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Abstract  

The problem of laminar fluid flow which results from the stretching/shrinking of a flat surface in a nanofluid 

has been obtained using the Adomian Decomposition Method. The model used for the nanofluid was presented 

in its rectangular form. The model is considered in the presence of viscous dissipation, heat 

generation/absorption with convective boundary condition and the effect of Brownian motion and 

thermophoresis. A similarity solution is presented which depends on magnetic parameter (M), Eckert number 

(Ec), heat generation and absorption, Biot number (Bi), Lewis number (Le), Brownian motion (Nb) number and 

thermophoresis number (Nt). In the results presented graphically, it is observed that the physical quantities 

such as the Magnetic parameter has the same effects on both stretching and shrinking sheets, ie as it increases  

the velocity profile reduces on both sheets.  

Keywords: Adomian Decomposition Method, Nanofluid, Nanoparticles, Thermophoresis, Darcy number, 

Eckert number. 
 

1. Introduction  

The fluid flow over a stretching/shrinking sheet is important in applications such as extrusion, 

wire drawing, metal spinning, and hot rolling. It is crucial to understand the heat and flow 

characteristics of the process so that the end product meets the desired qualities. A wide 

variety of problems dealing with heat and fluid flow over a stretching/shrinking sheet have 

been studied with both Newtonian and non-Newtonian fluids and with the inclusion of 

magnetic fields, different thermal boundary conditions, and power law variation of the 

stretching/shrinking velocity. Both similarity as well as direct numerical solutions of the 

convective transport equations has been reported. The term “nanofluid” was coined by Choi 

(1995). The characteristic feature of nanofluids is thermal conductivity enhancement, a 

phenomenon observed by Masuda et al. (1993). This phenomenon suggests the possibility of 

using nanofluids in advanced nuclear systems. A benchmark study on the thermal 

conductivity of nanofluids was made by Buongiorno et al. (2009). Venerus et al. (2010) have  
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studied the viscosity measurements on colloidal dispersions (nanofluids) for heat transfer 

applications. Gharagozloo et al. (2008) have examined the diffusion, aggregation, and the 

thermal conductivity of nanofluids and Philip et al. (2008) have presented the nanofluid with 

tenable thermal properties.  

 

Further, Kuznetsov and Nield (2010) have examined the influence of nanoparticles on natural 

convection boundary-layer flow past a vertical plate, using a model in which Brownian 

motion and thermophoresis are accounted for. In this pioneering study they have assumed the 

simplest possible boundary conditions, namely those in which both the temperature and the 

nanoparticle fraction are constant along the wall. Nield and Kuznetsov (2009) have analysed 

the effect of nanoparticles on natural convection boundary-layer flow in a porous medium 

past a vertical plate and employed the Darcy model for the momentum equation. Bach et al. 

(2010) have studied theoretically the problem of steady boundary-layer flow of a nanofluid 

past a moving semi-infinite flat plate in a uniform free stream and it is found that dual 

solutions exist when the plate and the free stream flow move in the opposite directions. The 

problem of laminar fluid flow resulting from the stretching of a flat surface in a nanofluid has 

been investigated numerically by Khan and Pop (2010). 

 

Aiyesimi et al. (2015) carried out an analytical investigation of a convective boundary-layer 

flow of a nanofluid past a stretching sheet with radiation using the Adomian Decomposition 

Method. Recently, Aiyesimi et al. (2015) carried out an analytical investigation of a 

nanofluid model in a porous medium with permeability and incorporates the magnetic effect, 

thermal radiation effect and the effect of Brownian motion and thermophoresis. A similarity 

solution was also presented which depends on Darcy number, magnetic effect, inertia 

coefficient, Prandtl number, Radiation, Lewis number, Brownian motion number and 

thermophoresis number and it was observed that the Darcy number enhances the velocity, 

temperature and concentration profile of the fluid.  

 

We found it to be appropriate to consider the work of Khan and pop (2010) past a 

stretching/shrinking sheet in the presence of viscous dissipation  with heat 

generation/absorption and  convective boundary condition using Adomian Decomposition 

Method to obtain the analytical solution of the model. Aiyesimi et al. (2013) have previously 

used the Adomian Decomposition to obtain the analytical solution of hydromagnetic 

boundary layer micropolar fluid flow over a stretching surface embedded in a non Darcian 
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medium with variable permeability. A few examples are the research works of Aiyesimi et al. 

(2013), Jiya and Oyubu (2012).  

 

This work is a new development in the literature in which an analytical solution of MHD 

boundary-layer flow of a nanofluid past a stretching/shrinking sheet in the presence of 

viscous dissipation with heat generation/absorption and convective boundary condition is 

proposed using the Adomian decomposition method.  

 

2. Materials and Methods  

We consider a steady, two dimensional boundary layer flow of a nanofluid over a 

continuously moving stretching/shrinking surface with the linear velocities ( , )u x y ax=  and 

( , )u x y ax= −  for stretching and shrinking sheet, where a is  constant and  x is the coordinate 

measured along the stretching/shrinking sheet surface. A uniform magnetic field 0B  is 

applied along the y axis− . We assumed that the stretching surface, the nanoparticle fraction 

C  have constants value wC . Following the formulation of  Khan and pop (2010) with 

magnetic field effect, viscous dissipation, and heat generation/absorption over a 

stretching/shrinking sheet with convective boundary condition, the problem is governed by 

the following equations: 

Continuity equation:  

  

0
u v

x y

 
+ =

                                                                                                                             (1)                                                                           

Momentum equation: 
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Energy equation:-                                  
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Nanofraction equation:- 

2 2 2 2

2 2 2 2

T

B

DC C C C T T
u v D

x y Tx y y y

         
+ = + + +    

                                                                   (5)        

Subject to the boundary conditions:                                                                                 

1.  For stretching sheet:- 

0 :y u ax= = ,             0v = ,             ( )f

T
k h T T

y



− = −


,                 WC C=

,     

: 0,y u→ →           ,→TT     
,C C→
                                                                           (6)        

2. For shrinking sheet:- 

0 :y u ax= = − ,             0v = ,         ( )f

T
k h T T

y



− = −


,                 WC C=

,     

: 0,y u→ →           ,→TT     
,C C→
                                                                          (7) 

where u  and v  are the velocity components along the x  and y  axes respectively, p is the 

fluid pressure, k  is the thermal conductivity, h is the convective heat transfer coefficient, B0  

is an external magnetic field, f  is the density of the base fluid, σ is the electrical 

conductivity,  is the thermal diffusivity,   is the kinematic viscousity, Tf  is the convective 

fluid temperature below the moving sheet pC  is the specific heat capacity at constant 

pressure, DB is the Brownian diffusion coefficient, DT the thermopheric diffusion coefficient 

and 
( )

( )
p

f

c

c





=  is the ratio between the effective heat capacity of the fluid with  being the 

density, P  is the density of the particles, ( )Q x   heat generation or absorption coefficient. 

Note that the temperature at the sheet surface (TW) in this case, is not constant. 

Defining the dimensional stream function ( )( ),x y  in the usual way such that u
y


=


  and  

v
x


= −


 and using the following dimensionless variables:- 

1
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y


 
=  
 

,    ( ) ( )
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−
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−
                (8) 

where  , ( )f  , ( )  , ( )   are the dimensionless fluid distance, velocity profile, 
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temperature profile, and nanoparticle concentration with 

( ) ( )
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                                                (9) 

An order of magnitude analysis of the y  direction momentum equation (normal to the sheet) 

using the usual boundary layer approximations. Substituting the expressions in (8) and (9) 

into (1) to (7) and neglecting the pressure gradient the equations reduces to the following 

similarity solutions:-  
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in which :  
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are the Magnetic parameter,  Prandtl number, Lewis number, Brownian motion parameter,  

thermophoresis parameter respectively, Eckert number,  heat generation/absorption, and Biot 

number. 

2.1 Adomian Decomposition Method 

For the purpose (Adomian, 1989) of illustrating the method of Adomian decomposition we 

begin with the (deterministic) form 𝐹(𝑢) = 𝑔(t) where 𝐹 is a nonlinear ordinary differential 

operator with linear and nonlinear items. We could represent the linear term 𝐿𝑢 where 𝐿 is a 

linear operator. We write the linear term 𝐿𝑢 + 𝑅𝑢 where we choose 𝐿 as the highest-ordered 

derivative. Now 𝐿-1 is simply 𝑛-fold integration for an 𝑛th order. The remainder of the linear 

operator is 𝑅 (in case where stochastic terms are present in linear operator, we can include a 

stochastic operator term 𝑅𝑢 ). The nonlinear term is represented by 𝑁𝑢 .Thus, 𝐿𝑢 + 𝑅𝑢 + 

𝑁𝑢= 𝑔 and we write 

𝐿-1 𝐿 𝑢 = 𝐿-1 g−𝐿-1 𝑅𝑢 −𝐿-1 𝑁𝑢 for initial value problems, we conveniently define 𝐿-1  = 
𝑑𝑛

𝑑𝑡𝑛 

as the n- fold definite integration operator from 0 to t. For the operator 𝐿 =
𝑑2

𝑑𝑡2, for example 

we have: 

𝐿-1 𝐿 𝑢 = 𝑢 – 𝑢( 0)−𝑡𝑢′ ( 0)                                                                                                        

∴    𝑢= 𝑢( 0) + 𝐿-1 g− 𝐿-1 𝑅𝑢  −𝐿-1 𝑁𝑢                                                                                

For the same operator  equation but now considering a boundary value problem, we let  𝐿-1  

be an indefinite integral and write 𝑢 = 𝐴+𝐵𝑡 for the first two terms and evaluate 𝐴 , 𝐵 from 

the given condition the first three terms are identified as 𝑢0 in the assumed decomposition 

u=∑ 𝑢𝑛
∞
𝑛=0                                                                                                                                               

Finally, assuming Nu is analytic, we write Nu=∑ 𝐴𝑛
∞
𝑛=0 (𝑢0…𝑢𝑛)     where the   𝐴𝑛 are 

specially generated Adomian polynomials for the specific nonlinearity. The nonlinear 

coupled differential equations (10) is solved using the ADM methods. Thus, Equation (10) in 

operator form: 

 =][1 fL '' 2 /'ff f Mf− + + ,                                                                                                    (13)      
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Applying the inverse operator, the  ADM solution is obtained by: 
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where the ADM polynomials are defined as follows: 
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For determination of other components of ( )f , ( )   and ( )  , we have: 
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The general solutions are: 

( ) ( ) 0 1 2

0
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f f f f f 
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= = + +   ,                                                                                   (29)       

  ( ) ( ) 0 1 2
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( ) ( ) 0 1 2

0
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m

      


=

= = + +                           (31)                                                                                        

for conveniences, we used Maple-18 to compute the integrals. 

  

Table 1: Comparison of Results for Skin Friction – f//(0)  

M Numerical Present work 

5 2.449430407411 2.449489743 

10 3.316642264001 3.316624790 

60 7.810249675907 7.810249676 

100 10.04987562112 10.04987562 

 

3. Results and Discussion  

The nonlinear coupled differential equations (10) and (11) with are solved using the Adomian 

Decomposition Methods. In order to assess the accuracy of the present method, we have 

compared our solution for the skin friction 
( )'' 0f

 for different values of Magnetic parameter 

(M), with the numerical method (Runge-Kutta’s method) as shown in Table 1. It was 

observed that the present method is in good agreement with the numerical method. Figures 1 

to 3 shows the effect of magnetic parameter on velocity, temperature, and concentration 

profiles over both the stretching and shrinking sheets. It is observed that as the magnetic 

parameter increases, the velocity and temperature profiles boundary thicknesses reduces 

while concentration profile boundary thickness increases on both sheets. It was further 

observed that the temperature and concentration profiles on shrinking sheet are higher than  
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Figure 1: Effect of Magnetic Parameter M on the Velocity Profile over a Stretching and Shrinking Sheets. 

 

 

Figure 2a: Effect of Magnetic Parameter M on the Temperature Profile over a Stretching Sheet. 

M=5,10, 60, 100 

M=5,10, 60, 100 

M=5,10, 60, 100 
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Figure 2b: Effect of Magnetic Parameter M on the Temperature Profile over a Shrinking Sheet. 

 

Figure 3: Effect of Magnetic Parameter M on the Temperature Profile over a Stretching and Shrinking Sheet. 

 

Figure 4: Effect of Eckert Number Ec on the Temperature Profile over a Stretching Sheet. 

M=5,10, 60, 100 

M=5,10, 60, 100 

Ec=0.05, 0.8, 5, 10 
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Figure 4b: Effect of Eckert Number Ec on the Temperature Profile over a Shrinking Sheet. 

 

Figure 5: Effect of Eckert Number Ec on the Concentration Profile over a Stretching and Shrinking Sheet. 

 

Figure 6a: Effect of Biot Number Bi on the Temperature Profile over a Stretching Sheet. 

Ec=0.05, 0.8, 5, 10 

Ec=0.05, 0.8, 5, 10 

Bi=0.1, 2, 10, 30 
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Figure 6b: Effect of Biot Number Bi on the Temperature Profile over a Shrinking Sheet. 

 

Figure 7: Effect of Generation and Absorption 𝜙0 on the Temperature Profile over a Stretching.  

 

Bi=0.1, 2, 10, 30 

0 =-0.1,- 0.2,- 0.3, 0.1, 0.2,-0.3 

0 =-0.1,- 0.2,- 0.3, 0.1, 0.2, 0.3 
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Figure 8: Effect of Generation and Absorption 𝜙0 on the Concentration Profile over a Stretching Sheet. 

 

Figure 10: Effect of Absorption 𝜙0 on the Temperature Profile over a Shrinking Sheet. 

 

Figure 11: Effect of Absorption 𝜙0 on the Concentration Profile over a Shrinking Sheet. 

 
 

the stretching sheet at the same point of magnetic parameter (Figures 2a, 2b and Figure 3). 

This is as a result of application of a transverse magnetic field normal to the flow direction, 

gives rise to a resistive drag-like force acting in a direction opposite to the flow; this has a 

tendency to reduce the fluid velocity and temperature while the nanofraction concentration 

profile boundary thickness is enhanced. 

 

Figures 4 to 5 depict the effect of Eckert number on the temperature and concentration 

profile. It was observed that increase in the value of Ecket number enhances the thermal 

boundary thicknesses on both the stretching and shrinking sheet while the nanofraction 

0 =-0.1,- 0.2,- 0.3, 0.1, 0.2, 0.3 

0 =-0.1,- 0.2,- 0.3, 0.1, 0.2, 0.3 



Yusuf et al.                              ILORIN JOURNAL OF SCIENCE 

165 

 

concentration decreases on both sheets. This shows that at lower values of Eckert number, 

heat is able to diffuse out of the system faster. Figures 6a and 6b presents the effect of Biot 

number on the temperature distribution on stretching and shrinking sheets respectively. It is 

observed that as Biot number increases the thermal boundary layer thicknesses increases on 

both sheets. But the thermal boundary thickness is higher on the shrinking sheet at the same 

Biot number than the stretching sheet. This shows that heat is able to diffuse away from the 

system for lower values of Biot number on the stretching sheet than the shrinking sheet. 

 

Figures 7 to 11 shows the effect of heat generation and absorption parameter on the fluid 

temperature and nanofraction concertration on both stretching and shrinking sheet. It is 

observed that as the heat generation parameter increases from negative to positive, the 

thermal boundary thickness is enhanced while the nanofraction boundary thickness is reduced 

on both sheets. When the parameter assume a negative value, it signifies heat absorption and 

generation when either.     

 

4. Conclusion  

The problem of laminar fluid flow which results from the stretching/shrinking of a flat 

surface in a nanofluid has been obtained using the Adomian Decomposition Method. The 

model used for the nanofluid was presented in its rectangular form. The model is considered 

in the presence of viscous dissipation, heat generation/absorption with convective boundary 

condition and the effect of Brownian motion and thermophoresis. A similarity solution is 

presented which depends on magnetic parameter (M), Eckert number (Ec), heat generation 

and absorption, Biot number (bi), Lewis number (Le), Brownian motion (Nb) number and 

thermophoresis number (Nt). It was found that:- 

1. The velocity profile reduces due to increase in the magnetic parameter; which leads to 

reduction in the fluid temperature on both stretching and shrinking sheets. 
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2. Increase in Eckert number enhances the fluid temperature while nanofraction concentration 

is reduced on both sheets.   

3. It was observed generally that the boundary thickness is always higher on the shrinking 

sheet for the same value of quantity than the stretching sheet. In view of this, stretching sheet 

is recommended for faster diffusion of heat energy. 

5. The result for the skin friction coefficient was in good agreement with that of the 

numerical method. 

6. All the graphs presented in this work satisfy the boundary conditions, which further proved 

the efficiency of this method of ADM.    

7. The results presented in this work is important in applications such as extrusion, wire 

drawing, metal spinning, and hot rolling 
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