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Abstract 

There are several methods of estimating dynamic panel data models in the context of both micro-economic and 

macro-economic data.  This paper investigates the performance of five different estimators of dynamic panel 

data models (the random effect model) when the disturbance term is serially correlated.  A  Monte Carlo 

experiment was conducted when individual, N is large and time dimension, T is finite and the error component 

model is assumed to be serially correlated. The bias and Root Mean Square Error criterion were used to access 

the performance of different estimators under consideration. We found that the Anderson-Hsiao using lagged 

differences as instrument (AH(d)) performs better when the time dimension is small (T=5), Anderson-Hsiao 

using lagged levels as instrument (AH(l)) performs better when T is moderate(T=10) and the first step Arellano-

Bond estimator (ABGMM1) outperforms all other estimators when T increases to 20. For a dynamic panel data 

with large time dimension, we suggest that the first step Arellano-Bond Estimator (ABGMM1) Estimator is 

appropriate.  The result shows that the bias of the first step Arellano-Bond estimator (ABGMM1) estimate is 

severe with small time dimension and the ordinary Least Square (OLS) and Least Square Dummy Variable 

(LSDV) are also bias when T is small.  It was discovered that the effect of serial correlation is negligible 

irrespective of the order.      

 

Keywords:  Autocorrelation, Dynamic panel data, Econometric models, Generalized method of moment 

(GMM), Moving average.  

 

1. Introduction 

A panel data is a cross-section or group of people who are surveyed periodically over a given 

time span.  Panel data models are used extensively both in micro and macro-economic 

empirical research. Dynamic models include a lagged dependent variable on the right-hand 

side of the equation.  Application of dynamic panel data model is widely of interest in the 

field of science, economics and social sciences which includes Euler equations for household 

consumption, empirical model of economic growth etc. The dynamic specification has two 

basic problems associated with it; autocorrelation due to the presence of lagged dependent  

 
Corresponding Author:  Olajide, J.T. 

Email: taiwoolajide2004@yahoo.co.nz 

 

Ilorin Journal of Science  

Volume 2, Number 2, 2015, pp. 393–411 (Printed in Nigeria) 
ISSN: 2408 – 4840 © 2015 Faculty of Physical Sciences, University of Ilorin 

https://doi.org/10.54908/iljs.2015.02.02.010 

 

 

JOURNAL OF SCEINCE 

ILORIN 

mailto:taiwoolajide2004@yahoo.co.nz


Olajide and Olubusoye       ILORIN JOURNAL OF SCIENCE 

394 
 

variable among the regressors and individual effects characterizing the heterogeneity among 

individuals (Baltagi, 2008). These problems lead to certain estimation issues which are dealt 

with by different estimation techniques.  The discussion of dynamic panel data was opened 

by Balestra and Nerlove, 1966. In that paper, the authors proposed to estimate the model with 

unobserved component using the Generalized Least Squares (GLS) estimator.   

 

However, GLS or ML-Random Effects (RE) estimators are not consistent if the unobserved 

individual effects are correlated with the exogenous variables.  In the latter case the Fixed 

Effects (FE) specification is preferred. There are many studies on the properties of dynamic 

panel data estimators, most are geared towards the performance of the estimators using the 

conventional OLS, LSDV and some GMM estimators with micro-economic data sets with 

large cross-section but small time dimension this includes Arellano and Bond (1991), Kiviet, 

(1995), Judson and Owen (1996), Behr (2003), Haris and Matyas (2010), Flannery and 

Hankins (2013), Zhou and Alpert (2014) to mention but a few.   

 

A number of works on the testing for serial correlation in the disturbances terms in dynamic 

panel data models are Baltagi and Li (1997), Hosung (2005), Hujer et al. (2005) using several 

test of AR(1) and MA(1).  Similarly, among the notable works on the problem of serial 

correlation in panel data are Lillard and Willis (1978), Bhargava et al. (1982), Burke et al. 

(1990), Baltagi and Li (1991, 1994, 1995),  Galbraith and Zinde-Wash (1992, 1995). The 

error component model was extended to take into account, first-order serial correlation in the 

remainder disturbances by Lillard and Willis (1978)   for the random effects model and by 

Bhargava et al. (1982) for the fixed effects model. Both studies considered the first order 

Autoregressive (AR(1)) specification on the remainder disturbances. Nicholls et al. (1975) 

while considering first order moving average MA(1), find MA(1) as a viable alternative to 

AR(1).  Baltagi and Li (1991) give a transformation which may be applied to certain 

autocorrelated disturbances in an error components model to yield spherical disturbances. 

They derive the transformations for first order Autoregressive AR(1) and second order 

Autoregressive [AR(2)] cases. The previous Monte Carlo studies have generally focused on 

panel model with fixed effect and do not allow the serial correlation of the disturbance term.  

 

This study investigates the sensitivity of some dynamic panel data estimators in the presence 

of serial correlation. In this study, apart from allowing the disturbance term to be serially 

correlated for random individual effects;   the explanatory variable is strictly exogenous. This 
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study is not limited to a particular generating mechanism of the disturbance term rather it 

considered two different generating schemes namely: autoregressive and moving average 

processes of orders 1 and 2. In addition, the parameter values of the lagged dependent 

variables were varied to be mild, moderate and severe,  also the values of parameters of the 

serial correlation (AR and MA) is assumes to take a low, moderate and value close to one.  

Monte Carlo experiments were performed to compare the relative efficiency of five 

alternative estimators, when the remainder disturbances are generated by different generating 

schemes.  The estimators are Ordinary Least Squares (OLS), Least Square Dummy Variable 

(LSDV), Anderson-Hsiao estimator using lagged levels as instrument (AH(l)), Anderson-

Hsiao estimator using lagged differences as instrument (AH(d)) and first step Arellano-Bond 

GMM estimator  (ABGMM1). 

 

2. Materials and Methods 

2.1 The model 

Dynamic Panel models 

All panel data models are dynamic, in so far as they exploit the longitudinal nature of panel 

data. Dynamic models include a lagged dependent variable on the right-hand side of the 

equation.  A widely used modeling approach is: 

      TtNiuxyy itittiit ,...,1,,...,1;1, ==++= −   ,                (1) 

with i  denoting households, individuals, firms, countries, etc and t  denoting time.  The i  

subscript, therefore denotes the cross-section dimension whereas  t  denotes the time-series 

dimension.  ity  is the dependent variable,   1, −tiy  is the lagged dependent variable ,   is a 

scalar, itx  is the row vector of explanatory variable, dimension k ,   is unknown parameter 

vector of k  explanatory variables and itu   is the disturbance term.  We assume that the itu  

follow a one way error component model:  

      itiit vu +=   ,                                                                    (2) 

where i  denotes the unobserved individual specific effect and itv  denotes the remainder 

disturbance,   ),0(~ 2

 IIDi  and ),0(~ 2

vit IIDv  independent of each other and among 

themselves. 
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The fixed Effects Dynamic Panel Model 

It is assumed that the variable of interest ity  is a linear function of the individual’s previous 

realization of this variable, and of their contemporaneous personal characteristics itx  with 

unknown coefficient,   and  , respectively: 

itiittiit vxyy +++= −  1, ,                                                        (3) 

where: i  are the individual effects (constant for each i) and itv  are the usual white noise 

disturbance terms.  In matrix form: 

  ittiiit
vXyDy +++=

−


1,
 ,                                                 (4)  

where .1 vectorunitTtheislandlID TTN =  The usual method of estimating equation 

(4), i.e. when there is no lagged dependent variable, consists of estimating equation directly 

by OLS (the Least Squares Dummy Variable Estimator- LSDV), which also leads to the well-

known within estimator.  However, given the short time series component typical of panel 

data sets, the OLS and Within estimators are well known to be biased and inconsistent as 

→N  with finite T (see: Nickel, 1981; Sevestre and Trognon, 1985) for a theoretical 

approach and for a simulation based only (Nerlove, 1967 and 1971). 

 

The Random Effects Dynamic Panel Model  

Under the random effects specification, the i  terms of (3) are treated as independent random 

drawings from a particular distribution and the disturbance term becomes “composite”, 

itiit vu +=  .  As with the fixed effects specification, the traditional estimators (Within and 

GLS) of the static random effects panel model are semi-inconsistent in the dynamic setting 

(Sevestre and Trognon, 1985). Again semi-consistent estimators for the dynamic random 

effects model rely on certain maintained hypothesis, which are violated by the inclusion of a 

lagged dependent variable.  The assumptions concerning the equation’s disturbances imply 

that variance-covariance matrix of the composite disturbance term will be 

,)()( ===
vNNv IvvEIvV                                                  (5) 
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assume a random effect of the dynamic panel data model. 
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2.2. Methodology 

Here is the brief discussion on the estimators consider in the work. 

 

Ordinary Least Square (OLS) Estimator 

In the static case in which all the explanatory variables are exogenous and are uncorrelated 

with the effects, we can ignore the error-component structure and apply the OLS method.  

The OLS estimator, although less efficient, is still unbiased and consistent. But this is no 

longer true for dynamic error-component models. The correlation between the lagged 

dependent variable and individual-specific effects would seriously bias the OLS estimator. 

OLS, the simplest of all estimators considered, is applied to the equation in the level form.  

Since the initial values of ity  are known, OLS can use in actual estimation all of the cross-

sections. 

The OLS estimator is given as: 
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Least Square Dummy Variable (LSDV) 

Consider now the least squares dummy variable (LSDV) estimator, also known as the 

fixed-effects or within-group estimator. We assume that the explanatory variables in itx  are 

strictly exogenous. Estimates of )(  and are obtained by applying OLS to the model 

expressed in deviations from time means: 

),,1{),()()( 1,11 Ttvvxxyyyy iittiitiitiit −+−+−=− −−−   

where  = −= − ==
T

i ti

T

i iiti TyyTyy
1 1,1 1,, , and  =

=
T

i itit Tuu
1

. This transformation wipes 

out the unobserved individual effects, eliminating one possible source of inconsistency. 

 The LSDV estimators for  is   
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The Anderson-Hsiao estimator  

Anderson and Hsiao (1981) proposed an instrumental-variable (IV) estimator that is 

consistent for fixed T and N →∞. The estimator suggested by Anderson and Hsiao (1981) is 

based on the differenced form of the original equation (3) 

   )8()()( 1,1,2,1,1, −−−−− −+−+−=− tiittiittititiit vvxxyyyy 
                                      

 
which  cancels  the  individual  fixed  effects  assumed  to  possibly  correlate  with  the 

exogenous variables ).0(( 
iitXE   When the dimension of the panel is TN , the 

Anderson-Hsiao we employ is  

                                                       .                                                                          (9) 

We  add  the  symbol  L  or  D  to  indicate  the  use  of  levels  or  differences  as  instruments 

)ˆ,ˆ( ,, DAHLAH  . 

 

The Arellano-Bond estimator  

The AH estimator is consistent but not efficient because it does not use all the available 

moment conditions. Arellano and Bond (1991) proposed a generalized method of moments 

(GMM) estimator that also relies on first-differencing the model.  The estimator is similar to 

the estimator suggested by Anderson and Hsiao but exploits additional moment restrictions, 

which enlarges the set of instruments.   

The dynamic equation to be estimated in levels is  

    )10(1, itiittiit vXyy +++= − 
    

 

where differencing eliminates the individual effects  i :             

   1,1,2,1,1, )()( −−−−− −+−+−=− tiittiittititiit vvxxyyyy 
 .
 

 

For each year, we now look for the instruments available for instrumenting the difference 

equation. For t=3 the equation to be estimated is  

  
232,3122,3 )()( iiiiiiii vvxxyyyy −+−+−=−  , 

where the  instruments 121, , iii xandxy   are available.  Because  the  differencing  operation  

introduces  first  order  autocorrelation  into  the  error term, the first-step estimator makes 

use of a covariance matrix taking this autocorrelation into account.   

  
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where  
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The two-step GMM estimator uses the residuals of the first-step estimation to estimate the 

covariance matrix as suggested by White (1980):  

  
=

=
N

i

iTiiT WFvvFWV
1

ˆˆˆ
 

. 

The resulting estimator finally is  

  yWVWXXWVXWABGMM = −−− 111 ˆ)ˆ(̂ .                                  (11) 

 

2.3. Monte Carlo study  

We study different estimators in the Monte Carlo experiment, the Ordinary Least Square 

(OLS),  Least Square Dummy variable(LSDV), Anderson and Hsiao  using lagged levels as 

instrument (AH(l),  Anderson-Hsiao using differences as instrument and first step Arellano –

Bond GMM (ABGMM1) and compare them under different circumstances.  The data 

generating process closely follows Nerlove (1971).  The simulation is based on the following 

model:                                         ,  ittiit xX  += −1,
, where it  is uniformly distributed on the 

interval )5.0,5.0(− .  For the random effect specification we generate itiit vu +=   where 

)1,0(~ Ni  and classical error term itv is generated either by:                          

                   AR(1) process: ittiit vv  += −1, ,        with ),0(~ 2

 IINit ,  

                  AR(2) process: ittitiit vvv  ++= −− 2,21,1 ,   with ),0(~ 2

 IINit ,    

                  MA(1) process: ittiit vv  += −1, ,  with ),0(~ 2

 IINit    or 

                  MA(2) process: ittitiitv  ++= −− 2,21,1 ,   with ),0(~ 2

 IINit ,   

where 2

  is normalized to 1. 

 The value of the serial correlation parameters  and  are varied as ,8.0,5.0,2.0 and  

the autoregressive coefficients,   and  alternates between 0.1, 0.5 and 0.9, 1=  and 

),( =  .   In the experiment, we consider N=50, 100 and T=5, 10, 20.    500 replications 

are performed since GMM estimator is quite computationally intensive and time consuming.  

We examine the bias of different estimators under consideration to determine how their 

magnitudes vary with the characteristics of the dataset.  Also, The Root Mean Square Error 

(RMSE) criterion is used to assess the efficiency of the estimators. 

itittiit uXyy ++= −  1,
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3. Results and Discussion 

Tables 1 and 2 present  the simulation results  of bias and RMSE for estimate of the 

autoregressive coefficient,   and the coefficient of explanatory variable, β respectively for  

N=50, 100 and  T= 5, 10, 20.  Table 3 reports results of bias and RMSE for AH(d) estimator 

when it follows different error component processes. Tables 4-6 in the Appendix present the 

bias and RMSE of the parameter of lagged dependent variable and the variable of  

autoregressive parameter of the explanatory variable of all possible combinations of  N (50,  

100)  and T (5, 10, 20) when  takes the values of 0.1, 0.5 and 0.9 for only AR(1) and MA(1) 

to save space. Some of the simulation results in this study are presented in the Appendix. 

 

The results in Table 1 indicate that AH(d) outperforms other methods of estimation when 

T=5 and N=50 with minimum RMSE of 0.0596 on average  while the ABGMM1 estimator 

performs worst in term of producing higher bias (in absolute) and RMSE.   It is noted that 

OLS, LSDV and ABGMM1 estimators have a negative bias.  For T=10 and N=50, AH(l) 

performs best with minimum RMSE of 0.04212 followed by LSDV while ABGMM1 still 

performs worst but the estimator seem to show serious  improvement (larger percentage 

reduction in average RMSE and bias as T increases).  When T=20, ABGMM1 shows a 

drastic improvement as it outperforms other estimators with minimum RMSE of 0.0208 on 

average, it is followed closely by AH(l), though it does not produce a superior estimate in 

terms of average bias. 

 

Considering N=100 results in Table, it shows that AH(l) , LSDV and AH(d) estimators have 

a better performance for T=5, 10 and 20 with average RMSE of 0.0445, 0.0280 and 0.0201, 

respectively .  Here the bias of LSDV, AH(l) and ABGMM1 are in most cases negative.  It is 

observed that RMSE and bias (in absolute magnitude) of all the estimators decreases with T 

and N except ABGMM1 that behave interchangeably for small N. Regarding the estimate of 

β as shown in Table 2, for N=50 AH(l) perform better when T=5, ABGMM(l) has better 

performance when T=10 and 20 with minimum RMSE of 0.1353, 0.0665 and 0.0386, 

respectively while when N=100, OLS outperforms other estimators when T=5 and 

ABGMM1 performs better when T=10 and 20.  The bias of AH(l) and AH(d) improve as T 

increases while the biases of  other estimators perform interchangeably.  
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When the simulation design follows AR(1) and AR(2) processes, the bias of nearly all the 

estimators are negative except LSDV that is positive.  The LSDV and AH(l) estimators are 

practically unbiased in average with 50 individuals. It was observed from our simulation that 

using ABGMM1 estimator with small instruments produces a smaller expected bias in most 

cases, but using the full set of instruments almost increases the efficiency of the estimate 

(Judson and Owen, 1996).  Here, the LSDV have the least performance with a small 

reduction in terms of RMSE and bias.  As the time period T increases, AH(l) performs 

equally well .  It was also noted that AH (l) and AH(d)  estimates improve in performance as 

  increases.  For ABGMM1 estimator, it deteriorates in performance as the value of the 

parameter of serial correlation increases.  The performance is the same for OLS and LSDV 

irrespective of the process of serial correlation of itv  given that the two estimators ignore the 

serial correlation in the remainder term. 
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Table 1: The RMSE and Bias of the estimate of δ at δ=0.5, ρ=θ=0.5, λ=0.5. True model is AR(1), AR(2),  

MA(1) and MA(2) 

 

 OLS LSDV AH(l) AH(d)  ABGMM1 

N T RMSE Bias RMSE bias RMSE Bias RMSE Bias RMSE Bias 

     AR(1)       

50 5 0.1087 -0.0076 0.06154 -0.00497 0.06271 0.0074 0.0596 0.005858 2.0668 -1.24 

 10 0.0725 0.01116 0.04622 0.000344 0.04212 -0.0056 0.0475 -0.00492 0.0735 0.0089 

 20 0.0501 0.0007 0.03333 0.005025 0.02978 -0.0037 0.035 -0.00334 0.0228 0.0184 

100 5 0.0665 0.00118 0.04806 -1.97E-05 0.04453 -0.0058 0.0484 -0.00504 2.0763 1.4222 

 10 0.0475 0.00423 0.02802 -0.00167 0.02821 -0.0013 0.0349 0.003125 0.0529 -0.002 

 20 0.0332 0.00469 0.02182 -0.00147 0.02431 -0.0015 0.0201 0.003785 0.0298 -0.014 

     AR(2)       

50 5 0.1087 -0.0076 0.06154 -0.00497 0.06261 0.00743 0.0596 0.005931 1.9607 -1.301 

 10 0.0725 0.01116 0.04622 0.000344 0.04212 -0.0056 0.0475 -0.00492 0.0735 0.0089 

 20 0.0501 0.0007 0.03283 0.004264 0.03133 -0.0041 0.0334 -0.00268 0.0235 0.0175 

100 5 0.0665 0.00118 0.04806 -1.98E-05 0.04454 -0.0058 0.0484 -0.00502 2.1116 1.497 

 10 0.0475 0.00423 0.02802 -0.00167 0.02821 -0.0013 0.0349 0.003124 0.0529 -0.002 

 20 0.0332 0.00469 0.0245 0.003367 0.02047 0.0017 0.0222 -7.06E-05 0.0294 0.0003 

     MA(1)       

50 5 0.1087 -0.0076 0.06154 -0.00497 0.06269 0.00745 0.0596 0.005909 1.5487 -0.472 

 10 0.0725 0.01116 0.04622 0.000345 0.04211 -0.0056 0.0475 -0.00492 0.0735 0.0089 

 20 0.0501 0.0007 0.03362 0.002711 0.03242 0.00103 0.0312 -0.00523 0.0203 0.0174 

100 5 0.0671 -0.0005 0.05157 -9.89E-06 0.04072 -0.0061 0.0466 -0.00437 2.9645 1.4086 

 10 0.0475 0.00423 0.02802 -0.00167 0.02821 -0.0013 0.0349 0.003126 0.0529 -0.002 

 20 0.0332 0.00469 0.02312 0.001635 0.02164 0.00206 0.0221 0.001254 0.0294 0.0003 

     MA(2)       

50 5 0.1087 -0.0076 0.06154 -0.00497 0.06265 0.00744 0.0596 0.005922 1.526 -0.41 

 10 0.0484 0.01116 0.04623 0.000345 0.04213 -0.0056 0.0475 -0.00492 0.074 0.0089 

 20 0.0501 0.0007 0.03307 0.002325 0.03301 -0.0002 0.0308 -0.005 0.0165 0.0165 

100 5 0.0735 -0.0033 0.04806 -2.61E-06 0.04454 -0.0058 0.0484 -0.005 2.0369 1.3823 

 10 0.0475 0.00423 0.02802 -0.00167 0.02821 -0.0013 0.0349 0.003125 0.0529 -0.002 

  20 0.0332 0.00469 0.02258 0.002338 0.01941 0.00015 0.0235 -6.60E-05 0.0294 0.0003 

Source: Compiled by the authors 

 

The performance in the AR(1) process is similar to the AR(2) process (see table 1), but there 

is slight improvement in the performance of ABGMM1 When the serial correlation is of the 

higher order, that is, AR(2) compared with AR(1) in term of RMSE but the bias of the 

estimates in AR(1) is more than that of AR(2). AH(d) still perform better when T=5 and 

AH(l) perform better at T=10 and 20.  As T increases ABGMM1 improves in performance in 

both RMSE and bias.  From the simulation results, we observed that the ABGMM1 performs 

worst when time period, T is small, and its performance improves as T increases. 
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Table 3 is the simulation results of bias and RMSE of the estimate of   for AH(d) estimator 

when the serial correlation follows AR(1), AR(2), MA(1) or MA(2) process.  The results at 

different scenario show that the autoregressive of order 1 (AR(1))  is better than AR(2) 

though their differences are minimal.  When following the moving average process, MA(2) is 

better than MA(1). Here, AH(d) estimator improve in performance as the serial correlation 

coefficients (   or  ) and time periods T increases.    

 

The results in Tables 4-6 shows that for OLS estimator, as value of  increases the bias and 

RMSE deteriorates but for other estimators considered, it improves as  increases.  It was 

also observed that the ABGMM1 has a larger bias and RMSE when the value of 1.0=  

compared to when it is 0.5 or 0.9 especially when the time dimension, T is small.   Similar 

results were obtained irrespective of the number of individual and pattern of serial correlation 

process. All the estimators improve in performance as the sample size increases and confirm 

the asymptotic properties. 
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Table 2: The RMSE and Bias of estimate of β at δ=0.5, ρ=θ=0.5, λ=0.5. True model is AR(1), AR(2), MA(1) 

and MA(2) 

 

N T OLS LSDV AH(l) AH(d)  ABGMM1 

    RMSE Bias RMSE Bias RMSE Bias RMSE Bias RMSE bias 

     AR(1)       

50 5 0.1581 0.01196 0.14358 -0.0012 0.13533 0.000699 0.1416 -0.01489 1.2154 -0.3514 

 10 0.1094 -0.0167 0.109 0.000346 0.1074 -0.00394 0.1123 -0.01855 0.0665 -0.0059 

 20 0.0737 -0.0002 0.0772 0.00911 0.0747 -0.01059 0.0729 -0.0114 0.0386 -0.0356 

100 5 0.1021 0.00279 0.10626 -0.00482 0.11257 0.006348 0.1094 -0.01744 1.2251 0.77268 

 10 0.0777 -0.0077 0.07379 0.007552 0.06756 -0.00305 0.0721 -0.00613 0.0537 -0.0017 

  20 0.0564 -0.005 0.04806 -0.00055 0.05061 0.001552 0.0486 -0.00486 0.0247 0.00275 

     AR(2)       

50 5 0.1581 0.01196 0.14483 -0.00024 0.13251 0.001392 0.1377 -0.01886 1.1274 -0.4072 

 10 0.1094 -0.0167 0.10856 9.15E-05 0.10814 -0.00344 0.1128 -0.0189 0.0665 -0.0059 

 20 0.0737 -0.0002 0.07972 0.000262 0.07545 0.010611 0.0719 -0.01382 0.0315 0.02671 

100 5 0.1021 0.00279 0.10679 -0.0045 0.10935 0.005006 0.106 -0.01677 1.2378 0.81665 

 10 0.0777 -0.0077 0.07376 0.007474 0.06699 -0.00261 0.0721 -0.00654 0.0537 -0.0017 

 20 0.0564 -0.005 0.05569 0.002556 0.05127 -0.00521 0.0537 0.001167 0.029 -0.0037 

          MA(1)             

50 5 0.1581 0.01196 0.14466 0.000441 0.13369 3.18E-05 0.1395 -0.01771 1.0916 0.09636 

 10 0.1094 -0.0167 0.10933 0.000569 0.10694 -0.00417 0.1119 -0.01829 0.0665 -0.0059 

 20 0.0737 -0.0002 0.07826 0.004367 0.07874 0.010448 0.0676 -0.00635 0.0426 0.04069 

100 5 0.1064 0.0059 0.12259 0.011192 0.12768 -0.00829 0.108 -0.00421 2.038 1.26857 

 10 0.0777 -0.0077 0.07381 0.007597 0.06781 -0.00325 0.0721 -0.00598 0.0537 -0.0017 

  20 0.0564 -0.005 0.05328 0.003201 0.05322 -0.00372 0.0538 0.000601 0.029 -0.0037 

     MA(2)       

50 5 0.1581 0.01196 0.14488 0.000571 0.13322 0.000704 0.1378 -0.01839 1.1013 0.11934 

 10 0.1094 -0.0167 0.10945 0.000634 0.10689 -0.00415 0.1119 -0.01824 0.0665 -0.0059 

 20 0.0737 -0.0002 0.07727 0.005254 0.07903 0.011376 0.0679 -0.0078 0.0425 0.04115 

100 5 0.117 0.0117 0.12507 0.012117 0.12534 0.005075 0.1222 -0.01437 1.1991 0.74564 

 10 0.0777 -0.0077 0.0738 0.007597 0.0677 -0.00327 0.0721 -0.00609 0.0537 -0.0017 

  20 0.0564 -0.005 0.05473 0.002268 0.04708 0.001453 0.0589 0.00367 0.029 -0.0037 

Source: Compiled by the authors 
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Table 3: AH(d) RMSE and Bias of estimate with respect to δ at N=50, λ=0.1. [AR(1), AR(2), MA(1) and 

MA(2) errors] 

 

      AR(1) AR(2) MA(1) MA(2) 

T δ ρ\θ RMSE Bias RMSE Bias RMSE Bias RMSE Bias 

5 0.1 0.2 0.059643 0.005909 0.059653 0.005938 0.059646 0.005915 0.059642 0.005919 

  0.5 0.059635 0.005901 0.05965 0.005937 0.059645 0.005916 0.059641 0.00592 

  0.8 0.059628 0.005894 0.059647 0.005934 0.059643 0.005918 0.05964 0.005921 

 0.5 0.2 0.059643 0.005909 0.059654 0.005938 0.059646 0.005915 0.05964 0.005921 

  0.5 0.059635 0.005901 0.05965 0.005937 0.059645 0.005916 0.059641 0.00592 

  0.8 0.059628 0.005894 0.059647 0.005934 0.059643 0.005918 0.05964 0.005921 

 0.9 0.2 0.059643 0.005909 0.059654 0.005938 0.059646 0.005915 0.059642 0.005919 

  0.5 0.059635 0.005901 0.05965 0.005937 0.059645 0.005916 0.059641 0.00592 

  0.8 0.059628 0.005894 0.059647 0.005934 0.059643 0.005918 0.05964 0.005921 

10 0.1 0.2 0.047527 -0.00491 0.047531 -0.00491 0.047526 -0.00491 0.047525 -0.00491 

  0.5 0.047528 -0.00491 0.047532 -0.00491 0.047526 -0.00491 0.047525 -0.00491 

  0.8 0.04753 -0.00491 0.047533 -0.00491 0.047525 -0.00491 0.047525 -0.00491 

 0.5 0.2 0.047527 -0.00491 0.047531 -0.00491 0.047526 -0.00491 0.047525 -0.00491 

  0.5 0.047528 -0.00491 0.047532 -0.00491 0.047526 -0.00491 0.047525 -0.00491 

  0.8 0.04753 -0.00491 0.047533 -0.00491 0.047525 -0.00491 0.047525 -0.00491 

 0.9 0.2 0.047527 -0.00491 0.047531 -0.00491 0.047526 -0.00491 0.047525 -0.00491 

  0.5 0.047528 -0.00491 0.047532 -0.00491 0.047526 -0.00491 0.047525 -0.00491 

  0.8 0.04753 -0.00491 0.047533 -0.00491 0.047525 -0.00491 0.047525 -0.00491 

20 0.1 0.2 0.03293 -0.00313 0.034352 -0.00368 0.035201 -0.00045 0.033778 -0.00328 

  0.5 0.032804 -0.00228 0.028295 -0.0017 0.035493 -0.00389 0.029772 -0.00322 

  0.8 0.031064 -0.00366 0.032804 -0.00228 0.033616 -0.00201 0.033387 -0.00268 

 0.5 0.2 0.03499 -0.00339 0.035024 -0.00403 0.033547 -0.00379 0.031766 -0.00137 

  0.5 0.033387 -0.00268 0.03375 -0.00318 0.033547 -0.00379 0.030612 -0.00403 

  0.8 0.033547 -0.00379 0.033617 -0.00201 0.033616 -0.00201 0.030612 -0.00403 

 0.9 0.2 0.030843 -0.00501 0.035024 -0.00403 0.030612 -0.00403 0.029247 -0.00747 

  0.5 0.030739 -0.0043 0.035341 -0.00352 0.031765 -0.0023 0.028563 -0.00694 

    0.8 0.030613 -0.00403 0.035497 -0.00344 0.030612 -0.00403 0.033546 -0.00379 

Source: Compiled by the authors 

 

4.  Conclusion 

This study deals with serial correlation disturbances in the context of dynamic panel data 

model.  This is different from the previous econometric literature wish ignore the serial 

correlation. The results of the Monte Carlo experiment show that AH(d) outperforms other 

estimator when T is small (T=5), AH(l) is better when T is moderate(T=10) and ABGMM1 

perform better when T is getting larger (T=20)  at various level of serial correlation under 

consideration . This indicates that the nature of the data determines the appropriate estimator 

in the dynamic panel data model that is serially correlated.   Also, it was observed that as T 
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increases, there is an improvement in the performance of ABGMM1 due to the increase in the 

instruments; this implies that ABGMM1 will be better when T is large.  The bias and RMSE 

of OLS and LSDV are similar at various level of T even when the autoregressive and moving 

average parameters  and   were varied. 

 

The bias of most of the estimators reduces as the value of T increases especially the 

ABGMM1 estimator.  The effect of making the serial correlation, itv  to follow AR(1), AR(2), 

MA(1) or MA(2) are negligible in the performance of the estimators. Also, the result revealed 

that the bias and RMSE of OLS deteriorates as the value of   increases while other 

estimators improve with increase in the value of . The GMM estimator proposed by 

Arellano-Bond (1991) has a larger bias and RMSE when the value of the autoregressive 

parameter of exogenous variable,  is mild and when the time dimension is small (i.e. T=5).  

It was noted that as the sample sizes increase, the performance of all the estimators improve 

when the error term is assumed to be serially correlated. 
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Appendix 
 

Table 4: The RMSE and Bias of estimate of δ when δ =0.9, ρ=0.8. True Model is AR(1) 

 

 

  AR(1)   OLS LSDV AH(l) AH(d)  ABGMM1 

N T   RMSE Bias RMSE Bias RMSE bias RMSE bias RMSE Bias 

50 5 0.1 0.0734 -0.0031 0.0616 -0.004968 0.0627 0.0074 0.05963 0.00589 11.4453 -6.4576 

  0.5 0.1087 -0.0076 0.0615 -0.004973 0.0627 0.00738 0.05957 0.00584 2.313 -1.4754 

  0.9 0.1174 -0.0084 0.0615 -0.004973 0.0627 0.007385 0.05956 0.00581 1.28376 -0.8805 

 10 0.1 0.0484 0.00441 0.0462 0.000345 0.0421 -0.00559 0.04753 -0.0049 0.07399 0.00784 

  0.5 0.0725 0.01116 0.0462 0.000344 0.0421 -0.00561 0.04752 -0.0049 0.07349 0.00894 

  0.9 0.0835 0.01252 0.0462 0.000343 0.0421 -0.00561 0.04753 -0.0049 0.07193 0.00967 

 20 0.1 0.0326 0.0016 0.0336 0.002047 0.0321 -0.00096 0.03061 -0.004 0.02414 0.01984 

  0.5 0.0501 0.0007 0.0336 0.003403 0.0329 0.000196 0.02932 -0.006 0.02289 0.01829 

  0.9 0.0578 -0.0014 0.0327 0.001974 0.0318 -0.00064 0.03105 -0.0034 0.0203 0.01735 

100 5 0.1 0.045 0.00216 0.0481 -1.43E-05 0.0445 -0.00574 0.0484 -0.00506 9.94916 6.59152 

  0.5 0.0665 0.00118 0.0481 -1.97E-05 0.0445 -0.00575 0.0484 -0.005 2.07666 1.42704 

  0.9 0.0783 0.00108 0.0481 -2.19E-05 0.0445 -0.00576 0.04839 -0.005 1.19475 0.84621 

 10 0.1 0.0324 0.00068 0.028 -0.001669 0.0282 -0.0013 0.03487 0.00311 0.05488 -0.0028 

  0.5 0.0475 0.00423 0.028 -0.001668 0.0282 -0.0013 0.03486 0.00312 0.05292 -0.002 

  0.9 0.0543 0.00683 0.028 -0.001664 0.0282 -0.0013 0.03486 0.00313 0.05049 -0.0012 

  0.5 0.0332 0.00469 0.0226 -0.000193 0.0235 -0.00019 0.02017 0.00328 0.02955 -0.0039 

    0.9 0.0396 0.00447 0.0225 0.001528 0.021 0.001528 0.02224 -0.0019 0.02833 0.00044 

Source: Compiled by the authors 
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Table 5: The RMSE and Bias of estimate with respect to δ when δ =0.9, θ=0.8. True Model is MA(1) 

 

  MA(1)   OLS LSDV AH(l) AH(d)  ABGMM1 

N T Λ RMSE Bias RMSE bias RMSE bias RMSE bias RMSE Bias 

50 5 0.1 0.0734 -0.0031 0.0616 -0.005 0.0627 0.007464 0.05964 0.00592 8.03205 -1.9221 

  0.5 0.1087 -0.0076 0.0615 -0.005 0.0627 0.007443 0.05962 0.00591 1.53896 -0.4598 

  0.9 0.1174 -0.0084 0.0615 -0.005 0.0627 0.007437 0.05961 0.00589 0.82317 -0.2848 

 10 0.1 0.0484 0.00441 0.0462 0.00035 0.0421 -0.00559 0.04753 -0.0049 0.07399 0.00784 

  0.5 0.0725 0.01116 0.0462 0.00035 0.0421 -0.00561 0.04752 -0.0049 0.07349 0.00894 

  0.9 0.0835 0.01252 0.0462 0.00034 0.0421 -0.00561 0.04752 -0.0049 0.07193 0.00967 

 20 0.1 0.0326 0.0016 0.0336 0.00205 0.0321 -0.00096 0.03061 -0.004 0.02028 0.0155 

  0.5 0.0501 0.0007 0.0329 0.00433 0.031 -0.00349 0.03375 -0.0032 0.02063 0.01587 

  0.9 0.0578 -0.0014 0.0329 0.00304 0.0317 -0.0027 0.03175 -0.0023 0.0216 0.01697 

100 5 0.1 0.0433 0.00136 0.0516 3.73E-07 0.0407 -0.00609 0.04669 -0.0044 17.5865 11.5782 

  0.5 0.0671 -0.0005 0.0516 -9.13E-06 0.0407 -0.0061 0.04662 -0.0044 3.01919 1.51332 

  0.9 0.0833 -0.0027 0.0481 -9.03E-06 0.0445 -0.00577 0.04839 -0.005 1.19705 0.872 

 10 0.1 0.0324 0.00068 0.028 -0.0017 0.0282 -0.0013 0.03487 0.00311 0.05488 -0.0028 

  0.5 0.0475 0.00423 0.028 -0.0017 0.0282 -0.00131 0.03486 0.00313 0.05292 -0.002 

  0.9 0.0543 0.00683 0.028 -0.0017 0.0282 -0.00131 0.03486 0.00313 0.05049 -0.0012 

 20 0.1 0.022 0.00301 0.0241 0.00289 0.021 0.002734 0.02264 -0.0017 0.03009 9.99E-05 

  0.5 0.0332 0.00469 0.0234 0.00234 0.0202 0.003277 0.02233 -0.0008 0.02938 0.00026 

    0.9 0.0396 0.00447 0.0231 0.00163 0.0203 -1.93E-05 0.022 -0.0003 0.02833 0.00044 

Source: Compiled by the authors 
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Table 6: The RMSE and Bias of estimate of β   when δ =0.9, ρ=0.8. True Model is AR(1) 

 

  AR(1)   OLS LSDV AH(l) AH(d)  ABGMM1 

N T 

 

RMSE Bias RMSE bias RMSE bias RMSE Bias RMSE Bias 

50 5 0.1 0.23037 0.01409 0.18214 -0.00767 0.33369 -0.0089 0.3342 -0.0801 6.65052 -1.9897 

  0.5 0.15814 0.01196 0.1431 -0.00233 0.13553 0.00206 0.1414 -0.0133 1.31747 -0.4986 

  0.9 0.10436 0.00785 0.10246 -0.00108 0.08539 0.0013 0.0884 -0.0031 0.72146 -0.3094 

 10 0.1 0.15627 -0.0196 0.14609 0.002833 0.30888 -0.0315 0.322 -0.0471 0.0675 -0.0072 

  0.5 0.10939 -0.0167 0.10893 0.000288 0.10765 -0.0038 0.1125 -0.0187 0.0665 -0.0059 

  0.9 0.07556 -0.0107 0.07546 -0.00086 0.06245 -0.0016 0.0662 -0.0107 0.06455 -0.0045 

 20 0.1 0.09823 -0.0088 0.10366 0.002421 0.22533 0.03191 0.2294 -0.0079 0.03233 0.02928 

  0.5 0.0737 -0.0002 0.07834 0.00186 0.07864 0.00847 0.068 -0.0032 0.0361 0.03312 

  0.9 0.0524 0.00217 0.0561 0.001811 0.04466 0.00605 0.0406 -0.0054 0.03891 0.03739 

100 5 0.1 0.13067 0.00395 0.15403 -0.00785 0.22139 0.01649 0.2272 -0.0338 5.90899 3.55115 

  0.5 0.10206 0.00279 0.10608 -0.00488 0.11284 0.00532 0.1104 -0.0173 1.22725 0.77527 

  0.9 0.07314 0.00168 0.07358 -0.00295 0.07316 0.00184 0.0705 -0.0096 0.70306 0.4626 

 10 0.1 0.1051 -0.0009 0.10827 -0.00397 0.17983 0.00453 0.1799 -0.0218 0.0549 -0.0017 

  0.5 0.07766 -0.0077 0.07378 0.007526 0.06738 -0.0029 0.0721 -0.0063 0.05367 -0.0017 

  0.9 0.05367 -0.0072 0.04925 0.008364 0.04008 -0.0029 0.0426 -0.0025 0.0518 -0.0017 

 20 0.1 0.07655 -0.009 0.07764 0.000414 0.16219 -0.0231 0.148 0.01634 0.02924 -0.0037 

  0.5 0.05637 -0.005 0.05077 0.000103 0.05093 -0.002 0.0508 -0.0026 0.02812 -0.0022 

    0.9 0.03987 -0.0025 0.03774 0.001874 0.03024 0.00117 0.0321 0.00252 0.02833 -0.0036 

Source: Compiled by the authors 

 




