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Abstract
This study examines the effect of variable Winkler foundation on the natural frequencies of a prestressed non-
uniform Rayleigh beam. In this work, the elastic coefficients of the foundations are assumed to vary along the
length direction of the beam. A semi-analytical approach known as Differential Transform Method (DTM) is
applied to the non-dimensional form of the governing equations of motion of the prestressed non-uniform
Rayleigh beam and a set of recursive algebraic equations are obtained. Evaluating these derived equations and
using some computer codes written and implemented in MAPLE 18, the non-dimensional frequencies and the
associated mode shapes of the beam are obtained. The effects of variable Winkler foundation variations and
axial force for various values of the slenderness ratio on the non-dimensional frequencies are investigated. The
clamped-clamped and simply supported boundary conditions are considered to illustrate the accuracy and
efficiency of this method. Finally, the results obtained are validated and are found to compare favorably well
with those in the open literature.

Keyword: Free vibration, natural frequency, Winkler foundation variations and differential transform method.

1. Introduction

The problem of analyzing the vibration behaviour of beams resting on elastic foundations has

a wide application in the analysis and design of the foundations of buildings, highways,

railways and a host of other geotechnical structures. In fact, it is an important aspect of

structural and geotechnical investigation. As a matter of fact, different beam theories namely

Euler-Bernoulli, Timoshenko, Shear and Rayleigh beam theories have been used by scholars

in carrying out the mathematical formulation of beam vibration problems. Amongst the

models of elastic foundations that have been used in the literature is the one-parameter model

known as the Winkler model (Eisenberger and Clastornik, 1987; Ike, 2018).
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Winkler foundation model, being the simplest of all the models, is the most widely used

model because of its simplicity and for convenience’s sake. The Winkler model assumes that

the subgrade/foundation reaction is directly proportional to the beam deflection at any point

on the foundation. In other words, the soil is modelled as uniformly distributed linear elastic

vertical springs, which tend to produce distributed reactions along the direction of the beam

(Mutman and Coskun, 2013; Tazabekova et al., 2018).

The vibration of Euler-Bernoulli beam resting on elastic foundation has been investigated by

quite a number of scholars. Eisenberger (1994) determined a general solution to vibrations of

beams resting on a variable Winkler elastic foundation. Balkaya et al. (2009) employed the

differential transform method to study the vibration analysis of beams resting on elastic

foundation. The homotopy perturbation method was used by Ozturk and Coskun (2011) to

analyze the vibration behaviour of beams on elastic foundation. Jiya and Shaba (2018)

established the Galerkin Finite element method in conjunction with Beta time integration

method to analyze a uniform Bernoulli-Euler beam subjected to a harmonic moving load on a

Winkler foundation. The analysis covered the effect of acceleration of load, velocity of load

and position of the load on the beam.

Ma et al. (2018) considered the effects of Winkler foundation mass, damping and stiffness on

the nonlinear damping response of beam based on the expression of subgrade reaction

obtained from the equation of motion of the Winkler foundation. The free vibration

characteristics for an Euler-Bernoulli beam resting on a Winkler elastic foundation have also

been studied by Tazabekova et al. (2018) using the He’s variational iteration method. Jena et

al. (2019) employed the differential quadrature method to study the nonlocal vibration of

nanobeam resting on various types of Winkler elastic foundations such as constant, linear,

parabolic, and sinusoidal types.

Oni and Awodola (2010) investigated the dynamic response under a concentrated moving

mass of an elastically supported non-prismatic Bernoulli-Euler beam resting on an elastic

foundation with stiffness variation. The technique used for the solution was based on the

Generalized Galerkin's method and the Struble's asymptotic technique. It was found that the

critical speed for the moving mass problem is reached earlier than that for the moving force

problem for the illustrative examples considered. Oni and Olomofe (2011) also used the

generalized Galerkin’s method coupled with Struble’s asymptotic technique, integral

transform method and the application of the Fresnel functions to study the vibration of a non-
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prismatic beam resting on elastic subgrade and under the actions of accelerating masses. The

dynamic behaviour of a finite uniform Rayleigh beam subjected to travelling distributed loads

was studied by Andi et al., (2014). It was shown that the response amplitude of the system

decreases as the foundation modulus and rotatory inertia correction factor increase. It was

also observed that the critical speed for the system traversed by a distributed force is greater

than the one traversed by a moving distributed mass for the same natural frequency.

This paper focused on the free vibration analysis of tapered beam resting on a Winkler elastic

foundation. The Rayleigh beam theory is used to model the beam and the Winkler model is

considered for the elastic foundation. The effect of rotatory inertia on the natural frequencies

and mode shapes of the beam is critically investigated using a semi-analytical method known

as differential transform method.

2. Materials and Methods

2.1 Problem Formulation and Methods

The governing equation of motion for a prestressed non-uniform Rayleigh beam of finite

length, resting on Winkler foundation as shown in figure 1 can be written as:

2 2 2

2 2 2

3

2

( , ) ( , ) ( , )
      ( ) ( ) ( ) ( ) ( )

( , )
( ) ( ) ( ) ( , ) = ( , ), (0, ), (1)                 

D x t D x t D x t
E x I x x A x N x

x x t x x

D x t
x I x K x D x t F x t x l

x x t





                
  

      

where ( , )D x t represents the dynamic response of the beam, ( )E x is the variable Young’s

modulus, ( )I x is the variable moment of inertia, ( ) ( )x A x is the variable mass per unit

length of the beam, ( )K x is the variable Winkler’s foundation stiffness. ( )N x and ( , )F x t

are arbitrary variable axial tensile and transverse excitation forces. If an axial end force 0N is

applied to the beam, then 0( ) =N x N . However, if the distributed axial forces ( )g x is applied

to the beam, then

( ) = ( ) ,
l

x
N x g d 

( )x is the variable density of the beam, ( )A x is the variable cross-section area of the beam,

x is the spatial length coordinate and t is the time.
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Figure 1: Model of non-uniform beam structure resting on Winkler foundation.

The initial conditions are:

0 0

( ,0)
( ,0) = ( )     and      = ( ).

D x
D x D x D x

t





(2)

The relevant boundary conditions are:

Simply supported-beam:

2

2

( , )
( , ) = 0,

D x t
D x t

x





at = 0, .x l (3)

Clamped-clamped:
( , )

( , ) = 0,
D x t

D x t
x





at = 0, .x l (4)

For natural vibration, ( , ) = 0F x t and the form of ensure response is

( , ) = ( ) i tD x t Y x e  (5)

where ( )Y x is the amplitude of vibration of the beam  is the angular frequency.

Substituting equation (5) into equation (1) gives
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2 2
2

2 2

( ) ( )
         ( ) ( ) ( ) ( ) ( ) ( )

d d Y x d dY x
E x I x x A x Y x N x

dx dx dx dx
 

         

2 ( )
( ) ( ) ( ) ( ) = 0, (0, ).                              

d dY x
x I x K x Y x x l

dx dx
      

(6)

In Winkler modeling, the elastic foundation is represented by a set of linear springs and is

assumed to vary linearly, parabolically or even constantly throughout the length of the beam

Kacar et al. (2011). The variation of elastic coefficient of Winkler foundation is given below:

Constant:

0( ) = ,k x k (7)

Linear:

0( ) = (1 ), 0 1.k x k x    (8)

Parabolic:

2
0( ) = (1 ), 0 1.k x k x    (9)

Also, using equation (5), the boundary conditions in equations (3) and (4) are expressed as
follows:

Simply supported-simply supported:

2

2

( )
( ) = 0,

d Y x
Y x

dx
 at = 0, .x l (10)

Clamped-clamped:

( )
( ) = 0,

dY x
Y x

dx
 at = 0, .x l (11)
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The following dimensionless parameters are used:

2 4
2

= 1

2 4

2 4

= 1

( 0 ) ( 0 )
= ,   = ,

( 0 ) ( 0 )

( ) ( )
( ) = ,  = ,

( )

( ) ( ) ( 0 ) ( 0 )
( ) = ,       = ,

( 0 ) ( 0 ) ( 0 ) ( 0 )

( ) ( )
( ) = ,  ( ) = ,     

( 0 ) ( 0 ) ( 0 ) ( 0 )

,( ) ( ) ( )
( ) = ,  = ,

( 0 ) ( 0 ) ( )

( ) =

K

K

x A l

l E I

Y x h
y

l c

E x I x A l
c

E I E I

N x l K x l
n k

E I E I

x A x c
b

A c

h





 

 


 

 

  
 









2

(1 2 )

( ) ( ) ( )
,    = ,

( 0 ) ( 0 ) ( ) ( )

a n d         

1 ( 0 )
= .

( 0 )

      

      

K

x I x N l l

I E l I l

I

l A




















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
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
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

In view of equation (12), the governing differential equation (6) and the boundary conditions

given in equations (10) and (11) are written in the following dimensionless forms:

4 3 2 2 2

4 3 2 2 2

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) 2 ( )

d y dc d y d c d y d y dn dy
c n

d d d d d d d d

        
       

      

2
2 2 2

2

( ) ( ) ( )
( ) ( ) ( ) ( ) = 0,

d y dh dy
h k b y

d d d

      
  

 
        

 
(13)

Simply supported:

2

2

( )
( ) 0, 0,1

d y
y at

d

 


  

(14)

Clamped-clamped:

( )
( ) 0, 0,1

dy
y at

d

 


   (15)

The dimensionless variation of elastic coefficient of Winkler foundation are given as follows:

0Constant: ( ) = ,k k (16)
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0Linear: ( ) = (1 )k k  (17)

2
0Parabolic: ( ) = (1 )k k  (18)

where 0 ,k  and  are constant values. Thus we have three cases.

Case 1: For constant elastic coefficient of Winkler foundation, defining 2=  , equation (16)

is substituted into equation (13) and the differential equation takes the form

4 3 2 2 2

4 3 2 2 2

2
2

02

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) 2 ( )

( ) ( ) ( )
( ) [ ( )] ( ) = 0,

d y dc d y d c d y d y dn dy
c n

d d d d d d d d

d y dh dy
h k b y

d d d

        
       

       
  

      

 
     

 

(19)

Case 2: For linear elastic coefficient of Winkler foundation, setting 2=  , equation (17) is

substituted into equation (13) and the resulting differential equation is

4 3 2 2 2

4 3 2 2 2

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) 2 ( )

d y dc d y d c d y d y dn dy
c n

d d d d d d d d

        
       

      

2
2

0 02

( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) = 0,

d y dh dy
h k y k y b y

d d d

          
  

 
      


(20)

Case 3: For parabolic variation, setting 2=  , equation (18) is substituted into equation (13)

and the differential equation takes the form

4 3 2 2 2

4 3 2 2 2

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) 2 ( )

d y dc d y d c d y d y dn dy
c n

d d d d d d d d

        
       

      

2
2 2

0 02

( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) = 0,

d y dh dy
h k y k y b y

d d d

          
  

 
      


(21)

Hence, the three governing differential equations considered in this paper are those in
equations (19) to (21).

2.2 Method of Solution

The DTM is a transformation method based on the Taylor series expansion and is useful to

obtain analytical solutions of differential equations. This method was proposed by Zhou

(1986) for solving both linear and nonlinear initial value problems of electrical circuits. In
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this technique, certain transformation rules are applied to the governing differential equations

and the boundary conditions of the system are transformed into a set of algebraic equations.

The solution of these algebraic equations gives the desired solution of the problem. This

method gives an analytic solution in the form of a polynomial. Application of DTM leads to

accurate results with fast convergence rate and small computational effort.

Basic definitions and operations of differential transform method are introduced as follows:

A function ( )q t , analytical in domain ,D can be represented by a power series around any

arbitrary point in this domain. The differential transform of a function ( )q t is defined as:

=0

1 ( )
( ) = .

!

k

k

t

d q t
Q k

k dt

 
 
 

(22)

In equation (22), ( )q t is the original function and ( )Q k is the transformed function.

The inverse differential transform of ( )Q k is defined as

=0

( ) = ( ) .k

k

q t Q k t


 (23)

Combining equations (22) and (23), this gives

=0 =0

( )
( ) = ,

!

k k

k
k t

t d q t
q t

k dt

  
 
 

 (24)

which is the Taylor series of ( )q t at = 0t . Equation (24) implies that the concept of

differential transformation is derived from the Taylor series expansion. In practical

applications, the function ( )q t is expressed by a finite series and equation (24) is written as

=0

( ) = ( ) ,
m

k

k

q t Q k t (25)

which implies that

= 1

( ) = ( ) k

k m

q t Q k t



 (26)

is negligibly small.

In this study, the value of m depends on the convergence of the natural frequencies. Table 1

contains some relevant basic operations for DTM.
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Table 1: The Fundamental Operations for Differential Transform Method.

Original Function Transformed Function

( ) ( ) ( )t x u x v x  ( ) ( ) ( )T k U k V k 
 ( )t x u x ( ) ( ),T k U k  is a constant

( ) rt x x 1  if 
( ) ( )

0  if 

k r
T k k r

k r



    

( )
( )

du x
t x

dx
 ( ) ( 1) ( 1)T k k U k  

( )
( )

r

r

d u x
t x

dx
 ( ) ( 1)( 2) ( ) ( )T k k k k r U k r    

( ) ( ) ( )t x u x v x

0 0

( ) ( ) ( ) ( ) ( )
k k

r r

T k U r V k r U k r V r
 

    
( )

( ) ( )
dv x

t x u x
dx


0

( ) ( )( 1) ( 1)
k

r

T k U r k r V k r


    
2

2

( )
( ) ( )

d v x
t x u x

dx


0

( ) ( )( 1)( 2) ( 2)
k

r

T k U r k r k r V k r


      

Table 2: Theorems of differential transform method for boundary conditions.

2.3 Application of Differential Transform Method to the Problem

x=0
Original B.C Transformed B.C

x=l
Original B.C Transformed B.C

(0) 0y  (0) 0Y 
(1) 0y 

0

( ) 0
k

Y k





(0)

0
dy

dx
 (1) 0Y  (1)

0
dy

dx


0

( ) 0
k

kY k





2

2

(0)
0

d y

dx
 (2) 0Y 

2

2

(1)
0

dy

dx


0

( 1) ( ) 0
k

k k Y k




 
3

3 

(0)
0

d y

dx
 (3) 0Y 

2

2

(1)
0

dy

dx


0

( 1)( 2) ( ) 0
k

k k k Y k




  
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Taking the differential transform of equations (19) to (21), the following recursive algebraic

equations were obtained for constant, linear and parabolic variations respectively:

=0 =0

( )( 1)( 2)( 3)( 4) ( 4) 2 ( 1) ( 1)( 1)( 2)
k k

r r

C k r r r r r Y r k r C k r r r             

=0

( 3) ( 3) ( 1)( 2) ( 2)( 1)( 2) ( 2)
k

r

r Y r k r k r C k r r r Y r            

=0 =0

( )( 1)( 2) ( 2) ( 1) ( 1)( 1) ( 1)
k k

r r

N k r r r Y r k r N k r r Y r            

2 2

=0 =0

( )( 1)( 2) ( 2) ( 1) ( 1)( 1) ( 1)
k k

r r

H k r r r Y r k r H k r r Y r             

0
=0

( ) = ( ) ( ),
k

r

k Y k B k r Y r 
(27)

=0 =0

( )( 1)( 2)( 3)( 4) ( 4) 2 ( 1) ( 1)( 1)( 2)
k k

r r

C k r r r r r Y r k r C k r r r             

=0

( 3) ( 3) ( 1)( 2) ( 2)( 1)( 2) ( 2)
k

r

r Y r k r k r C k r r r Y r            

=0 =0

( )( 1)( 2) ( 2) ( 1) ( 1)( 1) ( 1)
k k

r r

N k r r r Y r k r N k r r Y r            

2 2

=0 =0

( )( 1)( 2) ( 2) ( 1) ( 1)( 1) ( 1)
k k

r r

H k r r r Y r k r H k r r Y r             

0 0
=0 =0

( ) ( 1) ( ) = ( ) ( ),
k k

r r

k Y k k k r Y r B k r Y r       (28)

=0 =0

( )( 1)( 2)( 3)( 4) ( 4) 2 ( 1) ( 1)( 1)( 2)
k k

r r

C k r r r r r Y r k r C k r r r             

=0

( 3) ( 3) ( 1)( 2) ( 2)( 1)( 2) ( 2)
k

r

r Y r k r k r C k r r r Y r            

=0 =0

( )( 1)( 2) ( 2) ( 1) ( 1)( 1) ( 1)
k k

r r

N k r r r Y r k r N k r r Y r            
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2 2

=0 =0

( )( 1)( 2) ( 2) ( 1) ( 1)( 1) ( 1)
k k

r r

H k r r r Y r k r H k r r Y r             

0 0
=0 =0

( 2) ( ) ( ) = ( ) ( ),
k k

r r

k k r Y r k Y k B k r Y r       (29)

where ( ), ( ), ( ), ( )N k B k Y k H k and ( )C k are the T-functions of ( ), ( ), ( ), ( )n b y h    and

( )c  respectively. Equations (27) - (29) are algebraic equations which were implemented in

MAPLE 18.

For the numerical example demonstrated in this study, the free vibration of a non-uniform

simply-supported and clamped-clamped beams are considered.

The materials property of the beams are given as:

3

( ) ( ) = (0) (0) 1
x

E x I x E I e
l

  
 

(30)

( ) ( ) = (0) (0) 1
x

x A x A e
l

    
 

(31)

where (0), (0), (0),E I e and (0)A are Young’s modulus, moment of inertia, mass per unit

volume, taper ratio and cross section area at = 0x respectively.

The distributed axial force is given by

2( ) = ( ) ( )
l

x
N x A d     (32)

2 3
2 2 1

                      = (0) (0)
2 3 2 3

e e
A l

 
 

    
 

(33)

Also,

 

 

3

2 3
2

3

( ) = 1

1
( ) =

2 3 2 3

( ) = (1 )

( ) = 1

c e

e e
n

b e

h e

 

  

 

 




 
     

 
 
 

(34)

In equation (27) to (29), the following terms were defined:
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2 3

2

2 3

( ) = ( ) 3 ( 1) 3 ( 2) ( 3)

1 1
( ) = ( ) ( ) ( 2 ( 3)

2 3 2 3

( ) = ( ) ( 1)

( ) = ( ) 3 ( 1) 3 ( 2) ( 3)

C k k e k e k e k

e e
N k k k k k

B k k e k

H k k e k e k e k

   

    

 
   

     


          


  
     



(35)

3. Result and Discussion

Table 3: Effects of inverse of slenderness ratio   , axial force   and constant elastic foundation  0k on

dimensionless frequencies of a clamped- clamped beam

Table 4: Effects of inverse of slenderness ratio   , axial force   and linear elastic foundation  0k
on dimensionless frequencies of a clamped- clamped beam

Winkler

𝜶 = 𝟎 𝜶 = 𝟓 𝜶 = 𝟏𝟎

𝒌𝟎 𝒌𝟎 𝒌𝟎

𝜸  0 200 400 0 200 400 0 200 400
0.000 𝜆1 16.3356 23.3035 28.6069 18.5105 24.8869 29.9208 23.6609 28.9440 33.3917

𝜆2 44.9806 47.9922 50.8305 48.1312 50.9581 53.6403 56.3792 58.8147 61.1558
𝜆3 88.1381 89.7193 91.2741 91.6159 93.1378 94.6362 101.2626 102.6398 104.0051

0.010 𝜆1 16.3294 23.2947 28.5960 18.5031 24.8772 29.9092 23.6509 28.9323 33.3785
𝜆2 44.9232 47.9309 50.7656 48.0695 50.8928 53.5717 56.3069 58.7394 61.0778
𝜆3 87.9017 89.4785 91.0294 91.3700 92.8879 94.3821 100.9913 102.3664 103.7233

0.013 𝜆1 16.3246 23.2878 28.5875 18.4981 24.8706 29.9012 23.6431 28.9233 33.3683
𝜆2 44.8786 47.8833 50.7152 48.0271 50.8480 53.5245 56.2509 58.6812 61.0172
𝜆3 87.7191 89.2928 90.8402 91.2012 92.7164 94.2080 100.7805 102.1522 103.5088

0.020 𝜆1 16.3109 23.2681 28.5631 18.4810 24.8483 29.8746 23.6210 28.8975 33.3392
𝜆2 44.7521 47.7483 50.5721 47.8859 50.6986 53.3674 56.0918 58.5154 60.8453
𝜆3 87.2033 88.7679 90.3064 90.6441 92.1492 93.6324 100.1879 101.5518 102.8975

0.025 𝜆1 16.2970 23.2482 28.5386 18.4645 24.8266 29.8487 23.5986 28.8714 33.3098
𝜆2 44.6250 47.6126 50.4285 47.7495 50.5543 53.2156 55.9318 58.3490 60.6725
𝜆3 86.6905 88.2455 89.7749 90.1101 91.6068 93.0808 99.5991 100.9539 102.2940

Winkler

𝜶 = 𝟎
𝝁 = 𝟎. 𝟐
𝜶 = 𝟓 𝜶 = 𝟏𝟎

𝒌𝟎 𝒌𝟎 𝒌𝟎

𝜸  0 200 400 0 200 400 0 200 400
0.000 𝜆1 16.3356 22.6425 27.5352 18.5105 24.2646 28.8895 23.6609 28.4019 32.4539

𝜆2 44.9806 47.6570 50.1927 48.1312 50.6421 53.0358 56.3792 58.5398 60.6243
𝜆3 88.1381 89.5379 90.9164 91.6159 92.9630 94.2915 101.2626 102.4823 103.6885

0.010 𝜆1 16.3294 22.6339 27.5247 18.5031 24.2552 28.8784 23.6509 28.3904 32.4411
𝜆2 44.9232 47.5962 50.1286 48.0695 50.5773 52.9680 56.3069 58.4649 60.5469
𝜆3 87.9017 89.2977 90.6722 91.3700 92.7138 94.0385 100.9897 102.2075 103.4109

0.013 𝜆1 16.3246 22.6272 27.5165 18.4974 24.2478 28.8697 23.6431 28.3815 32.4312
𝜆2 44.8786 47.5490 50.0789 48.0217 50.5271 52.9154 56.2509 58.4068 60.4870
𝜆3 87.7191 89.1121 90.4840 91.1799 92.5207 93.8426 100.7811 101.9955 103.1948

0.020 𝜆1 16.3109 22.6081 27.4933 18.4810 24.2269 28.8450 23.6210 28.3561 32.4029
𝜆2 44.7521 47.4148 49.9376 47.8859 50.3843 52.7660 56.0917 58.2419 60.3164
𝜆3 87.2033 88.5883 89.9524 90.6439 91.9766 93.2915 100.1897 101.3949 102.5894

0.025 𝜆1 16.2970 16.2970 22.5889 18.4645 24.2058 28.8201 23.5986 28.3305 32.3742
𝜆2 44.6250 44.6250 47.2801 47.7495 50.2409 52.6159 55.9318 58.0761 60.1450
𝜆3 86.6905 86.6903 88.0673 90.1100 91.4354 92.7415 99.5995 100.7993 101.9853
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Table 5: Effects of inverse of slenderness ratio   , axial force   and parabolic elastic foundation  0k on

dimensionless frequencies of a clamped- clamped beam.

Table 6: Effects of inverse of slenderness ratio   , axial force   and constant elastic foundation  0k on

dimensionless frequencies of a simply-supported beam.

Winkler

𝜶 = 𝟎

0.1 

𝜶 = 𝟓 𝜶 = 𝟏𝟎

𝒌𝟎 𝒌𝟎 𝒌𝟎

𝛾  0 200 400 0 200 400 0 200 400
0.000 𝜆1 16.3356 23.1109 28.2981 18.5105 24.7042 29.6211 23.6609 28.7821 33.1142

𝜆2 44.9806 47.8813 50.6193 48.1312 50.8532 53.4397 56.3792 58.7228 60.9783
𝜆3 88.1381 89.6567 91.1505 91.6159 93.0778 94.5170 101.2621 102.5857 103.8940

0.010 𝜆1 16.3294 23.1021 28.2873 18.5031 24.6946 29.6097 23.6509 28.7706 33.1011
𝜆2 44.9232 47.8201 50.5546 48.0695 50.7882 53.3713 56.3070 58.6478 60.9006
𝜆3 87.9017 89.4161 90.9063 91.3700 92.8275 94.2633 100.9900 102.3099 103.6132

0.013 𝜆1 16.3246 23.0952 28.2788 18.4974 24.6871 29.6008 23.6431 28.7615 33.0910
𝜆2 44.8786 47.7727 50.5045 48.0217 50.7378 53.3183 56.2509 58.5895 60.8401
𝜆3 87.7191 89.2305 90.7174 91.1798 92.6345 94.0677 100.7811 102.0998 103.4017

0.020 𝜆1 16.3109 23.0757 28.2549 18.4810 24.6658 29.5755 23.6210 28.7359 33.0622
𝜆2 44.7521 47.6380 50.3620 47.8859 50.5944 53.1678 56.0918 58.4241 60.6686
𝜆3 87.2033 88.7060 90.1841 90.6439 92.0897 93.5145 100.1874 101.4986 102.7920

0.025 𝜆1 16.2970 23.0561 28.2307 18.4645 24.6443 29.5499 23.5986 28.7099 33.0330
𝜆2 44.6250 47.5026 50.2189 47.7495 50.4504 53.0166 55.9318 58.2577 60.4963
𝜆3 86.6905 88.1840 89.6533 90.1100 91.5472 92.9644 99.5994 100.9022 102.1886

Winkler

𝜶 = 𝟎 𝜶 = 𝟓 𝜶 = 𝟏𝟎

𝒌𝟎 𝒌𝟎 𝒌𝟎
𝜸  0 200 400 0 200 400 0 200 400

0.000 𝜆1 7.1215 17.9419 24.2970 10.3423 19.5114 25.5351 16.3263 23.3397 28.6578
𝜆2 28.9518 33.4930 37.5137 32.7157 36.7830 40.4632 41.9025 45.1425 48.1757
𝜆3 64.9788 67.1234 69.2053 68.9006 70.9236 72.8937 79.4419 81.1982 82.9198

0.010 𝜆1 7.1192 17.9357 24.2882 10.3382 19.5044 25.5259 16.3192 23.3310 28.6475
𝜆2 28.9194 33.4558 37.4723 32.6783 36.7413 40.4176 41.8535 45.0901 48.1202
𝜆3 64.8206 66.9601 69.0370 68.7320 70.7503 72.7158 79.2464 80.9989 82.7162

0.013 𝜆1 7.1173 17.9309 24.2814 10.3350 19.4990 25.5189 16.3137 23.3241 28.6394
𝜆2 28.8943 33.4269 37.4402 32.6493 36.7090 40.3823 41.8155 45.0495 48.0772
𝜆3 64.6983 66.8339 68.9070 68.6019 70.6164 72.5783 79.0953 80.8444 82.5589

0.020 𝜆1 7.1121 17.9171 24.2619 10.3258 19.4837 25.4986 16.2981 23.3047 28.6164
𝜆2 28.8229 33.3446 37.3488 32.5669 36.6170 40.2819 41.7075 44.9340 47.9547
𝜆3 64.3527 66.4772 68.5396 68.2339 70.2380 72.1898 78.6682 80.4085 82.1141

0.025 𝜆1 7.1068 17.9032 24.2423 10.3166 19.4682 25.4782 16.2823 23.2850 28.5932
𝜆2 28.7510 33.2621 37.2570 32.4840 36.5246 40.1810 41.5989 44.8180 47.8317
𝜆3 64.0083 66.1217 68.1735 67.8671 69.8609 71.8025 78.2428 79.9740 81.6706
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Table 7: Effects of inverse of slenderness ratio   , axial force   and linear elastic foundation  0k on

dimensionless frequencies of a simply-supported beam.

Table 8: Effects of inverse of slenderness ratio   , axial force   and parabolic elastic foundation  0k on

dimensionless frequencies of a simply-supported beam.

Winkler

𝜶 = 𝟎

0.1 

𝜶 = 𝟓 𝜶 = 𝟏𝟎

𝒌𝟎 𝒌𝟎 𝒌𝟎

𝜸  0 200 400 0 200 400 0 200 400
0.000 𝜆1 7.1215 17.1398 23.1477 10.3423 18.7481 24.3956 16.3263 22.6642 27.5714

𝜆2 28.9518 32.9865 36.5887 32.7157 36.3280 39.6197 41.9025 44.7762 47.4802
𝜆3 64.9788 66.8742 68.7188 68.9006 70.6891 72.4347 79.4419 80.9955 82.5205

0.010 𝜆1 7.1192 17.1340 23.1395 10.3382 18.7415 24.3872 16.3192 22.6556 27.5614
𝜆2 28.9194 32.9498 36.5480 32.6783 36.2867 39.5749 41.8535 44.7242 47.4254
𝜆3 64.8206 66.7115 68.5517 68.7320 70.5164 72.2578 79.2464 80.7962 82.3179

0.013 𝜆1 7.1173 17.1295 23.1333 10.3350 18.7364 24.3806 16.3137 22.6490 27.5537
𝜆2 28.8943 32.9212 36.5165 32.6493 36.2548 39.5402 41.8155 44.6839 47.3829
𝜆3 64.6983 66.5857 68.4225 68.6019 70.3829 72.1212 79.0953 80.6423 82.1612

0.020 𝜆1 7.1121 17.1166 23.1154 10.3258 18.7217 24.3617 16.2981 22.6300 27.5317
𝜆2 28.8229 32.8401 36.4269 32.5669 36.1638 39.4415 41.7075 44.5693 47.2620
𝜆3 64.3527 66.2302 68.0573 68.2339 70.0056 71.7348 78.6682 80.2075 81.7185

0.025 𝜆1 7.1068 17.1035 23.0974 10.3166 18.7069 24.3426 16.2823 22.6108 27.5094
𝜆2 28.7510 32.7586 36.3368 32.4840 36.0723 39.3423 41.5989 44.4540 47.1405
𝜆3 64.0083 65.8759 67.6935 67.8671 69.6296 71.3497 78.2428 79.7738 81.2770

Winkler

𝜶 = 𝟎

0.1 

𝜶 = 𝟓 𝜶 = 𝟏𝟎

𝒌𝟎 𝒌𝟎 𝒌𝟎

𝜸  0 200 400 0 200 400 0 200 400
0.000 𝜆1 7.1215 17.7133 23.9781 10.3423 19.2880 25.2092 16.3263 23.1332 28.3310

𝜆2 28.9518 33.3152 37.1874 32.7157 36.6235 40.1661 41.9025 45.0139 47.9308
𝜆3 64.9788 67.0343 69.0310 68.9006 70.8399 72.7296 79.4419 81.1259 82.7774

0.010 𝜆1 7.1192 17.7072 23.9695 10.3382 19.2811 25.2002 16.3192 23.1244 28.3208
𝜆2 28.9194 33.2781 37.1462 32.6783 36.5819 40.1209 41.8535 44.9616 47.8755
𝜆3 64.8206 66.8712 68.8632 68.7320 70.6668 72.5521 79.2464 80.9266 82.5742

0.013 𝜆1 7.1173 17.7025 23.9629 10.3350 19.2758 25.1934 16.3137 23.1177 28.3129
𝜆2 28.8943 33.2493 37.1143 32.6493 36.5497 40.0857 41.8155 44.9211 47.8326
𝜆3 64.6983 66.7451 68.7335 68.6019 70.5330 72.4149 79.0953 80.7726 82.4170

0.020 𝜆1 7.1121 17.6890 23.9440 10.3258 19.2607 25.1736 16.2981 23.0984 28.2902
𝜆2 28.8229 33.1674 37.0234 32.5669 36.4580 39.9859 41.7075 44.8059 47.7107
𝜆3 64.3527 66.3889 68.3668 68.2339 70.1550 72.0271 78.6682 80.3369 81.9731

0.025 𝜆1 7.1068 17.6754 23.9250 10.3166 19.2454 25.1537 16.2823 23.0789 28.2673
𝜆2 28.7510 33.0852 36.9322 32.4840 36.3659 39.8855 41.5989 44.6901 47.5881
𝜆3 64.0083 66.0338 68.0015 67.8671 69.7782 71.6405 78.2428 79.9028 81.5304
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Table 9: Convergence of first six dimensionless natural frequencies λ1 to λ6 of a clamped-clamped non-uniform
Rayleigh beam for the three variations of elastic coefficient.

Table 10: Convergence of first six dimensionless natural frequencies λ1 to λ6 of a simply-supported non-uniform
Rayleigh beam for the three variations of elastic coefficient.

Table 11: Comparison of the first three natural frequencies of a clamped-clamped Euler-Bernoulli beam for

constant elastic modulus: 0 1, 0k e  .

Constant Linear Parabolic

m λ m λ m λ

27 19.2374 27 19.1571 27 19.2135

28 48.3578 28 48.3248 28 48.3469

36 91.5231 38 91.5051 37 91.5167

48 148.7163 66 148.6982 68 148.6962

78 219.9693 70 219.6790 82 219.9817

82 304.5719 86 300.8067 84 298.2291

Constant Linear Parabolic

m λ m λ m λ

29 11.5910 29 11.4614 29 11.5520

32 33.1061 32 33.0566 32 33.0888

32 68.9361 33 68.9123 33 68.9277

44 118.9426 37 118.9277 61 118.9375

72 182.9416 64 182.9690 74 182.9584

84 261.6563 84 260.4188 88 260.7044

Method 𝝀𝟏 𝝀𝟐 𝝀𝟑

DTM[Present] 9.92014 39.4911 88.8321

ADM [Coskun et al.,2014] 9.92014 39.4911 88.8321

HPM [Mutman, 2013] 9.92014 39.4911 88.8321

DQEM [Chen, 2000] 9.92014 39.4911 88.8321
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Table12: Comparison of the first three natural frequencies of a simply-supported Euler-Bernoulli beam for

constant elastic modulus: 0 1, 0k e  .

Figure 2: The first six mode shapes of a clamped-clamped non-uniform Rayleigh beam for constant elastic
modulus.

Method 𝝀𝟏 𝝀𝟐 𝝀𝟑

DTM[Present] 22.3956 61.6809 120.908

ADM [Coskun et al.,2014] 22.3956 61.6809 120.908

HPM [Mutman, 2013] 22.3956 61.6809 120.908

DQEM [Chen, 2000] 22.3956 61.6811 120.910
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Figure 3: The first six mode shapes of a clamped-clamped non-uniform Rayleigh beam for linear elastic
modulus.

Figure 4: The first six mode shapes of a clamped-clamped non-uniform Rayleigh beam for parabolic elastic
modulus.

Figure 5: The first six mode shapes of a simply-supported non-uniform Rayleigh beam for constant elastic
modulus.
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Figure 6: The first six mode shapes of a simply-supported non-uniform Rayleigh beam for linear elastic
modulus.

Figure 7: The first six mode shapes of a simply-supported non-uniform Rayleigh beam for parabolic elastic
modulus.

Computer codes developed using MAPLE 18 were used to calculate the natural frequency

and corresponding mode shape for 0.01  , 0 = 20,k 0.1, 0.2, 0.5e    and 5 

using equations (27) - (29). The first six dimensionless natural frequencies λ1 to λ6 of a

clamped-clamped and simply-supported non-uniform Rayleigh beam for the constant, linear

and parabolic elastic variations were presented in Tables 9 and 10. The frequencies

converged one by one without missing any one for 𝜖 = 0.0001.

Tables 3 to 8 considered the effects of inverse of the slenderness ratio   , axial force  

and elastic foundations ( 0k ) on the first three dimensionless natural frequencies of a
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clamped-clamped and simply-supported non-uniform Rayleigh beam for the constant, linear

and parabolic elastic variations. It is noticed that the inverse of slenderness ratio (  ) has a

reducing effect on the dimensionless natural frequencies ( ) while the increase in axial force

  leads to an increase of the dimensionless natural frequencies. The Winkler elastic

modulus ( 0k ) has an increasing effect on the dimensionless natural frequencies. It is observed

that constant elastic modulus of the Winkler foundation has a greater effect on the

dimensionless natural frequencies, followed by the parabolic elastic modulus. This is because

the values of the dimensionless natural frequencies obtained are greater than that of linear

variation.

To validate the method used, a comparison is made using the Euler-Bernoulli beam by setting

the rotatory inertia term and the taper ratio in the governing equation of motion of a Rayleigh

beam resting on the Winkler foundation to zero. In Tables 11 and 12, the DTM results for the

first three dimensionless natural frequencies by methods of a clamped-clamped and simply-

supported uniform beams are compared with available results in the literature. It is noticed

that there is a close agreement between DTM and previously available results. In Figures 2 to

7, the mode shapes vary from one boundary condition to another.

4. Conclusion

Using DTM in this study, the closed-form series solutions of the free vibration problem of a

non-uniform Rayleigh beam resting on the Winkler elastic foundation were obtained. Three

cases were investigated namely, vibration problem involving constant, linear and parabolic

Winkler coefficient of elastic foundations. The results obtained in this work may give

information about the possible changes in vibration characteristics of engineering structures

that are affected by foundation parameters and rotatory inertia. It could be applied to

determine the response of beams on elastic foundations to natural phenomena such as

earthquake.
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