}{dx} \left[\rho(x)I(x)\omega^2 \frac{dY(x)}{dx} \right] + K(x)Y(x) = 0, \quad x \in (0, l).
$$
\n(6)

\nIn Winkler modeling, the elastic foundation is represented by a set of linear springs and is assumed to vary linearly, parabolically or even constantly throughout the length of the beam Kacar *et al*. (2011). The variation of elastic coefficient of Winkler foundation is given below:

\nConstant:

\n
$$
k(x) = k_0,
$$
\nLinear:

\n(7)

 $+\frac{d}{dx}\left[\rho(x)I(x)\omega^3 \frac{dY(x)}{dx}\right] + K(x)Y(x) = 0, \quad x \in (0,1).$ (6)

In Winkler modeling, the clastic foundation is represented by a set of linear springs and is

assumed to vary linearly, parabolically or even constantly throughou In Winkler modeling, the elastic foundation is represented by a set of linear springs and is
assumed to vary linearly, parabolically or even constantly throughout the length of the beam
Kacar et al. (2011). The variation

Constant:

$$
k(x) = k_0,\tag{7}
$$

Linear:

$$
k(x) = k_0(1 - \mu x), \qquad 0 \le \mu \le 1.
$$
 (8)

Parabolic:

$$
k(x) = k_0(1 - \beta x^2), \qquad 0 \le \beta \le 1.
$$
 (9)

follows:

$$
Y(x) = \frac{d^2 Y(x)}{dx^2} = 0, \text{ at } x = 0, l. \tag{10}
$$

Clamped-clamped:

$$
Y(x) = \frac{dY(x)}{dx} = 0, \text{ at } x = 0, l. \tag{11}
$$

Ob the *et al.*

\nIDENT JOLRNAL OF SCIENCE

\nThe following dimensionless parameters are used:

\n
$$
\xi = \frac{x}{l}, \qquad \lambda^2 = \frac{\rho(0)A(0)e^{2}l^4}{E(0)I(0)},
$$
\n
$$
y(\xi) = \frac{F(x)}{l}, \qquad \psi_K = \frac{\hbar(\xi)}{c(\xi)}\Big|_{\xi=1},
$$
\n
$$
c(\xi) = \frac{E(x)I(x)}{E(0)I(0)}, \qquad \alpha = \frac{\rho(0)A(0)\Omega^{2}l^4}{E(0)I(0)},
$$
\n
$$
n(\xi) = -\frac{N(x)I(x)}{E(0)I(0)}, \qquad k(\xi) = \frac{K(x)I^2}{E(0)I(0)},
$$
\n
$$
b(\xi) = \frac{\rho(x)A(x)}{\rho(0)A(0)}, \qquad r_K = \frac{c'(\xi)}{c(\xi)}\Big|_{\xi=1},
$$
\n
$$
h(\xi) = \frac{\rho(x)I(x)}{\rho(0)I(0)}, \qquad \eta_K = \frac{N(I)l^2}{E(I)I(I)},
$$
\n
$$
n \text{ and }
$$
\n
$$
y = \frac{1}{I}\sqrt{\frac{I(0)}{A(0)}}.
$$
\nIn view of equation (12), the governing differential equation (6) and the boundary conditions given in equations (10) and (11) are written in the following dimensionless forms:

\n
$$
c(\xi)\frac{d^4y(\xi)}{d\xi^4} + 2\frac{dc(\xi)}{d\xi^3} \frac{d^3y(\xi)}{d\xi^2} + \frac{d^2c(\xi)}{d\xi^2} \frac{d^2y(\xi)}{d\xi^2} + n(\xi)\frac{d^2y(\xi)}{d\xi^2} + \frac{dn(\xi)}{d\xi} \frac{dy(\xi)}{d\xi}
$$

$$
\gamma = \frac{1}{l} \sqrt{\frac{l(0)}{4(0)}}.
$$

\nIn view of equation (12), the governing differential equation (6) and the boundary conditions
\ngiven in equations (10) and (11) are written in the following dimensionless forms:
\n
$$
c(\xi) \frac{d^4 y(\xi)}{d\xi^4} + 2 \frac{dc(\xi)}{d\xi} \cdot \frac{d^3 y(\xi)}{d\xi^2} + \frac{d^2 c(\xi)}{d\xi^2} \cdot \frac{d^3 y(\xi)}{d\xi^2} + n(\xi) \frac{d^3 y(\xi)}{d\xi^2} + \frac{dn(\xi)}{d\xi} \cdot \frac{dy(\xi)}{d\xi}
$$
\n
$$
+ \Lambda^2 \gamma^2 \left[h(\xi) \frac{d^2 y(\xi)}{d\xi^2} + \frac{dh(\xi)}{d\xi} \cdot \frac{dy(\xi)}{d\xi} \right] + \left[k(\xi) - \Lambda^2 b(\xi) \right] y(\xi) = 0,
$$
\n(13)
\nSimplify supported:
\n
$$
y(\xi) = \frac{d^2 y(\xi)}{d\xi^2} = 0, \text{ at } \xi = 0, 1
$$
\n(14)
\nClamped-clamped:
\n
$$
y(\xi) = \frac{d y(\xi)}{d\xi} = 0, \text{ at } \xi = 0, 1
$$
\n(15)
\nThe dimensionless variation of elastic coefficient of Winkler foundation are given as follows:
\nConstant: $k(\xi) = k_0$, (16)

$$
y(\xi) = \frac{d^2 y(\xi)}{d\xi^2} = 0
$$
, at $\xi = 0, 1$
(14)

Clamped-clamped:

$$
y(\xi) = \frac{dy(\xi)}{d\xi} = 0, \quad at \quad \xi = 0, 1
$$
 (15)

$$
Constant: \qquad k(\xi) = k_0,\tag{16}
$$

Ob the *et al*.

\nLinear:
$$
k(\xi) = k_0 (1 - \mu \xi)
$$

\nDenote the *L*(*t*) = *L*(1 - *l* \xi²)

\n(17)

Parabolic:
$$
k(\xi) = k_0(1 - \beta \xi^2)
$$
 (18)

Olotu *et al.*

Linear: $k(\xi) = k_0(1 - \mu\xi)$ (17)

Parabolic: $k(\xi) = k_0(1 - \beta\xi^2)$ (18)

where k_0, β and μ are constant values. Thus we have three cases.
 Case 1: For constant elastic coefficient of Winkler foundat Colotu *et al.* ILORIN JOURNAL OF SCIENCE

Linear: $k(\xi) = k_0(1 - \mu\xi)$ (17)

Parabolic: $k(\xi) = k_0(1 - \beta\xi^2)$ (18)

where k_0, β and μ are constant values. Thus we have three cases.
 Case 1: For constant elastic coef

Ob the *et al*.

\nIDENTi JOLRNAL OF SCIENCE

\nLinear:

\n
$$
k(\xi) = k_0(1 - \mu\xi)
$$
\nParabolic:

\n
$$
k(\xi) = k_0(1 - \beta\xi^2)
$$
\n(18)

\nwhere *k_0*, *β* and *µ* are constant values. Thus we have three cases.

\n**Case 1:** For constant elastic coefficient of Winkler foundation, defining *λ* = *Λ*², equation (16)

\nis substituted into equation (13) and the differential equation takes the form

\n
$$
c(\xi) \frac{d^4y(\xi)}{d\xi^4} + 2 \frac{dc(\xi)}{d\xi} \cdot \frac{d^3y(\xi)}{d\xi^3} + \frac{d^2c(\xi)}{d\xi^2} \cdot \frac{d^3y(\xi)}{d\xi^2} + n(\xi) \frac{d^3y(\xi)}{d\xi^2} + \frac{dn(\xi)}{d\xi} \cdot \frac{dy(\xi)}{d\xi}
$$
\n+

\n+

\n
$$
+ \gamma^2 \lambda \left[h(\xi) \frac{d^2y(\xi)}{d\xi^2} + \frac{dh(\xi)}{d\xi} \cdot \frac{dy(\xi)}{d\xi} \right] + [k_0 - \lambda b(\xi)]y(\xi) = 0,
$$
\n**Case 2:** For linear elastic coefficient of Winkler foundation, setting *λ* = *Λ*², equation (17) is substituted into equation (13) and the resulting differential equation is

\n
$$
c(\xi) \frac{d^4y(\xi)}{d\xi^4} + 2 \frac{dc(\xi)}{d\xi} \cdot \frac{d^3y(\xi)}{d\xi^2} + \frac{d^2c(\xi)}{d\xi^2} \cdot \frac{d^3y(\xi)}{d\xi^2} + n(\xi) \frac{d^2y(\xi)}{d\xi^2} + \frac{dn(\xi)}{d\xi} \cdot \frac{dy(\xi)}{d\xi}
$$

$$
c(\xi) \frac{d^4 y(\xi)}{d\xi^4} + 2 \frac{dc(\xi)}{d\xi} \cdot \frac{d^3 y(\xi)}{d\xi^3} + \frac{d^2 c(\xi)}{d\xi^2} \cdot \frac{d^2 y(\xi)}{d\xi^2} + n(\xi) \frac{d^2 y(\xi)}{d\xi^2} + \frac{dn(\xi)}{d\xi} \cdot \frac{dy(\xi)}{d\xi}
$$
\n
$$
+ \gamma^2 \lambda \left[h(\xi) \frac{d^2 y(\xi)}{d\xi^2} + \frac{dh(\xi)}{d\xi} \cdot \frac{dy(\xi)}{d\xi} \right] + [k_0 - \lambda b(\xi)]y(\xi) = 0,
$$
\n**Case 2:** For linear elastic coefficient of Winkler foundation, setting $\lambda = \Lambda^2$, equation (17) is substituted into equation (13) and the resulting differential equation is\n
$$
c(\xi) \frac{d^4 y(\xi)}{d\xi^4} + 2 \frac{dc(\xi)}{d\xi} \cdot \frac{d^3 y(\xi)}{d\xi^3} + \frac{d^2 c(\xi)}{d\xi^2} \cdot \frac{d^2 y(\xi)}{d\xi^2} + n(\xi) \frac{d^2 y(\xi)}{d\xi^2} + \frac{dn(\xi)}{d\xi} \cdot \frac{dy(\xi)}{d\xi}
$$
\n
$$
+ \gamma^2 \lambda \left[h(\xi) \frac{d^2 y(\xi)}{d\xi^2} + \frac{dh(\xi)}{d\xi} \cdot \frac{dy(\xi)}{d\xi} \right] + k_0 y(\xi) - k_0 \mu \xi y(\xi) - \lambda b(\xi) y(\xi) = 0,
$$
\n**Case 3:** For parabolic variation, setting $\lambda = \Lambda^2$, equation (18) is substituted into equation (13)\nand the differential equation takes the form\n
$$
c(\xi) \frac{d^4 y(\xi)}{d\xi^4} + 2 \frac{dc(\xi)}{d\xi} \cdot \frac{d^3 y(\xi)}{d\xi^3} + \frac{d^2 c(\xi)}{d\xi^2} \cdot \frac{d^2 y(\xi)}{d\xi^2} + n(\xi) \frac{d^2 y(\xi)}{d\xi^2} + \frac{dn(\xi)}{d\xi} \cdot \frac{dy(\xi)}{d\xi}
$$

$$
c(\xi) \frac{d^4 y(\xi)}{d\xi^4} + 2 \frac{dc(\xi)}{d\xi^3} \cdot \frac{d^3 y(\xi)}{d\xi^3} + \frac{d^2 c(\xi)}{d\xi^2} \cdot \frac{d^3 y(\xi)}{d\xi^2} + n(\xi) \frac{d^2 y(\xi)}{d\xi^2} + \frac{dn(\xi)}{d\xi} \cdot \frac{dy(\xi)}{d\xi}
$$

+ $y^2 \lambda \left[h(\xi) \frac{d^2 y(\xi)}{d\xi^2} + \frac{dh(\xi)}{d\xi} \cdot \frac{dy(\xi)}{d\xi} \right] + k_0 y(\xi) - k_0 \mu \xi y(\xi) - \lambda b(\xi) y(\xi) = 0,$ (20)
Case 3: For parabolic variation, setting $\lambda = \Lambda^2$, equation (18) is substituted into equation (13)
and the differential equation takes the form

$$
c(\xi) \frac{d^4 y(\xi)}{d\xi^4} + 2 \frac{dc(\xi)}{d\xi} \cdot \frac{d^3 y(\xi)}{d\xi^3} + \frac{d^2 c(\xi)}{d\xi^2} \cdot \frac{d^3 y(\xi)}{d\xi^2} + n(\xi) \frac{d^2 y(\xi)}{d\xi^2} + \frac{dn(\xi)}{d\xi} \cdot \frac{dy(\xi)}{d\xi}
$$

$$
+y^2 \lambda \left[h(\xi) \frac{d^2 y(\xi)}{d\xi^2} + \frac{dh(\xi)}{d\xi} \cdot \frac{dy(\xi)}{d\xi} \right] + k_0 y(\xi) - k_0 \beta \xi^2 y(\xi) - \lambda b(\xi) y(\xi) = 0,
$$
 (21)
Hence, the three governing differential equations considered in this paper are those in equations (19) to (21).
Hence, the three governing differential equations considered in this paper are those in equations (19) to (21).
2.2 Method of Solution
The DTM is a transformation method based on the Taylor series expansion and is useful to obtain analytical solutions of differential equations. This method was proposed by Zhou
(1986) for solving both linear and nonlinear initial value problems of electrical circuits. In

Olotu *et al.* ILORIN JOURNAL OF SCIENCE
this technique, certain transformation rules are applied to the governing differential equations
and the boundary conditions of the system are transformed into a set of algebraic eq Olotu *et al.* ILORIN JOURNAL OF SCIENCE
this technique, certain transformation rules are applied to the governing differential equations
and the boundary conditions of the system are transformed into a set of algebraic eq Dotu *et al.* ILORIN JOURNAL OF SCIENCE
this technique, certain transformation rules are applied to the governing differential equations
and the boundary conditions of the system are transformed into a set of algebraic equ The solution of these algebraic equations rules are applied to the governing differential equations
and the boundary conditions of the system are transformed into a set of algebraic equations.
The solution of these algebra method gives an analytic solution in the form of a polynomial of a polynomial equations and the boundary conditions of the system are transformed into a set of algebraic equations.
The solution of these algebraic equations CORIN JOURNAL OF SCIENCE
this technique, certain transformation rules are applied to the governing differential equations
and the boundary conditions of the system are transformed into a set of algebraic equations.
The so Basic definitions and operations of differential transform of a function of differential equations and the boundary conditions of the system are transformed into a set of algebraic equations.
The solution of these algebra FURN JOURNAL OF SCIENCE

this technique, certain transformation rules are applied to the governing differential equations

and the boundary conditions of the system are transformed into a set of algebraic equations.

The Colotu *et al.* ILORIN JOURNAL OF SCIENCE
this technique, certain transformation rules are applied to the governing differential equations
and the boundary conditions of the system are transformed into a set of algebraic this technique, certain transformation rules are applied to the governing differential equations
and the boundary conditions of the system are transformed into a set of algebraic equations.
The solution of these algebraic ETHE solution of these algebraic equations gives the desired solution of the problem. This
The solution of these algebraic equations gives the desired solution of the problem. This
method gives an analytic solution in the

$$
\overline{Q}(k) = \frac{1}{k!} \left[\frac{d^k q(t)}{dt^k} \right]_{t=0} . \tag{22}
$$

$$
q(t) = \sum_{k=0}^{\infty} \overline{Q}(k)t^k.
$$
 (23)

Basic definitions and operations of differential transform method are introduced as follows:
\nA function
$$
q(t)
$$
, analytical in domain *D*, can be represented by a power series around any
\narbitrary point in this domain. The differential transform of a function $q(t)$ is defined as:
\n
$$
\overline{Q}(k) = \frac{1}{k!} \left[\frac{d^k q(t)}{dt^k} \right]_{t=0}.
$$
\n(22)
\nIn equation (22), $q(t)$ is the original function and $\overline{Q}(k)$ is the transformed function.
\nThe inverse differential transform of $\overline{Q}(k)$ is defined as
\n
$$
q(t) = \sum_{k=0}^{\infty} \overline{Q}(k)t^k.
$$
\n(23)
\nCombining equations (22) and (23), this gives
\n
$$
q(t) = \sum_{k=0}^{\infty} \frac{t^k}{k!} \left[\frac{d^k q(t)}{dt^k} \right]_{t=0}.
$$
\n(24)

 $\overline{Q}(k) = \frac{1}{k!} \left[\frac{d^k q(t)}{dt^k} \right]_{t=0}$. (22)

In equation (22), $q(t)$ is the original function and $\overline{Q}(k)$ is the transformed function.

The inverse differential transform of $\overline{Q}(k)$ is defined as
 $q(t) = \sum_{k=0$ $\overline{Q}(k) = \frac{1}{k!} \left[\frac{d^k q(t)}{dt^k} \right]_{t=0}$. (22)

In equation (22), $q(t)$ is the original function and $\overline{Q}(k)$ is the transformed function.

The inverse differential transform of $\overline{Q}(k)$ is defined as
 $q(t) = \sum_{k=0$ **EVALUATE ACCONTERT ACCOLLUBE ACCOLLUBE ACCOLLUBE ACCOLLUBE ACCORDIBATION**
 EVALUATE: The inverse differential transform of $\overline{Q}(k)$ is defined as
 $q(t) = \sum_{k=0}^{\infty} \overline{Q}(k)t^k$. (23)
 Combining equations (22) and (23 $q(t) = \sum_{k=0}^{\infty} \overline{Q}(k)t^k$.

Combining equations (22) and (23), this gives
 $q(t) = \sum_{k=0}^{\infty} \frac{t^k}{k!} \left[\frac{d^k q(t)}{dt^k} \right]_{t=0}$,

which is the Taylor series of $q(t)$ at $t=0$. Equation (24) implies that the

different given $q(t) = \sum_{k=0}^{\infty} \frac{t^k}{k!} \left[\frac{d^k q(t)}{dt^k} \right]_{t=0}^{\infty}$,
which is the Taylor series of $q(t)$ at $t=0$. Equation (24) implies that the
differential transformation is derived from the Taylor series expansion.
appli $q(t) = \sum_{t=0}^{\infty} \frac{1}{Rt} \left[\frac{1}{2t} \frac{q(t)}{dt} \right]_{t=0}^{t}$, (24)

which is the Taylor series of $q(t)$ at $t=0$. Equation (24) implies that the concept of

differential transformation is derived from the Taylor series expan which is the Taylor series of $q(t)$ at $t = 0$. Equation (24) implies that the concept of
differential transformation is derived from the Taylor series expansion. In practical
applications, the function $q(t)$ is expressed

$$
q(t) = \sum_{k=0}^{m} \overline{Q}(k)t^{k},\tag{25}
$$

$$
q(t) = \sum_{k=m+1}^{\infty} \overline{Q}(k)t^k
$$
 (26)

Olotu et al.			ILORIN JOURNAL OF SCIENCE
	Table 1: The Fundamental Operations for Differential Transform Method.		
Original Function			Transformed Function
$t(x) = u(x) \pm v(x)$			$\overline{T}(k) = \overline{U}(k) \pm \overline{V}(k)$
$t(x) = \lambda u(x)$			$T(k) = \lambda U(k)$, λ is a constant
$t(x) = x^r$			$\overline{T}(k) = \delta(k-r) = \begin{cases} 1 \text{ if } k = r \\ 0 \text{ if } k \neq r \end{cases}$
$t(x) = \frac{du(x)}{dx}$			$T(k) = (k+1)U(k+1)$
$t(x) = \frac{d^{r} u(x)}{dx^{r}}$			$\overline{T}(k) = (k+1)(k+2)\cdots(k+r)\overline{U}(k+r)$
$t(x) = u(x)v(x)$			$\overline{T}(k) = \sum_{r=0}^{k} \overline{U}(r)\overline{V}(k-r) = \sum_{r=0}^{k} \overline{U}(k-r)\overline{V}(r)$
$t(x) = u(x) \frac{dv(x)}{dx}$ $t(x) = u(x) \frac{d^2v(x)}{dx^2}$			$\overline{T}(k) = \sum_{r=0}^{k} \overline{U}(r)(k-r+1)\overline{V}(k-r+1)$ $\overline{T}(k) = \sum_{r=0}^{k} \overline{U}(r)(k-r+1)(k-r+2)\overline{V}(k-r+2)$
	Table 2: Theorems of differential transform method for boundary conditions.		
Original B.C	$x=0$ Transformed B.C	Original B.C	$x=1$ Transformed B.C
$y(0) = 0$	$Y(0) = 0$	$y(1) = 0$	$\sum_{k=0}^{8} Y(k) = 0$
$\frac{dy(0)}{y(0)} = 0$	$Y(1) = 0$	$\frac{dy(1)}{y(1)} = 0$	$\sum kY(k) = 0$

Olotu *et al.* ILORIN JOURNAL OF SCIENCE
Taking the differential transform of equations (19) to (21), the following recursive algebraic
equations were obtained for constant, linear and parabolic variations respectively: Olotu *et al.* ILORIN JOURNAL OF SCIENCE
Taking the differential transform of equations (19) to (21), the following recursive algebraic
equations were obtained for constant, linear and parabolic variations respectively:

Ob the *et al.*

\nIDENTIFY of equations (19) to (21), the following recursive algebraic equations were obtained for constant, linear and parabolic variations respectively:

\n
$$
\sum_{r=0}^{k} \overline{C}(k-r)(r+1)(r+2)(r+3)(r+4)\overline{Y}(r+4) + 2\sum_{r=0}^{k} (k-r+1)\overline{C}(k-r+1)(r+1)(r+2)
$$
\n
$$
\times (r+3)\overline{Y}(r+3) + \sum_{r=0}^{k} (k-r+1)(k-r+2)\overline{C}(k-r+2)(r+1)(r+2)\overline{Y}(r+2)
$$
\n
$$
+ \sum_{r=0}^{k} \overline{N}(k-r)(r+1)(r+2)\overline{Y}(r+2) + \sum_{r=0}^{k} (k-r+1)\overline{N}(k-r+1)(r+1)\overline{Y}(r+1)
$$
\n
$$
+ \lambda r^{2} \sum_{r=0}^{k} \overline{H}(k-r)(r+1)(r+2)\overline{Y}(r+2) + \lambda r^{2} \sum_{r=0}^{k} (k-r+1)\overline{H}(k-r+1)(r+1)\overline{Y}(r+1)
$$
\n
$$
+ k_{0}\overline{Y}(k) = \sum_{r=0}^{k} \lambda \overline{B}(k-r)\overline{Y}(r),
$$
\n(27)

\n28.22

(27)

$$
\sum_{r=0}^{k} \overline{C}(k-r)(r+1)(r+2)(r+3)(r+4)\overline{Y}(r+4) + 2\sum_{r=0}^{k} (k-r+1)\overline{C}(k-r+1)(r+1)(r+2)
$$

\n
$$
\times (r+3)\overline{Y}(r+3) + \sum_{r=0}^{k} (k-r+1)(k-r+2)\overline{C}(k-r+2)(r+1)(r+2)\overline{Y}(r+2)
$$

\n
$$
+ \sum_{r=0}^{k} \overline{N}(k-r)(r+1)(r+2)\overline{Y}(r+2) + \sum_{r=0}^{k} (k-r+1)\overline{N}(k-r+1)(r+1)\overline{Y}(r+1)
$$

\n
$$
+ \lambda \gamma^{2} \sum_{r=0}^{k} \overline{H}(k-r)(r+1)(r+2)\overline{Y}(r+2) + \lambda \gamma^{2} \sum_{r=0}^{k} (k-r+1)\overline{H}(k-r+1)(r+1)\overline{Y}(r+1)
$$

\n
$$
+ k_{0}\overline{Y}(k) - \sum_{r=0}^{k} k_{0} \mu \delta(k-r-1)\overline{Y}(r) = \sum_{r=0}^{k} \lambda \overline{B}(k-r)\overline{Y}(r),
$$
 (28)

$$
\sum_{r=0}^{k} \overline{C}(k-r)(r+1)(r+2)(r+3)(r+4)\overline{Y}(r+4) + 2\sum_{r=0}^{k} (k-r+1)\overline{C}(k-r+1)(r+1)(r+2)
$$

$$
\times (r+3)\overline{Y}(r+3) + \sum_{r=0}^{k} (k-r+1)(k-r+2)\overline{C}(k-r+2)(r+1)(r+2)\overline{Y}(r+2)
$$

$$
+ \sum_{r=0}^{k} \overline{N}(k-r)(r+1)(r+2)\overline{Y}(r+2) + \sum_{r=0}^{k} (k-r+1)\overline{N}(k-r+1)(r+1)\overline{Y}(r+1)
$$

Ob the *et al*. **IDENTIFY** JOURNAL OF SCIENCE
\n
$$
+\lambda y^2 \sum_{r=0}^{k} \overline{H}(k-r)(r+1)(r+2)\overline{Y}(r+2) + \lambda y^2 \sum_{r=0}^{k} (k-r+1)\overline{H}(k-r+1)(r+1)\overline{Y}(r+1)
$$
\n
$$
-\sum_{r=0}^{k} k_0 \beta \delta(k-r-2)\overline{Y}(r) + k_0 \overline{Y}(k) = \sum_{r=0}^{k} \lambda \overline{B}(k-r)\overline{Y}(r),
$$
\n(29)
\nwhere $\overline{N}(k), \overline{B}(k), \overline{Y}(k), \overline{H}(k)$ and $\overline{C}(k)$ are the T-functions of $n(\xi), b(\xi), y(\xi), h(\xi)$ and
\n $c(\xi)$ respectively. Equations (27) - (29) are algebraic equations which were implemented in
\nMAPLE 18.
\nFor the numerical example demonstrated in this study, the free vibration of a non-uniform
\nsimply-supported and clamped-clamped beams are considered.
\nThe materials property of the beams are given as:
\n
$$
E(x)I(x) = E(0)I(0) \left(1 - e^{\frac{x}{I}}\right)^3
$$
\n(30)

where $\overline{N}(k)$, $\overline{B}(k)$, $\overline{P}(k)$, $\overline{B}(R)$ and $\overline{C}(k)$ are the T-functions of $n(\xi)$, $b(\xi)$, $y(\xi)$, $h(\xi)$ and $c(\xi)$ respectively. Equations (27) - (29) are algebraic equations which were implemented in MA

$$
E(x)I(x) = E(0)I(0)\left(1 - e^{\frac{x}{l}}\right)^3
$$
\n(30)

$$
\rho(x)A(x) = \rho(0)A(0)\left(1 - e^{\frac{x}{l}}\right)
$$
\n(31)

 $c(\xi)$ respectively. Equations (27) - (29) are algebraic equations which were implemented in

MAPLE 18.

For the numerical example demonstrated in this study, the free vibration of a non-uniform

simply-supported and clam For the numerical example demonstrated in this study, the free vibration of a non-uniform
simply-supported and clamped-clamped beams are considered.
The materials property of the beams are given as:
 $E(x)I(x) = E(0)I(0)\left(1 - e\$

$$
N(x) = \int_{x}^{1} \rho(\xi) A(\xi) \Omega^{2} \xi d\xi
$$
\n(32)

$$
= \rho(0) A(0) \Omega^2 l^2 \left[\frac{1}{2} - \frac{e}{3} - \frac{\xi^2}{2} + \frac{e\xi^3}{3} \right]
$$
(33)

Also,

$$
\rho(x)A(x) = \rho(0)A(0)\left(1 - e\frac{x}{l}\right)
$$
\n(31)
\nwhere $E(0), I(0), \rho(0), e$ and $A(0)$ are Young's modulus, moment of inertia, mass per unit
\nvolume, taper ratio and cross section area at $x = 0$ respectively.
\nThe distributed axial force is given by
\n
$$
N(x) = \int_{x}^{l} \rho(\xi)A(\xi)\Omega^{2}\xi d\xi
$$
\n
$$
= \rho(0)A(0)\Omega^{2}t^{2}\left[\frac{1}{2} - \frac{e}{3} - \frac{\xi^{2}}{2} + \frac{e\xi^{3}}{3}\right]
$$
\n(32)
\nAlso,
\n
$$
c(\xi) = (1 - e\xi)^{3}
$$
\n
$$
n(\xi) = -\alpha^{2}\left(\frac{1}{2} - \frac{e}{3} - \frac{\xi^{2}}{2} + \frac{e\xi^{3}}{3}\right)
$$
\n
$$
b(\xi) = (1 - e\xi)
$$
\n
$$
h(\xi) = (1 - e\xi)^{3}
$$
\nIn equation (27) to (29), the following terms were defined:
\n11

Obtute *tal*.

\nILORIN JOURNAL OF SCIENCE

\n
$$
\overline{C}(k) = \delta(k) - 3e\delta(k-1) + 3e^{2}\delta(k-2) - e^{3}\delta(k-3)
$$
\n
$$
\overline{N}(k) = -\left[\frac{1}{2}\delta(k) - \frac{e}{3}\delta(k) + \frac{1}{2}\delta(k-2 + \frac{e}{3}\delta(k-3)\right]\alpha^{2}
$$
\n(35)

\n
$$
\overline{B}(k) = \delta(k) - e\delta(k-1)
$$
\n
$$
\overline{H}(k) = \delta(k) - 3e\delta(k-1) + 3e^{2}\delta(k-2) - e^{3}\delta(k-3)
$$
\n**3. Result and Discussion**

\nTable 3: Effects of inverse of slenderness ratio (y), axial force (a) and constant elastic foundation (k₀) on dimensionless frequencies of a clamped beam

\n
$$
\alpha = 0
$$
\n
$$
\alpha = 0
$$
\n
$$
\alpha = 5
$$
\n
$$
\alpha = 10
$$
\n
$$
\alpha = \frac{10}{k_{0}}
$$
\n6

\n6

\n
$$
\alpha = 0
$$
\n
$$
\
$$

Olotu et al.								ILORIN JOURNAL OF SCIENCE		
				$\overline{C}(k) = \delta(k) - 3e\delta(k-1) + 3e^{2}\delta(k-2) - e^{3}\delta(k-3)$						
				$\overline{N}(k)=-\left[\frac{1}{2}\delta(k)-\frac{e}{3}\delta(k)+\frac{1}{2}\delta(k-2+\frac{e}{3}\delta(k-3)\right]\alpha^2$						(35)
		$\overline{B}(k) = \delta(k) - e\delta(k-1)$								
				$\overline{H}(k) = \delta(k) - 3e\delta(k-1) + 3e^{2}\delta(k-2) - e^{3}\delta(k-3)$						
	3. Result and Discussion									
				Table 3: Effects of inverse of slenderness ratio(γ), axial force (α) and constant elastic foundation (k_0) on						
				dimensionless frequencies of a clamped-clamped beam						
			$\alpha = 0$			$\alpha = 5$			$\alpha = 10$	
	Winkler		k_0			k_0			k_0	
γ	λ	$\mathbf{0}$	200	400	$\mathbf{0}$	200	400	$\bf{0}$	200	400
0.000	λ_1	16.3356	23.3035	28.6069	18.5105	24.8869	29.9208	23.6609	28.9440	33.3917
	λ_2 λ_3	44.9806 88.1381	47.9922 89.7193	50.8305 91.2741	48.1312 91.6159	50.9581 93.1378	53.6403 94.6362	56.3792 101.2626	58.8147 102.6398	61.1558 104.0051
0.010	λ_1	16.3294	23.2947	28.5960	18.5031	24.8772	29.9092	23.6509	28.9323	33.3785
	λ_2	44.9232	47.9309	50.7656	48.0695	50.8928	53.5717	56.3069	58.7394	61.0778
	λ_3	87.9017	89.4785	91.0294	91.3700	92.8879	94.3821	100.9913	102.3664	103.7233
0.013	λ_1	16.3246 44.8786	23.2878 47.8833	28.5875 50.7152	18.4981 48.0271	24.8706 50.8480	29.9012 53.5245	23.6431 56.2509	28.9233 58.6812	33.3683 61.0172
	λ_2 λ_3	87.7191	89.2928	90.8402	91.2012	92.7164	94.2080	100.7805	102.1522	103.5088
0.020	λ_1	16.3109	23.2681	28.5631	18.4810	24.8483	29.8746	23.6210	28.8975	33.3392
	λ_2	44.7521	47.7483	50.5721	47.8859	50.6986	53.3674	56.0918	58.5154	60.8453
	λ_{3}	87.2033	88.7679	90.3064	90.6441	92.1492	93.6324	100.1879	101.5518	102.8975
0.025	λ_1	16.2970	23.2482	28.5386	18.4645	24.8266	29.8487	23.5986	28.8714	33.3098
	λ_2 λ_{2}	44.6250 86.6905	47.6126 88.2455	50.4285 89.7749	47.7495 90.1101	50.5543 91.6068	53.2156 93.0808	55.9318 99.5991	58.3490 100.9539	60.6725 102.2940
				Table 4: Effects of inverse of slenderness ratio(γ), axial force (α) and linear elastic foundation (k_0)						
				on dimensionless frequencies of a clamped-clamped beam						
			$\alpha = 0$			$\mu = 0.2$ $\alpha=5$			$\alpha=10$	
			k_0			k_0			k_0	
γ	Winkler λ	$\bf{0}$	200	400	$\bf{0}$	200	400	$\bf{0}$	200	400
0.000	λ_1	16.3356	22.6425	27.5352	18.5105	24.2646	28.8895	23.6609	28.4019	32.4539
	λ_2	44.9806	47.6570	50.1927	48.1312	50.6421	53.0358	56.3792	58.5398	60.6243
	λ_3	88.1381	89.5379	90.9164	91.6159	92.9630	94.2915	101.2626	102.4823	103.6885
0.010	λ_1	16.3294	22.6339	27.5247	18.5031	24.2552	28.8784	23.6509	28.3904	32.4411
	λ_2	44.9232 87.9017	47.5962 89.2977	50.1286 90.6722	48.0695 91.3700	50.5773 92.7138	52.9680 94.0385	56.3069 100.9897	58.4649 102.2075	60.5469 103.4109
0.013	λ_3 λ_1	16.3246	22.6272	27.5165	18.4974	24.2478	28.8697	23.6431	28.3815	32.4312
	λ_2	44.8786	47.5490	50.0789	48.0217	50.5271	52.9154	56.2509	58.4068	60.4870
	λ_3	87.7191	89.1121	90.4840	91.1799	92.5207	93.8426	100.7811	101.9955	103.1948

	Olotu et al.							ILORIN JOURNAL OF SCIENCE		
								Table 5: Effects of inverse of slenderness ratio (y) , axial force (α) and parabolic elastic foundation (k_0) on		
					dimensionless frequencies of a clamped-clamped beam.					
			$\alpha = 0$			$\beta = 0.1$ $\alpha=5$			$\alpha=10$	
			k_0			k_0			k_0	
	Winkler									
γ 0.000	λ	$\mathbf{0}$ 16.3356	200 23.1109	400 28.2981	0 18.5105	200 24.7042	400 29.6211	$\bf{0}$ 23.6609	200 28.7821	400 33.1142
	λ_1 λ_2	44.9806	47.8813	50.6193	48.1312	50.8532	53.4397	56.3792	58.7228	60.9783
	λ_{3}	88.1381	89.6567	91.1505	91.6159	93.0778	94.5170	101.2621	102.5857	103.8940
0.010	λ_1	16.3294	23.1021	28.2873	18.5031	24.6946	29.6097	23.6509	28.7706	33.1011
	λ_2	44.9232	47.8201	50.5546	48.0695	50.7882	53.3713	56.3070	58.6478	60.9006
	λ_3	87.9017	89.4161	90.9063	91.3700	92.8275	94.2633	100.9900	102.3099	103.6132
0.013	λ_1 λ_2	16.3246 44.8786	23.0952 47.7727	28.2788 50.5045	18.4974 48.0217	24.6871 50.7378	29.6008 53.3183	23.6431 56.2509	28.7615 58.5895	33.0910 60.8401
	λ_3	87.7191	89.2305	90.7174	91.1798	92.6345	94.0677	100.7811	102.0998	103.4017
0.020	λ_1	16.3109	23.0757	28.2549	18.4810	24.6658	29.5755	23.6210	28.7359	33.0622
	λ_2	44.7521	47.6380	50.3620	47.8859	50.5944	53.1678	56.0918	58.4241	60.6686
0.025	λ_3 λ_1	87.2033 16.2970	88.7060 23.0561	90.1841 28.2307	90.6439 18.4645	92.0897 24.6443	93.5145 29.5499	100.1874 23.5986	101.4986 28.7099	102.7920 33.0330
	λ_2	44.6250	47.5026	50.2189	47.7495	50.4504	53.0166	55.9318	58.2577	60.4963
	λ_3	86.6905	88.1840	89.6533	90.1100	91.5472	92.9644	99.5994	100.9022	102.1886
					dimensionless frequencies of a simply-supported beam.			Table 6: Effects of inverse of slenderness ratio(γ), axial force (α) and constant elastic foundation(k_0) on		
			$\alpha = 0$			$\alpha = 5$			$\alpha = 10$	
	Winkler		k_0			k_0			k_0	
γ	λ	$\bf{0}$	200	400	$\bf{0}$	200	400	$\bf{0}$	200	400
0.000	λ_1	7.1215	17.9419	24.2970	10.3423	19.5114	25.5351	16.3263	23.3397	28.6578
	λ_2	28.9518	33.4930	37.5137	32.7157	36.7830	40.4632	41.9025	45.1425	48.1757
	λ_3	64.9788	67.1234	69.2053	68.9006	70.9236	72.8937	79.4419	81.1982	82.9198
0.010	λ_1 λ_2	7.1192 28.9194	17.9357 33.4558	24.2882 37.4723	10.3382 32.6783	19.5044 36.7413	25.5259 40.4176	16.3192 41.8535	23.3310 45.0901	28.6475 48.1202
	λ_3	64.8206	66.9601	69.0370	68.7320	70.7503	72.7158	79.2464	80.9989	82.7162
				24.2814	10.3350	19.4990	25.5189	16.3137	23.3241	28.6394
0.013	λ_1	7.1173	17.9309							

Table 5: Effects of inverse of slenderness ratio (y) , axial force (α) and parabolic elastic foundation (k_0) on
dimensionless frequencies of a clamped-clamped beam.
 $\alpha = 0$ $\beta = 0.1$
 $\alpha = 5$ $\alpha = 10$

	λ_2	44.9232	41.0201		40.UUYJ	30.7002	<i>JJ.JIIJ</i>	20.2070	20.0470	00.7000
	λ_{3}	87.9017	89.4161	90.9063	91.3700	92.8275	94.2633	100.9900	102.3099	103.6132
0.013	λ_1	16.3246	23.0952	28.2788	18.4974	24.6871	29.6008	23.6431	28.7615	33.0910
	λ_2	44.8786	47.7727	50.5045	48.0217	50.7378	53.3183	56.2509	58.5895	60.8401
	λ_3	87.7191	89.2305	90.7174	91.1798	92.6345	94.0677	100.7811	102.0998	103.4017
0.020	λ_1	16.3109	23.0757	28.2549	18.4810	24.6658	29.5755	23.6210	28.7359	33.0622
	λ_2	44.7521	47.6380	50.3620	47.8859	50.5944	53.1678	56.0918	58.4241	60.6686
	λ_3	87.2033	88.7060	90.1841	90.6439	92.0897	93.5145	100.1874	101.4986	102.7920
0.025	λ_1	16.2970	23.0561	28.2307	18.4645	24.6443	29.5499	23.5986	28.7099	33.0330
	λ_2	44.6250	47.5026	50.2189	47.7495	50.4504	53.0166	55.9318	58.2577	60.4963
	λ_3	86.6905	88.1840	89.6533	90.1100	91.5472	92.9644	99.5994	100.9022	102.1886
				dimensionless frequencies of a simply-supported beam.				Table 6: Effects of inverse of slenderness ratio(γ), axial force (α) and constant elastic foundation(k_0) on		
			$\alpha = 0$ k_0			$\alpha = 5$ k_0			$\alpha = 10$ k_0	
	Winkler λ	$\bf{0}$			$\bf{0}$			$\bf{0}$		
γ			200	400		200	400		200	400
0.000	λ_1	7.1215	17.9419	24.2970	10.3423	19.5114	25.5351	16.3263	23.3397	28.6578
	λ_2	28.9518	33.4930	37.5137	32.7157	36.7830	40.4632	41.9025	45.1425	48.1757
	λ_3	64.9788	67.1234	69.2053	68.9006	70.9236	72.8937	79.4419	81.1982	82.9198
0.010	λ_1	7.1192	17.9357	24.2882	10.3382	19.5044	25.5259	16.3192	23.3310	28.6475
	λ_2	28.9194	33.4558	37.4723	32.6783	36.7413	40.4176	41.8535	45.0901	48.1202
	λ_3	64.8206	66.9601	69.0370	68.7320	70.7503	72.7158	79.2464	80.9989	82.7162
0.013	λ_1	7.1173	17.9309	24.2814	10.3350	19.4990	25.5189	16.3137	23.3241	28.6394
	λ_2	28.8943	33.4269	37.4402	32.6493	36.7090	40.3823	41.8155	45.0495	48.0772
	λ_3	64.6983	66.8339	68.9070	68.6019	70.6164	72.5783	79.0953	80.8444	82.5589
0.020	λ_1	7.1121	17.9171	24.2619	10.3258	19.4837	25.4986	16.2981	23.3047	28.6164
	λ_2	28.8229	33.3446	37.3488	32.5669	36.6170	40.2819	41.7075	44.9340	47.9547
	λ_3	64.3527	66.4772	68.5396	68.2339	70.2380	72.1898	78.6682	80.4085	82.1141
0.025	λ_1	7.1068	17.9032	24.2423	10.3166	19.4682	25.4782	16.2823	23.2850	28.5932
	λ_2 λ_{3}	28.7510 64.0083	33.2621 66.1217	37.2570 68.1735	32.4840 67.8671	36.5246 69.8609	40.1810 71.8025	41.5989 78.2428	44.8180 79.9740	47.8317 81.6706

	Olotu et al.							ILORIN JOURNAL OF SCIENCE		
								Table 7: Effects of inverse of slenderness ratio(γ), axial force (α) and linear elastic foundation(k_0) on		
					dimensionless frequencies of a simply-supported beam.					
						$\mu = 0.1$				
			$\alpha = 0$			$\alpha = 5$			$\alpha = 10$	
	Winkler		k_0			k_{0}			k_0	
γ	λ	$\bf{0}$	200	400	$\bf{0}$	200	400	$\bf{0}$	200	400
0.000	λ_1 λ_2	7.1215 28.9518	17.1398 32.9865	23.1477 36.5887	10.3423 32.7157	18.7481 36.3280	24.3956 39.6197	16.3263 41.9025	22.6642 44.7762	27.5714 47.4802
	λ_{3}	64.9788	66.8742	68.7188	68.9006	70.6891	72.4347	79.4419	80.9955	82.5205
0.010	λ_1	7.1192								
			17.1340	23.1395	10.3382	18.7415	24.3872	16.3192	22.6556	27.5614
	λ_2	28.9194	32.9498	36.5480	32.6783	36.2867	39.5749	41.8535	44.7242	47.4254
0.013	λ_3 λ_1	64.8206 7.1173	66.7115 17.1295	68.5517 23.1333	68.7320 10.3350	70.5164 18.7364	72.2578 24.3806	79.2464 16.3137	80.7962 22.6490	82.3179 27.5537
	λ_2	28.8943	32.9212	36.5165	32.6493	36.2548	39.5402	41.8155	44.6839	47.3829
0.020	λ_{3}	64.6983 7.1121	66.5857 17.1166	68.4225 23.1154	68.6019 10.3258	70.3829 18.7217	72.1212 24.3617	79.0953 16.2981	80.6423 22.6300	82.1612 27.5317
	λ_1 λ_{2}	28.8229	32.8401	36.4269	32.5669	36.1638	39.4415	41.7075	44.5693	47.2620
	λ_3	64.3527	66.2302	68.0573	68.2339	70.0056	71.7348	78.6682	80.2075	81.7185
0.025	λ_1 λ_2	7.1068 28.7510	17.1035 32.7586	23.0974 36.3368	10.3166 32.4840	18.7069 36.0723	24.3426 39.3423	16.2823 41.5989	22.6108 44.4540	27.5094 47.1405
	λ_3	64.0083	65.8759	67.6935	67.8671	69.6296	71.3497	78.2428	79.7738	81.2770
								Table 8: Effects of inverse of slenderness ratio(γ), axial force (α) and parabolic elastic foundation(k_0) on		
					dimensionless frequencies of a simply-supported beam.					
			$\alpha = 0$			$\beta = 0.1$ $\alpha = 5$			$\alpha = 10$	
			k_0			k_0			k_0	
γ	Winkler λ	$\bf{0}$	200	400	$\bf{0}$	200	400	$\bf{0}$	200	400
0.000	λ_1	7.1215	17.7133	23.9781	10.3423	19.2880	25.2092	16.3263	23.1332	28.3310
	λ_2 λ_3	28.9518 64.9788	33.3152	37.1874	32.7157 68.9006	36.6235	40.1661 72.7296	41.9025 79.4419	45.0139 81.1259	47.9308 82.7774
0.010	λ_1	7.1192	67.0343 17.7072	69.0310 23.9695	10.3382	70.8399 19.2811	25.2002	16.3192	23.1244	28.3208
	λ_2	28.9194	33.2781	37.1462	32.6783	36.5819	40.1209	41.8535	44.9616	47.8755
0.013	λ_3 λ_1	64.8206 7.1173	66.8712 17.7025	68.8632 23.9629	68.7320 10.3350	70.6668 19.2758	72.5521 25.1934	79.2464 16.3137	80.9266 23.1177	82.5742 28.3129

λ_1									
	7.1192	17.1340	23.1395	10.3382	18.7415	24.3872	16.3192	22.6556	27.5614
λ_2	28.9194	32.9498	36.5480	32.6783	36.2867	39.5749	41.8535	44.7242	47.4254
λ_{3}	64.8206	66.7115	68.5517	68.7320	70.5164	72.2578	79.2464	80.7962	82.3179
λ_1	7.1173	17.1295	23.1333	10.3350	18.7364	24.3806	16.3137	22.6490	27.5537
λ_2	28.8943	32.9212	36.5165	32.6493	36.2548	39.5402	41.8155	44.6839	47.3829
λ_{3}	64.6983	66.5857	68.4225	68.6019	70.3829	72.1212	79.0953	80.6423	82.1612
λ_1	7.1121	17.1166	23.1154	10.3258	18.7217	24.3617	16.2981	22.6300	27.5317
λ_2	28.8229		36.4269	32.5669	36.1638				47.2620
λ_3	64.3527	66.2302	68.0573	68.2339	70.0056	71.7348	78.6682	80.2075	81.7185
λ_1	7.1068	17.1035	23.0974	10.3166	18.7069	24.3426	16.2823	22.6108	27.5094
λ_2	28.7510	32.7586	36.3368	32.4840	36.0723	39.3423	41.5989	44.4540	47.1405
λ_{3}	64.0083	65.8759	67.6935	67.8671	69.6296	71.3497	78.2428	79.7738	81.2770
		$\alpha = 0$			$\beta = 0.1$ $\alpha=5$			$\alpha=10$	
Winkler		k_0			k_0			k_0	
λ	$\bf{0}$	200	400	$\bf{0}$	200	400	$\bf{0}$	200	400
	7.1215	17.7133	23.9781	10.3423	19.2880	25.2092	16.3263	23.1332	28.3310
λ_1	28.9518	33.3152	37.1874	32.7157			41.9025		
λ_2					36.6235	40.1661		45.0139	47.9308 82.7774
λ_3	64.9788	67.0343	69.0310	68.9006	70.8399	72.7296	79.4419	81.1259	
λ_1	7.1192	17.7072	23.9695	10.3382	19.2811	25.2002	16.3192	23.1244	28.3208
λ_2	28.9194	33.2781	37.1462	32.6783	36.5819	40.1209	41.8535	44.9616	47.8755
λ_3	64.8206	66.8712	68.8632	68.7320	70.6668	72.5521	79.2464	80.9266	82.5742
λ_1	7.1173	17.7025	23.9629	10.3350	19.2758	25.1934	16.3137	23.1177	28.3129
λ_2	28.8943	33.2493	37.1143	32.6493	36.5497	40.0857	41.8155	44.9211	47.8326
λ_3	64.6983	66.7451	68.7335	68.6019	70.5330	72.4149	79.0953	80.7726	82.4170
λ_1	7.1121	17.6890	23.9440	10.3258	19.2607	25.1736	16.2981	23.0984	28.2902
λ_2	28.8229	33.1674	37.0234	32.5669	36.4580	39.9859	41.7075	44.8059	47.7107
λ_{3}	64.3527	66.3889	68.3668	68.2339	70.1550	72.0271	78.6682	80.3369	81.9731
λ_1	7.1068	17.6754	23.9250	10.3166	19.2454	25.1537	16.2823	23.0789	28.2673
λ_2 λ_{3}	28.7510 64.0083	33.0852 66.0338	36.9322 68.0015	32.4840 67.8671	36.3659 69.7782	39.8855 71.6405	41.5989 78.2428	44.6901 79.9028	47.5881 81.5304
			32.8401				39.4415 dimensionless frequencies of a simply-supported beam.	41.7075	44.5693 Table 8: Effects of inverse of slenderness ratio(γ), axial force (α) and parabolic elastic foundation(k_0) on

Table 9: Convergence of first six dimensionless natural frequencies λ_1 to λ_6 of a clamped-clamped non-uniform
Rayleigh beam for the three variations of elastic coefficient.

Constant Linear Parabolic
 $\frac{1}{\sum_{i=1$

		Constant		Linear		Parabolic
	m	λ	${\bf m}$	λ	m	λ
	27	19.2374	$27\,$	19.1571	27	19.2135
	28	48.3578	$28\,$	48.3248	28	48.3469
	36	91.5231	38	91.5051	37	91.5167
	48	148.7163	66	148.6982	68	148.6962
	78	219.9693	70	219.6790	82	219.9817
	82	304.5719	86	300.8067	84	298.2291
Table 10: Convergence of first six dimensionless natural frequencies λ_1 to λ_6 of a simply-supported non-uniform Rayleigh beam for the three variations of elastic coefficient.		Constant		Linear		Parabolic
	m	λ	\mathbf{m}	λ	m	λ
	29	11.5910	29	11.4614	29	11.5520
	32	33.1061	32	33.0566	32	33.0888
	32	68.9361	33	68.9123	33	68.9277
	44	118.9426	37	118.9277	61	118.9375
	72	182.9416	64	182.9690	74	182.9584
	84	261.6563	84	260.4188	88	260.7044
constant elastic modulus: $k_0 = 1, e = 0$.						
Method				λ_1	λ_2	λ_3
Table 11: Comparison of the first three natural frequencies of a clamped-clamped Euler-Bernoulli beam for DTM[Present]				9.92014	39.4911	88.8321
		ADM [Coskun et al., 2014]		9.92014	39.4911	88.8321

constant elastic modulus: $k_0 = 1, e = 0$.

Table12: Comparison of the first three natural frequencies of a simply-supported Euler-Bernoulli beam for

constant elastic modulus: $k_0 = 1$, $e = 0$.
 Method
 Allen Constant of the first three natural frequencies of a constant elastic modulus: $k_0 = 1, e = 0$.

modulus.

modulus.

modulus.

modulus.

modulus.

modulus.

Rations Magninus

Expansion of the state of the state of the state of the state of the state

Tigure 7: The first six mode shapes of a simply-supported non-uniform Rayleigh beam for parabolic clastic

modulus.

Computer c Figure 7: The first six mode shapes of a simply-supported non-uniform Rayleigh beam for parabolic elastic
modulus.
Computer codes developed using MAPLE 18 were used to calculate the natural frequency
and corresponding mod Figure 7: The first six mode shapes of a simply-supported non-uniform Rayleigh heam for parabolic elastic modulus.

Computer codes developed using MAPLE 18 were used to calculate the natural frequency

and corresponding m Figure 7: The first six mode shapes of a simply-supported non-uniform Rayleigh beam for parabolic elastic modulus.

Computer codes developed using MAPLE 18 were used to calculate the natural frequency

and corresponding m **Figure 7:** The first six mode shapes of a simply-supported non-uniform Rayleigh beam for parabolic elastic modulus.

Computer codes developed using MAPLE 18 were used to calculate the natural frequency

and corresponding Figure 7: The first six mode shapes of a simply-supported non-uniform Rayleigh beam for parabolic elastic modulus.

Computer codes developed using MAPLE 18 were used to calculate the natural frequency

and corresponding m

Olotu *et al.* ILORIN JOURNAL OF SCIENCE
clamped-clamped and simply-supported non-uniform Rayleigh beam for the constant, linear
and parabolic elastic variations. It is noticed that the inverse of slenderness ratio (γ) Clotu *et al.* ILORIN JOURNAL OF SCIENCE
clamped-clamped and simply-supported non-uniform Rayleigh beam for the constant, linear
and parabolic elastic variations. It is noticed that the inverse of slenderness ratio (γ) Colotu *et al.* ILORIN JOURNAL OF SCIENCE
clamped-clamped and simply-supported non-uniform Rayleigh beam for the constant, linear
and parabolic elastic variations. It is noticed that the inverse of slenderness ratio (γ Colotu *et al.* ILORIN JOURNAL OF SCIENCE
clamped-clamped and simply-supported non-uniform Rayleigh beam for the constant, linear
and parabolic elastic variations. It is noticed that the inverse of slenderness ratio (γ Colotu *et al.* ILORIN JOURNAL OF SCIENCE

clamped-clamped and simply-supported non-uniform Rayleigh beam for the constant, linear

and parabolic elastic variations. It is noticed that the inverse of slenderness ratio ($\$ Colous *et al.* ILORIN JOURNAL OF SCIENCE

clamped-clamped and simply-supported non-uniform Rayleigh beam for the constant, linear

and parabolic elastic variations. It is noticed that the inverse of slenderness ratio ($\$ (IDRIN JOURNAL OF SCIENCE
clamped-clamped and simply-supported non-uniform Rayleigh beam for the constant, linear
and parabolic elastic variations. It is noticed that the inverse of slenderness ratio (γ) has a
reducing (ILORIN JOURNAL OF SCIENCE

clamped-clamped and simply-supported non-uniform Rayleigh beam for the constant, linear

and parabolic elastic variations. It is noticed that the inverse of slenderness ratio (γ) has a

redu (II) the value of the dimensionless natural frequencies obtained parabolic elastic variations. It is noticed that the inverse of slenderness ratio (γ) has a reducing effect on the dimensionless natural frequencies (λ) variation. Colotu *et al.* ILORIN JOURNAL OF SCIENCE
clamped-clamped and simply-supported non-uniform Rayleigh beam for the constant, linear
and parabolic clastic variations. It is noticed that the inverse of slenderness ratio (γ) clamped-clamped and simply-supported non-uniform Rayleigh beam for the constant, linear
and parabolic clastic variations. It is noticed that the inverse of slenderness ratio (γ) has a
reducing effect on the dimensionles clamped-clamped and simply-supported non-uniform Rayleigh beam for the constant, linear
and parabolic elastic variations. It is noticed that the inverse of slenderness ratio (γ) has a
reducing effect on the dimensionles and parabolic clastic variations. It is noticed that the inverse of slenderness ratio (γ) has a reducing effect on the dimensionless natural frequencies (λ) while the increase in axial force (α) leads to an increase reducing effect on the dimensionless natural frequencies (λ) while the increase in axial force (α) leads to an increase of the dimensionless natural frequencies. The Winkler elastic modulus (k_0) has an increasing

(α) leads to an increase of the dimensionless natural frequencies. The Winkler elastic modulus (k_0) has an increasing effect on the dimensionless natural frequencies. It is observed that constant clastic modulus of modulus (k_0) has an increasing effect on the dimensionless natural frequencies. It is observed
that constant elastic modulus of the Winkler foundation has a greater effect on the
dimensionless natural frequencies, follo that constant elastic modulus of the Winkler foundation has a g
dimensionless natural frequencies, followed by the parabolic elastic mo
the values of the dimensionless natural frequencies obtained are grea
variation.
To va dimensionless natural frequencies, followed by the parabolic clastic modulus. I his is because
the values of the dimensionless natural frequencies obtained are greater than that of linear
variation.
To validate the method the values of the dimensionless natural frequencies obtained are greater than that of linear
variation.
To validate the method used, a comparison is made using the Euler-Bernoulli beam by setting
the rotatory inertia term variation.
To validate the method used, a comparison is made using the Euler-Bernoulli beam by setting
the rotatory inertia term and the taper ratio in the governing equation of motion of a Rayleigh
beam resting on the Win

To validate the method used, a comparison is made using the Euler-Bernoulli beam by setting
the rotatory inertia term and the taper ratio in the governing equation of motion of a Rayleigh
beam resting on the Winkler founda the rotatory inertia term and the taper ratio in the governing equation of motion of a Rayleigh
bcam resting on the Winkler foundation to zero. In Tables 11 and 12, the DTM results for the
first three dimensionless natural beam resting on the Winkler foundation to zero. In Tables 11 and 12, the DTM results for the first three dimensionless natural frequencies by methods of a clamped-clamped and simply-supported uniform beams are compared wit first three dimensionless natural frequencies by methods of a clamped-clamped and simply-
supported uniform beams are compared with available results in the literature. It is noticed
that there is a close agreement between earthquake. **4. Conclusion**

Using DTM in this study, the closed-form series solutions of the free vibration problem of a

non-uniform Rayleigh beam resting on the Winkler elastic foundation were obtained. Three

cases were investigat DTM in this study, the closed-form series solutions of the free vibration problem of a
form Rayleigh beam resting on the Winkler elastic foundation were obtained. Three
rece investigated namely, vibration problem involvin DTM in this study, the closed-form series solutions of the free vibration problem of a
iform Rayleigh beam resting on the Winkler clastic foundation were obtained. Three
vere investigated namely, vibration problem involvin Example Train a study, the colored or the will be the traction production production production and the cases were investigated namely, vibration problem involving constant, linear and parabolic Winkler coefficient of elas form Rayleigh beam resting on the Winkler clastic foundation were obtained. Three
vere investigated namely, vibration problem involving constant, linear and parabolic
r coefficient of elastic foundations. The results obtai rere investigated namely, vibration problem involving constant, linear and parabolic
r coefficient of clastic foundations. The results obtained in this work may give
tion about the possible changes in vibration characteris

References

-
-
- Olotu *et al.* ILORIN JOURNAL OF SCIENCE
Chen, C. N. (2000): Vibration of prismatic beam on an elastic foundation by differential
quadrature element method. Computer and Structures. 77, 1 9.
Coskun. S. B., Ozturk. B. and
- Chen, C. N. (2000): Vibration of prismatic beam on an elastic foundation by differential
quadrature element method. Computer and Structures. 77, 1 9.
Coskun, S. B., Ozturk, B. and Mutman, U. (2014): *Adomian Decompositio* al. ILORIN JOURNAL OF SCIENCE
C. N. (2000): Vibration of prismatic beam on an elastic foundation by differential
quadrature element method. Computer and Structures. 77, 1 - 9.
I, S. B., Ozturk, B. and Mutman, U. (2014): *A* Coskun, C. N. (2000): Vibration of prismatic beam on an elastic foundation by differential
quadrature element method. Computer and Structures. 77, 1 - 9.
Coskun, S. B., Ozturk, B. and Mutman, U. (2014): *Adomian Decomposit* al. **ILORIN JOURNAL OF SCIENCE**
C. N. (2000): Vibration of prismatic beam on an elastic foundation by differential
quadrature element method. Computer and Structures. 77, 1 - 9.
I, S. B., Ozturk, B. and Mutman, U. (2014): ILORIN JOURNAL OF SCIENCE

2. N. (2000): Vibration of prismatic beam on an elastic foundation by differential

quadrature element method. Computer and Structures. 77, 1 - 9.

S. B., Ozturk, B. and Mutman, U. (2014): *Adomi* Chen, C. N. (2000): Vibration of prismatic beam on an elastic foundation by differential
quadrature element method. Computer and Structures. 77, 1 - 9.
Coskun, S. B., Ozturk, B. and Mutman, U. (2014): *Adomian Decompositio* al. ILORIN JOURNAL OF SCIENCE

C. N. (2000): Vibration of prismatic beam on an elastic foundation by differential

quadrature element method. Computer and Structures. 77, 1 - 9.

S. B., Ozturk, B. and Mutuman, U. (2014):
-
-
- Eisenberger, M. (2000): Vibration of prismatic beam on an elastic foundation by differential
Coskun, S. B., Ozturk, B. and Mutman, U. (2014): *Adomian Decomposition Method for*
Coskun, S. B., Ozturk, B. and Mutman, U. (201 al.

ILORIN JOURNAL OF SCIENCE

C. N. (2000): Vibration of prismatic beam on an elastic foundation by differential

quadrature element method. Computer and Structures. 77, 1 - 9.

I, S. B., Ozturk, B. and Mutman, U. (2014) ILORIN JOURNAL OF SCIENCE

Chen, C. N. (2000): Vibration of prismatic beam on an elastic foundation by differential

quadrature element method. Computer and Structures. 77, 1 - 9.

Coskun, S. B., Ozturk, B. and Mutman, U.
- al. ILORIN JOURNAL OF SCIENCE

2. N. (2000): Vibration of prismatic beam on an elastic foundation by differential

1uadrature element method. Computer and Structures. 77, 1 9.

S. B., Ozturk, B. and Mutman, U. (2014): al.

LORIN JOURNAL OF SCIENCE

C. N. (2000): Vibration of prismatic beam on an elastic foundation by differential

quadrature element method. Computer and Structures. 77, 1 - 9.

5. B., Ozturk, B. and Mutman, U. (2014): 1.0RIN JOURNAL OF SCIENCE

Chen, C. N. (2000): Vibration of prismatic beam on an elastic foundation by differential

quadrature element method. Computer and Structures. 77, 1 - 9.

Coskun, S. B., Ozturk, B. and Mutunan, U embedded in constant, linearly and the model in constant, and Shadran and Shadran and Shadran and Shadran Decomposition Method for S. S.B., Octurk, B. and Mutuma, U. (2014): *Adomian Decomposition Method for* Winclinear D al. TIORIN JOURNAL OF SCIENCE

C. N. (2000): Vibration of prismatic beam on an elastic foundation by differential

quadrature element method. Computer and Structures: 77, 1 - 9.

S. B., Ozturk, B. and Mutman, U. (2014): *A* al. **ILORIN JOURNAL OF SCIENCE**

C. N. (2000): Vibration of prismatic beam on an elastic foundation by differential

quadrature element method. Computer and Structures. 77, 1 - 9.

S. B., Ozturk, B. and Mutman, U. (2014): ULORIN JOURNAL OF SCIENCE

Chen, C. N. (2000): Vibration of prismatic beam on an elastic foundation by differential

quadrature element method. Computer and Structures. 77, 1 - 9.

Coskun, S. B., Ozturk, B. and Mutuma, U. C. N. (2000): Vibration of prismatic beam on an elastic foundation by differential
quadrature element method. Computer and Structures. 77, 1 - 9.

S. B., Ozturk, B. and Mutman, U. (2014): *Adomian Decomposition Method for* C. N. (2000): Vibration of prismatic beam on an elastic foundation by differential quadrature clement method. Computer and Structures: $77, 1$, 9.

5. B., Oztuk, B. and Mutman, U. (2014): *Adomian Decomposition Method for* enote, C. C. (2018): Free vibration and Structures T1, 1-9.
Coskun, R. B., Oxture, H. A. and Mutuan, U. (2014): *Adomian Decomposition Method for*
Fibration of Non-uniform Euler Beams on Elastic Foundation. Proceedings of 4. S. B., Ozturk, B. and Mutman, U. (2014): *Adomian Decomposition Method for Vibration of Non-uniform Euler Beams on Blastic Foundation. Proceedings of the 9th
<i>Metation of Non-uniform Euler Beams on Blastic Foundation FIF Denetally and Statematical Conference of Struction and Non-uniform Elder Beams on Eldstic Foundation.* Proceedings of the 9th International Conference on Structural Dynamics, Porto, Portugal.

International Confere Frementional Conference on Structural Dynamics, Porto, Portugal.

Elisenberger, M. (1994): Vibration frequencies for beams on variable one- and two-parameter

elistic foundations. Jounnal of Sound and Vibrations. 176(5), menomenon of solution fraction of solution of β mass move and two-parameter classic foundations. Journal of Sound and Vibrations 176(5), 577 - 584.

erger, M. and Clastsonik, J. (1987): Vibrations and buckling of a bea Lear We Finder Constant (Mangement Definite State State State State Conditions. Journal of Sound and Vibrations. 176(5), 577–584.

Whicher classic foundation. Journal of Sound and Vibrations. 176(5), 577–584.

Whicher clas Eisenberger, M. and Clastornik, J. (1987): Vibrations and buckling of a beam on a variable

Winker elastic foundation. *Journal of Sound and Yubrations*. **115**, 233 - 241.

We, C. C. (2018): Fourier Sine Transform Method Vinkler elastic foundation *Journal of Sound and Vibrations*. **115**, 233 - 241. (2018): Fourier Sine Transform Method for the Free Vibration of Euler-Bernoulli clearm Resting on Winkler Foundation. *International Journal*
-
-
-
-
- Ike, C. C. (2018): Fourier Sine Transform Method for the Free Vibration of Euler-Bernoulli

Beam Restring on Winkler Foundation. *International Journal of Darshan Institute of*

Jona, S. K. Caktraverty, S. and Tormaben, F Engineering Research and Emerging Technology. 7(1), 2018.

E. K., Chakravetty, S. and Tornahene, F. (2019): Dynamical behavior of nanobeam

embedded in constant, linear, parabolic, and sinusoidal types of Winkler elastic
 . K, Chakraverty, S. and Tornabone, F. (2019): Dynamical behavior of nanobear
formbedded in constant, linear, parabolic, and sinusoidal types of Winkler elastic
foundation using first-Order nonlocal strain gradient model, embedded in constant, linear, parabolic, and sinusoidal types of Winkler elastic foundation using first-Order nonlocal strain gradient model, *Materials Research Express.* 6(8), 1 - 23.
 Carperss. 6(8), 1 - 23.

condat foundation using first-Order nonlocal strain gradient model, *Materials Research*

Jiya, *M.* and Shaba, A. 1. (2018): Analysis of a uniform Bernoulli – Euler beam on Winkler

foundation subjected to harmonic moving load. Express. 6(8), 1 - 23. 2018): Analysis of a uniform Bernoulli – Euler beam on Winkler foundation subjected to harmonic moving load. Journal of Applied Science and Environmental Management. 22(3), 368-372.

A., Tan, H. T. and States. 1. (2018): Amaysis or a union estremoning mechanic metric evant on whister foundation subjected to harmonic moving load. Journal of Applied Science and Environmental Management. 22(3), 368-372.

Minchler elast CONIGATION Mathematic Discussion Solution and Solution analysis of beam resting Mandemental Management. 22(3), 368-372.

Kacar, A., Tan, H. T. and Kaya, M. O. (2011): Free vibration analysis of beams on variable

Unkler e A., Tan, H. T. and Kaya, M. O. (2011): Free vibration analysis of beams on variable Winkler clastic foundation by using the differential transform method. *Mathematical* Computation and *Applications*. 16(3), 773 - 783.
L Winkler clastic foundation by using the differential transform method. *Mathematical* Computation and Applications, 16(3), 773 - 783.

Liu, F., Nie, M. and Wang J. (2018): Nonlinear free vibration of a beam on Winkler fou Computation and Applications. 16(3), 773 - 783.

Ma, J. Liu, F., Nie, M. and Wang J. (2013): Nonlinear free vibration of soil mass motion of finite depth. *Nonlinear*

Dynamics. 92, 429 - 441.

Mutman, U. (2013): Free Vib Liu, F., Nie, M. and Wang J. (2018): Nonlinear free vibration of a beam on Winkler foundation with consideration of soil mass motion of finite depth. *Nonlinear* Dynamics. 92, 429 – 441. U. (2013): Free Vibration Analysis Dynamics. **92**, 429 – 441.

Mutman, U. (2013): Free Vibration Analysis of an Euler Beam of Variable Width on the

U. Coll Winkler Foundation Using Homotopy Perturbation Method. *Mathematical*

Problems in Engineering, Art n, U. (2013): Free Vibration Analysis of an Euler Beam of Variable Width on the Winkler Foundation Using Homotopy Perturbation Method. *Mathematical* Winkler Foundation Using Homotopy Perturbation Method. *Mathematical* Winkler Foundation Using Homotopy Perturbation Method. *Mathematical Problems in Engineering, Article ID 721294.*
 P. J. and Coskun, S. B. (2013): Free Vibration Analysis of Non-Uniform Euler-Bernoulli Beams on Elastic Problems in Engineering, Article ID 721294.

U. and Coskur, S. B. (2013): Free Vibration Analysis of Non-Uniform Euler-

U. and Coskur, S. B. (2013): Free Vibration via Homotopy Perturbation Method. *World*
 Acedemy of Mutman, U. and Coskun, S. B. (2013): Free Vibration Analysis of Non-Uniform Euler-

Hermoulli Beams on Elastic Foundation via Homotopy Perturbation Method. *Hordl*
 Academy of Science, Engineering and Technology Perturbat
-
-
-
- foundation with consideration of soil mass motion of finite depth
Dynamics. 92, 429 441.

U. (2013): Free Vibration Analysis of an Euler Beam of Variable Width, U. (2013): Free Vibration Analysis of an Euler Beam of Vari
-